|
:

5 '1
Courant Institute of
Mathematical Sciences
\ A SETLB Primer
| Henry Mullish and Max Goldstein

New York University

A SETLB Primer

(With over 100 illustrative programettes)

Henry Mullish and Max Goldstein

<
5
N u
'VL% \
>_¥f ‘ The Courant Institute publishes a number of
B sets of lecture notes. ANl bistRofatitles

currently available will be sent upon request.

Courant Institute of Mathematical Sciences
251 Mercer Street, New York, New York 10012

Copyright © :
Courant Institute of Mathematical Sciences
1973

e T T

Table of Contents

Introduction

The SETLB Character Set

SETLB Programs

Control Cards

Elementary Programs; the HELP Debugging Aid;
Comments in Programs

Questions

Sets

Explicit Set Formers

Elementary Operations on Sets

Elements vs. Subsets

Comparison and Boolean Operators

More on Subsets

Union of Sets

Symmetric Difference

The Number of Elements in a Set

Duplicate Elements

Changing the Contents of Sets

The "Selection or "Arbitrary Element" Operator
Questions

Tuples

Indexing of Tuples

The Zeroth Component of a Tuple: An Illustration
of Error Termination

Modifying Tuples

The 'Undefined Value' or 'Omega' Concept;
Additional Remarks on Error Termination
The Head and Tail Operators

Questions

Additional Information on Sets and Tuples
Set Formers

A Short Digression on Arithmetic in SETLB
More Examples of Set-Formers

Existentials

Universal Quantifier

-iii-

11
11
123
157
20
23
27
28
29
30
31
34
36
39
41

42
44

48
50
51
52
52
56
57
59
62

4.6 'Multiple' Assignments 67

Questions 70
5. Sets of Pairs and Tuples Used as Maps 73
5.1 Sets of Tuples as Functions 73
5.2 An Observation on the Use of Subexpressions within

Set Expressions 83

Questions 84
6. Control Statements 86
6.1 Integration over a Numerical Range 86
6.2 Compound Operators 90
6.2.1 Examples of Set Formers and Compound Operator 92
6.2.1.1 A Prime Number Generator and the Sum of Primes 92
6.2.1.2 Checking a Formula 94
6.3 Iteration over the Elements of a Set 95
6.3 Other Iteration Forms 99
6.4 IF, THEN, ELSE 108
6.5 The WHILE Iterator O
6.6 Labels and GO-TO Statements 114
6.7 A Remark on Programming Style: GO TO -less

Programming 116
6.8 Conditional Expressions 1L 7

Questions 120
/e Character Strings 122
Thoil Substrings 1125

Questions 126
8. More Examples of the Use of SETLB 127
8.l A Sorting Algorithm 127
8.2 Counting Character Frequencies 128
9. Subprograms 130
9.1 User-Defined Functions 10
9.2 Subroutines 132

Questions ; 137
10. Built-In Functions and Operators Provided by SETLB 138
10750 Absolute Value Operator 138
10.2 The Maximum and the Minimum Operators L339

10.3 The Random Function 141
' IN. and OUT.

10.5
10.6
10.7
10.8
10:.:9
10.10
10.11
10.12

llt
12.
12,1

20

13.

14.
15.

The FROM. Operator
The NOOP Instruction
The IS., or General Assignment to the Right,
NEWAT. _
Object Types S
The ASSERT Debug-Print Statement

Macros

User-Defined Binary and Monadic Operators
Questions :
Reading from Data Cards . 1 1
Some Sample Programs

A First Full-Scale Example of the Use of_SETLB:V
The Koenigsberg Bridge Problem

A Second Full-Scale Example of the Use of.SEﬂLB@,j:
Translating to Pig Latin

Summary of SETLB Features
Miscellaneous Advanced Information
Bewares

b
Related literature i - Thaa-R

Index

1. Introduction

Most of this introductory section is intended for the person
who has had experience with computer languages of various kinds.
In it we will try to describe the general relationship of SETLB
to other computer languages. The novice will surely find the
points made somewhat obscure. But this should not in any way deter
the non-sophisticate from going on with the primer to learn "what

SETLB is all about." 1In most of the primer not even a knowledge of

set theory is assumed; all required information is explained in

the body of the text, hopefully in such a manner that most, if not
all, of the material can be absorbed at the first reading. Novices
to programming are advised to skip this introduction and to begin
immediately with Section 1.1.

SETL is a new programming language whose essential features are
taken from the mathematical theory of sets. SETL has a precisely
defined formal syntax as well as a semantic interpretation and thus
it permits one to write programs for compilation and execution.

The SETL language was first described in a manuscript entitled
"Abstract Algorithms and a Set-Theoretic Language for Their Expres-
sion," by Jacob T. Schwartz. In the preface and introduction to
this manuscript Prof. Schwartz discusses the relationship between
mathematics and programming and stresses the need for a new very
high level language for the specification of complex algorithms.

A mathematicized programming set theoretic language is seen as
answering this need. A later version of this same material will

be found in "On Programming: An Interim Report on the SETL Project,"
by the same author (Courant Institute Lecture Notes).

Having general finite sets as its fundamental objects, SETL is
a language of very high level, i.e., the language incorporates
complex structured data objects and permits global operations upon
them, thus freeing the user from the onerous task of specifying the
detailed internal forms which are to represent the structured objects.
That is, SETL allows one to specify even very complicated algorithms
without regard to the details of possible data structures. It relieves
the user of details concerning layout of arrays, use of pointers, etc.
—- details which are inevitably encountered early in the treatment

-]1-

of a complex programming problem by conventional techniques.

It therefore permits one to concentrate on the logical structure
of the projected program. The programmer is thereby freed to
describe abstract problem-related entities and their interactions
in a familiar and analytically natural manner.

Of course, one pays a price for these great advantages. Namely,
it becomes all too easy to generate very inefficient programs.
Generally speaking, SETL pays a substantial price in efficiency
for its logical power. Nevertheless, it is our feeling that SETL
will be useful in a variety of significant ways. It is a language
in which complex algorithmic processes can be formally and precisely
defined.

SETL may become quite useful in the teaching of computer science.
SETL-based introductory courses could treat abstract algorithms
separately from concrete algorithms for which data structures have
been specified. SETL allows complex algorithmic processes to be
represented and analyzed independently of the way in which the
logical objects to which they refer are mapped onto a computer.

The subset verion of SETL which is currently implemented on
the CDC 6600 at the Courant Institute is called SETLB. The suffix
"B" indicates that the current version was written using the extend-
able, LISP-like language called BALM, conceived and implemented by
Professor Malcolm Harrison, also of the Courant Institute.

SETLB is implemented using a preprocessor to "BALMSETL";
BALMSETL is an extension of BALM obeying all the syntactic and
semantic conventions of BALM. When full SETL (rather than SETLB)
is implemented, many of the current implementation-related
restrictions imposed by the presently existing linkage to the
BAIM language will be alleviated. Even though SETL will then
differ in some important respects from the present SETLB, a user
of the current version of SETLB will find that his programs require
only slight modification.

We wish to acknowledge the assistance of the SETLB group,
in particular Prof. Jacob T. Schwartz, Kent Curtis, Robert Bonic,
Dave Shields, Hank Warren, and Steve Tihor, who not only answered

our questions with patience, but contributed algorithms and
reviewed the manuscript.

The work reported in the text is supported by NSF Grant
NSF-GP-1202X and under AEC Contract AT (11-1)-3077.
What follows is an account of the SETLB language.

o

1.1. The SETLB Character Set

At Courant Institute there are several modified 029 keypunch
machines. The characters used in SETLB are immediately obtainable
on the 029 keypunch whereas some of them must be multipunched on
a 026 keypunch.

All of the 029 characters are used in SETLB, with the sole
exception of the ™1 (not) sign. The SETLB characters are the
26 letters of the alphabet, the 10 digits of the decimal system,
and the special characters which are illustrated below, together

with their punched hole representation for the CDC 6600.

= o g e e SR

3 0 1LY 1214 08 191 1528 SRS 0 2 RSN R o] S 52

8 8 31 B3NS SMES4 SRRl ! 1. heh HGITESEE).
8 8 8 S g RS 8 8 8

=t = & oAy LIEN T[S SRRV S

0 L28 12F 8 SOWEEDE 5] BT]SRN () 6 11 12

2 6 8 S 8 2485

8 8 8 8 8 8

Any of the above synbols may be punched on the 026 by
depressing the MULTipunch key while individually punching each
hold. Despite the peculiar appearance of the resulting composite
print on the card, it will be acceptable on the computer and that

is the primary consideration.

1.2. SETLB Programs

SETLB programs are punched on cards in columns 1 through 72.
However, in view of the possibility that some time in the future
column 1 may be reserved for special purposes it is recommended
that the instructions occupy columns 2 through 72. There are no
fixed fields such as in Fortran, etc. Each statement must be
terminated by a semicolon.

All programs must be structured into blocks which commence

with DO; and terminate with COMPUTE;. Furthermore, every SETLB
program must end with a FINISH; statement.
The division of a SETLB program into several DO;...;COMPUTE;

blocks aids in debugging SETLB programs for the following reason:
If an error occurs during the execution of any one block the entire
program will not be aborted but rather only the one block contain-
ing the error. Subsequent blocks will be executed "without preju-
dice," as it were.

In order to print a value one uses the PRINT. instruction.
The keyword PRINT. is followed by the list of expressions that are
to be printed. For example:

(a) PRINT. A;

(b) PRINT. A,B;

(c) PRINT. C, C+D, E*F;

For our first sample SETLB program we shall set A=10, B=3
and C=2. We then print out A,B,C, A+B, A+C, B+C, A*C, B/C, A-C
and review the output produced.
The complete program is:
DO;
A=10;
B=3;
C=2;
PRINT. A,B,C,A+B,A+C,B+C,A*C,B/C,A-C;
COMPUTE ;
FINISH;

eeS Control Cards =3

Before showing the form of the resulting ouﬁﬁﬁisgﬁfﬂ‘

included in order for even the simplest program to.be

the system. We shall now show the complete, somewhat

presented to the CDC 6600.

ID,DT30,CM200000. MULLISH
ATTACH , SETLABS , SETLB.
LOADER. RFL, 66000.
SETLABS. (HELP)

ATTACH (BLM4SVD, SAVESETL)
ATTACH ,BALMTR , BALMTRANS . ot

RFL,200000. * E lf
BALMTR,SETLOUT. LGS .- t"
E-O-R (end-of-record card) _ ;:f.
DO; -
ey %
A=10; IS
B=3; ""_f'."'?'_
c=2; o
PRINT. A,B,C,A+B,A+C,B+C,A*C,B/C, A—Q,_Lf;
COMPUTE ; + hiahi

FINISH; e
E-O-F (end-of-file card) AT

1.4 Elementary Programs; the HELP Debugging Aid;

Comments in Programs

Here is the output of the above SETLB program, preceded by a
printed listing of the program. Each line of the program is
sequentially numbered by numbers placed under the heading LINE NO.
Other auxiliary statement numbers are printed under the heading
STATE NO. Since SETLB at present handles only integer arithmetic,
it is interesting to note the value obtained for B/C.

Program 1
LINE STATE
NO NO
i 0 /* AN E_EMENTARY SETLB PROGRAM, USING =HE[_P= ¢/
? 0 DO} -}
3 0 A=lp}
4 1 Bed;
5 2 Ce2) :
& 3 PRINT,A,B,C,A+B,A+C,B*C,a*C,E/C,A=C}
7 4 COMPUTE,
8 4 FINISH}

Output -- Program 1

S a e AT 4 IN MAIN A IS 10
T rpain 5 [N MAIN B I8 3
w « = AT 3 IN MAIN C IS ?
103243125201 8

w « + (END OF FILE ON INPUT) #» w %

-6-

The first thing to be noticed in the above output are the
first three output lines, each of which is preceded by --- .
These lines are produced by a SETL debugging feature which prints
out the values of all variables to which assignments have been
made. This feature was activated by the inclusion of the word
(HELP) on the fourth control card listed above. The user will
find that this (HELP) feature is generally of extreme utility in
debugging programs. We mention it here merely to alert the user
to its existence. This important debugging feature is discussed
in detail in Section 14. In describing programs and their output
subsequently, (HELP) will be left switched off.

The proper (as distinct from debug) output from the program
appears on the fourth output line. The first three values are
those for A, B and C, namely 10, 3 and 2. The value of A+B is
seen to be 13, A+C is 12, B+C is 5, A*C is 20, B/C, i.e. 3/2,

appears as the truncated value 1l; finally, the value of A-C is 8.

Before passing on from this program it is worth pointing out that
in SETLB it is quite proper to include unevaluated expressions
in a print list, even though this is a somewhat uncommon feature
in programming languages. We also note that the list of results
is printed on a single line and separated by a single space, in
conformity with the use of a single print instruction.

The same program was run again, this time with the (HELP)
feature omitted; here is the listing and printed output.
Note that with the (HELP) feature omitted no numbers appear under
the heading STATE NO.

Program 2

LINE STATE
NO NO

/* THE SAME ELEMENTARY PROGRAM, WITHOUT JSING rHELP= w/
Do)

Aeip}

Be3;

Cu2j ,
PRINT,A,B,C,AsB,A+C,B*C,a*C,E/C,AnC}
COMPUTE,
FINISH;

@M AN >

Output -- Program 2

10 3 2 13 12 5 20 1 8

« « * (END OF FILE ON INPUYT) « % «

To the above program and output one may make the objection
that in order to understand the output one has to refer directly
to the program. Obviously, this is not the most satisfactory way
of printing output £ It is a good idea to print some description
or other prior to each number outputted in order to identify it.
SETLB makes it easy to print fixed text. Text to be printed must
be enclosed by quote signs. On the 029 keypunch machine the quote
sign is the # character.

Another way to improve the readability of a program is to
include explanatory comments. This may be done by using the $
symbol. Anything punched on a card followed by the $ symbol is
ignored by the computer although it will appear in a listing of
the program.

Program 3)

LINE STATE

NO ANO

1 $ PROJRAM 3

2 %

3 § THIS IS JUST A SLIGHT MODIFICATICN TO THE PREVIOUS PROGRAM

$
2 $D ¢HELP) HAS BEEN QMITTEp FRCM THE CONTROL CARDS
03

7 A=10;

8 8=3;

Q C=2;
in PRINT ,#A=#,A,2B=#,8,2C=2"C,2A+E=¢, A+B, ZA+C=#,A+C,#B+C=#,B+C,2i*C=x, A%C
11) 2B8/0=22,B/C,2A=C=2,A=-C;
12 COMPUTE;

13 FINISH;

Output -- Program 3

2Az=Z 10 #B=%Z 3 #C=# 2 *A+E=Z 13 ZA+C=y 12 #£E+C=#Z 5 fA=«C=y 20 #R/C=#
1 #A=C=z 8

« « « (END OF FJLE ON INPLT) * & «

It will be noticed in the above that the print statement is
now too long to be contained on one card. (Remember one must not
punch beyond column 72.) All one has to do in such a situation is
to continue punching the instruction on another card without any

special preliminaries. This process may be continued indefinitely.

A statement is always terminated by the occurrence of a semicolon.
Another form of comment card, resembling that used in the

PL/l1 programming language is available in SETLB. This second form

of comment begins with /* and terminates with */. Of course, this

convention obviates the possibility of including a */ in a comment,

but this is no great hardship.

L o]
(=}
5]
[/7}
H
o
2
(9}
i L e

Ad ik Gl b

- PRINT. A,B,C

DO;
. . v '
MR RN E S |

e KOMPUTE: FINISH;

20 Sets

The SETL language aims to make it possible to state problems
in the language of set theory. A set in SETLB is a clearly defined

finite collection of elements.

2.1 Explicit Set Formers

A set can be formed by the explicit enumeration of its elements
as in:
A= {5,1,7,2}

The order in which the elements appears is of no consequence.

In other words the set
BR=" {124, 1805575}

is identical to the set A above.

A set may have another set, as one of its elements.
C = {'FuN's, {5509 75208k

Here, C is a set having two elements, the first a character string,
the second a set of numbers.
By definition, a set has no duplicate elements. Hence, the

statement
D! = {5}, 55 17 a3

assigns D the same value as set A or B above.

One guite useful set contains no elements whatever. This
special set is called the null set. It is denoted by { } or @
in set theory and by NL. in SETLB. Note that the set {0} is not
the null set -- it is a set with the number zero as its single
element.

Since the characters { } are not available on the 029 keypunch,
explicitly enumerated sets are represented in SETLB as follows:
A = <:5,1,7,2>; . That is, we begin the enumeration of a set with
the < character, followed immediately by a colon, and then give
the elements of the set separated by commas. The enumeration is
terminated by the > symbol.

The next program simply specifies several sets in SETLB
notation and prints them. Its output merits some discussion.

-11-

! [N’Q

S NOU B GN

Lol e
N o

(===
(O, RSVl

LINE STATE

/* THESE ARE SOME EXAMPLES OF SETS +/

DO}

A=£:5,1,7,22;
B=$i-1,-5,=3,=42;
C=S:#JACK#,#DAVEZ, #MAXZ, ZHENRY#2;
D=s<:A,B,C2}
PRINT,#A=7,A,2B=%,8}
PRINT.#C=%,C;
PRINT.#2D=%,D;
E=S:1!1J2!20323
PRINT.ZE=7,E;

F=<:1 12 2z 3>;
PRINT.ZF=7,F;
COMPUTE: FINISH;

JACKZ 2DAVEZ>

- J

-3 =4 -5> <#HENRY# #MAXZ #JACK# #DAVE#>>

Line #8 of the above program instructs the computer to print
out sets A and B. Both these sets will be printed on a single line.
Notice that the elements are not printed in the same order as that
in which the set was initially enumerated. (They are in fact
printed in the order in which they are maintained internally within
the computer.) Moreover, there are no commas separating the
elements printed, but rather blank spaces. Nor is the colon or
the terminal semicolon printed.

Line #9 prints out the set C and once again we notice that the
order of printing is arbitrary and that blanks separate the elements.

Line #10 instructs the compuer to print out the set D. This
set has A, B and C, which are themselves sets, as its elements.
Hence the printout beginning with << and concluding with >> ,
which at first sight seems somewhat peculiar.

Line #11 enumerates the set E in a manner involving duplicate
elements. The printout shows clearly that duplicates are ignored.
Finally, line #14 prints out the set F. Look carefully at
the definition of F! At first sight it may look much like the
definition of the set E; however, instead of commas being used
to separate elements, spaces are used. These spaces, however,
are ignored by the SETLB compiler and as a result and set F has

a single element, namely 11223.

2142 Elementary Operations on Sets

Given a set A one can ask if a particular element x is a member
of that set. In set-theoretic notation, this relationship is

written

(1) G

Or we can ask whether x is not an element of A
(2) x & A

The answer to such a function is either 'true' or 'false'.

By the same token we can ask if a set A is equal to a set B, or
whether A is not equal to B. Lastly, one may want to know whether
a set A is a subset of set B.

-13-

To all of these questions the answer is either 'yes' or 'no',
'true' or false'. Expressions like (1) or (2) are therefore called
Boolean valued expressions. Boolean values, once formed, may be
combined using the logical operators "and" and "or", care being
taken to parenthesize so as to show the intended groupings.

In the next program a set A is defined.

A = <:5,1,7,2>;

The question is then asked: is 3 an element of the set A? 1In SETLB
this is done with the + sign, used because the conventional
mathematical sign '€' is not available on the 029 keypunch.

3 > A

The question "Is 7 an element of A?" is written
7 > A

Finally, one asks: is 10 an element of A? This is written
HOR VAT

Plainly, 3 and 10 are not elements of A while 7 is. Since
these three tests appear on the same PRINT. statement, the three
answers

FALSE TRUE FALSE

appear on the same line.

Next, the question is asked whether 3 is an element of A,
but the result of this test is inverted using the logical operator
NOT. Since 3 is not an element of A, 3 > A is FALSE. The NOT.
converts the result FALSE to TRUE which is printed. Similarly,
for the remaining two expressions.

-14-

o _ -
bl v, 2o _aill g L i M Wik, e it b L, o e . : 1= ‘i

Program 5

LINE STATE

NO NO
5 /+ SOME BOOLEAN OPERATIONS - ELEHENT TEare oy
; 221 S e
3 A=$15,1,7,2>; A Py kst
; PR!NrO 3‘Al7"‘,10“' L .-.\.7.1:‘
6 PRINT.NOT,(3+A),NOT,(144),NOT, (10~A);

COMPUTE:! FINISH;

L R

Output -- Program 5

FALSE TRUE FaALs
TRUE FALSE rﬁbss

Three elementary set relationships are tested in the next
program; each test asks whether a given element is a member of

a specific set. Since each expression occurs in a separate PRINT.
instruction, the answers occupy separate lines.

Program 6
‘ LINE STATE
! NO NO
g
1 /* SOME MORE ELEMENT TESTS =/
2 DO}
3 PRINT, 324<15,62;
4 PRINT.2+<:1,5,8,22;
L} PRINT,1+<:2,4,6>;
6 COMPUTE; FINISH;

_Output -- Program 6

FALSH
iy TRUE
FALSH

¢ % v (END OF FILE ON INPUT) # » «

Ll U VAR el I e st et e bcd 548 = 48

B

213 Elements vs. Subsets

Suppose we define a set by b o RGeSt

A= <:3,4, <:1,2>>;

This is a set composed of three elements, namely 3,4 and an
which itself is the set <:1,2>. Sets as set-elements are v:
both in mathematics and in SETLB. We can then ask whether the
<:4,3> is an element of A. In other words, is one‘ofwthe;gﬁggﬁﬁ?s;i
in the set A identical with <:4,3> ? The answer is vaiOuﬁiaﬁ:gdﬁrfﬁ-
negative and so we expect a FALSE printout. Py rx e !eﬂ'

Inserting the logical operator NOT. before this test chagggg@guﬁ:7
the truth value obtained from FALSE to TRUE. This is seen in ﬁ@éﬁﬁi-tf

-y .

following printout. L6200 BN

1

Program 7 L
LINE STATE
NO NO .
R
/* SOME SUBSET TESTS =/ g
DO} SR
PRINT.S:4!32"533043531;2223

s W

PRINT.NOT,S:4,32+5:3,4,<:1,222;
COMPUTE: FINISH; ’ SR

Qutput -- Program 7

In dealing with sets, as distinct from other types of compound
SETLB objects to be discussed later, the order in which the elements
_appear is of no consequence. The set

A= <:1,2,3>;
is exactly equal to:
B =<:3,1,2>;
in which the same elements

are enumerated in a different order.
It therefore follows that the sets A and B above are equal.

can be verified using the EQ. operator. The sets

This

C = <:8>; and D = <:9>;

are not equal; this can be verified using the NE.

(not equal)
operator.

If we define the two following sets:
E = <:3,4>;
E='<:1,2,3,4>;

can ask whether the set F has the set E as a subset.
<an be made using the INCS.
a subset of F,

This test
(set inclusion) operator. Since E is
F includes E, and the Boolean expression

F INCS. E
yields the result TRUE.

All this is shown in the program which follows.

Program 8 .

LINE STATE
NO NO
p | /* SET EQUALITY: SUBSETS »/
2 D0y
3 Az<i1,2,32)
4 B=<:13,1,22)
5 PRINT,(A EG,B); : -
6 C=<i82; STeve
7 D=<i92; -
8 PRINT.(C NE,D)3
9 E=<13,42;
10 Fe<11,2,3,42;
11 PRINT.(F INCS,E);
32 COMPUTE}? FINISH;
Output -- Program 8
TRUE
TRUE
TRUE

* * + (END OF F]

/* COMPARISON QPERATORS #/
00y

PRINT, 6 LT, 2 AND, 11 GT, 4;
PRINT, 6 LE, 6 AND. 11 GE, 4;
PRINT, 8 AT, 1 OR, 2 GT, 100;
PRINT, 5 GE, 1 AND, 2 GT, 2)
COMPUTES FINISH;

more, the abbreviation 'T.' for TRUE.
also available.

Program 10

LINE SYATE
NO NO o 3ethom

/* MORE ON LOG]CALS »/ SEN
DO) A=T,} B=F,; T Lo
PRINT. A OR,B8} ;
PRINT., A 0, B}

PRINT. A AND, B3
PRINT, A A, B3 ¥l
COMPUTES FINISH; e !

NI LS W

Output -- Program 10

TRUE
TRUE
FALS®E
FALSE

* * ¢ (END OF

In the following program we evaluate Boolean expressions
involving a set C and combine these expressions using certain
Boolean operations including the AND. and OR. operators. The
reader shoﬁld reason his way to the results of the program and
compare them with the printed output. Notice the abundant use
of parentheses, made necessary by the rather unhelpful SETLB

precedence rules. In SETLB unparenthesized expressions associate

to the right, contrary to convention. Thus:
4 ~ C AND. B
is seen by SETLB as

4 » (C AND. B)
and not as

(4 > C) AND. B .

SETLB users should always use parentheses to indicate the desired
grouping.

Program 11

LINE STATE

NO NO
1 /* SOME BOOLEAN OPERAT]IONS
2 DO} o
3 C=s:5,7,9,112)
4 PRINT, (49C) AND, (94C);
L] PRINT.(S*C) AND, (9«C))
6 PRINT, (42C) CR, (9C)}
; PRINT, (7=C) AND, ((5-C) nR, (6=C))}

COMPUTE) FINISH)

Output -- Program 1l

FALSE
TRUE
TRUE
TRUE

e« » « (EMD OF FILE UM INPLT) » # =

-22-

2.5 More on Subsets

Pay careful attention to the difference between 'subset' and

'element'. For example, examine the following:
A= <:1,2>;

B

<:1,2,3,4>;

Does B include the set A? That is, is A a subset of B? Since all
the elements of A appear as elements in B the answer is TRUE. But
now let:

C = <:<:1,2>,3,4>;

Here we have a set C whose first element is the set containing the
elements 1 and 2. Does the set C include the set A? The answer
this time is that it does not. In fact 1 is not an element of C,
but is rather an element of an element of C, which is quite a
different matter. The elements of C are the integers 3, 4 and the
set <:1,2>.

In order to understand more clearly what is involved here let us
write out all the subsets of B and C, producing a list which inci-
dentally includes the sets B and C themselves. Note that the null

set is a subset of every set.

Subsets of B

{1,2,3,4}, {1F,; {2F7 {15205 F1 2003) PHR{i10S [N o8 S | o

(3,4}, {2,4}, {1,4}, {1,2,4), {234 510N] e Cas S L.

Subsets of C

{{1,2}, 3,4k, {{1,2}}, {{1,2}; 307 {2) o (e Fa s s (A S (I |

From the above it is clear that the set {1,2} is definitely a
subset of B but not of C. In answer to the gquestion: 1is A an
element of C, it certainly is. Is 1 an element of C? -- no, it is
not.

The following program's output shows that B includes the set A
while C does not include the set A. Whereas it is true that
A is an element of C, 1 is not an element of C. Clearly A is not
eg-al to B and it is true that B is not equal to C. Also, 1 is

=23

an element of A and 4 of B. The element 23 is not a member of A,

but since 4 is a member of C the Boolean expression incorporating
the OR. is true. All these possibilities are made use of in the
next program, the last expression of which is a combination of an
AND. and an OR. -- the reader should calculate for himself the
results printed.

DO; ... ;COMPUTE;

Note that print instructions included in different

blocks result in output separated by a blank line.

Program 12

LINE STATE

NO NO
1 /* SOME MNRE SET OPERATIONS */
2 Do}
3 A=$11,22;
4 B=$=112;3142;
5 C=£1<11,22,3,42;
6 PRINT. B INCS, A}
7 PRINT., C INCS, A:
8 PRINT ,A=C;
9 PRINT 1+C;

10 COMPUTE

11 DO}

12 PRINT., A EG, B;

13 PRINT, B NE, C;

14 PRINT,(1+A) AND, (4-+B);

15 RRINT, (23#+A) OR, (4-C);

16 RRINT, (4+B) AND, ((84-+B) OR, (2+C))}
17 COMPUTE3 FINISH;

Output -- Program 12

TRUE
FALSR
TRUE
FALS®

FALSE
TRUE
TRUE
TRUE
FALSE

* % « (END OF FILE ON INPUT) # »
==

2 -/:‘;s;!-nﬁﬁi-l' R AT

L R e

all of the subsets of a given set S. This always pro
sets. The list of subsets always includes the set it
null set. The operator which does this is the power fun
The manner in which it is invoked is illustrated below.
more than one line is required for the entire printout.

Program 13

LINE STATE
NO NO
1 /* THE SET OF SUBSETS #/
2 DOJ A=52:1,2,3,4>;
3 PRINT,POWCA);
4 COMPUTES FINISH;
Output '—-- Program 13 sy i
$<12 €2 32 si 2 32 NL, <1 22 <32 <1 3> <22 <1 43 <2 3 42 ﬁm ﬂﬂ§5’
3 4> <42 S1 2 4> €3 4> €1 3 4> <2 432 j‘ﬂ?.
_l-l.
g -d_'_‘
* % « (END OF FILE ON TANPUT) * + =« SETE N
S

Given a set S it is also possible by using a‘f-
NPOW to prunt out only those subsets of '
specified number of elements. In the
set A is defined and only those of its subsets
elements are printed.

parentheses is the vlaue of\N,:;_
the set, or the set itself.

T W P ror e e P B
rrogramj4

LINE STATE
NO NO

w
—

Q‘@& 'S (‘_’;)&)1 =

SiWol3ia 5> .

<€1 4 5> <1 2 32 €
42 <13 42 €1 2

2.6 Union of Sets

One of the fundamental operations of set theory is that of
union. This is represented in SETLB by the operator sign +.
If

A= <:1,2>; and B = <:3,4>;

then the union A+B of A and B is

<19, 23,31, 45 ;

Difference of Sets

Next, consider

The difference of these two sets is the set which is left when

all those elements of the set D which belong to set C are.

removed from C. Therefore,
(s: 1,2,3> = <: 1,2 4>)NEQISE<i3>

has the wvalue TRUE.

Intersection of Sets

The collection of elements which two sets have in common with

each other is known as the intersection of the two sets. This

construction is represented in SETLB using the operator *, the
asterisk. For example, if
C =<:1,2,3>; and D = <:3,4,5>;
then the intersection C*D of C with D will be:
<332

The above examples show how the operators +, - and *, which
ordinarily are used for arithmetic purposes, are here used for
the set operations of union, difference and intersection, respec-

tively.

-27-

) sets we may wish to refer to those elements
either one or the other but not both. This is
ic difference' and is represented in SETL by

)
-3

two adjacent slashes. If:

A
[
[8]
=Y
v
.
{o N
=
]
A
N
-
w
~
ut
Iv
~

ric difference of E and F will be:

l?*UNJON. INTERSECTION, gTC, w/

1 ? 32 - 5:1,2.1.4>) Eo, <:4>:

Ec. (5.1'203042 - <’1;2 3>,p
2,3,42 « 53204'6 E2) EQ, <12,4>;
6,7,82 // 2147,6,82) FQ, <14,5,72}
INISH} '

2.8 The Number of Elements in a Set s

In order to determine how many elements a set con
use the + operator -- the downwards pointing arrow.
instead of the sign #, which is not available on theM029
In the first block of the following program a set A of eight
elements is defined; the set B has one element, while both‘sets':_‘
C and D are defined to be the null set, two ways of wgéyﬁpgwgggf :

null set being shown.

Program 16 -t el o

LINE STATE 5w e AT
NO NO

/* TO FIND THE NUMBER OF ELEMENTS 1~'A‘§Ef”ﬁﬁ5’
Lo} R B
A=511:2l3140506a70823 4 g
B=$t16>; et
C=g3>4

D=NL ¢

PRINT, (4A);
PRINT.(4B)}
PRINT,(4C);

10 PRINT.(D);

11 COMPUTE}

12 D03

13 PRINT,((+A) EG, 3);
14 COMPUTEIFINISK;

O DT DN

Output -- Program 16

259 Duplicate Elements

If a set A containing certain elements is added to another set
having a number of elements in common with A, the duplicate elements
are ignored. For example, let:

A= <:1,2,3,4>;
B = <:1,3,5>;

If we now calculate:

C

A + B;

we know from what has been said before that the result will not be:
c =«<:1,1,2,3,3,4,5>;

since duplicate elements are ignored. Instead, the result is:
cC =<:1,2,3,4,5>;

Note that C is a set of five elements. The actual number of

elements present in C can, of course, be tested with the ¥ operator.
This is done in the following program.

>rogram 17
LINE STATE
NO NO
1 /+* DUPLICATE ELEMENTS IN SETS ARE IGNORED =/
2 DOy A=%:1,2,3,421 B=<11,3,52;C=A+B}PRINT,C;
3 PRINT,((¢A)EQ, 4 AND,(¢B) EQ, 3)3
4 PRINT.(4C) EQ,5%
5 COMPUTES FINISH:
Output —-- Program 17

SIM2NT 4052
TRUE
TRUE

« » « (END QF FJLE ON INPUT) #* » ¥

=a0=

T ——

2.10 Changing the Contents of Sets

Suppose that we have two sets:
A= <:1,2,3>
B = <:2> c
We can subtract set B from set A by means of '{?;lig;]ftinus:t,{ -
operator. Writing C = A - B would produce

c = 5:1’32 - ! -

,

As already explained we can add a set to anothe(gr;:'s';et by;_né

of the plus, +, operator. Let ,‘* -
& v
D=£:43 ‘_‘ i
Writing E = A + D would produce "’v"_ . b
L o

E = <:1,2,3,4>

il
Suppose we now wish to delete an element from a ‘,:S”Q;E;.x
this purpose we can use the LESS. operator. To insert an

into a set the WITH. operator may be used.
All these operations are performed in the next DrOgr:

LINE STATE

NO

Output == P;

?\O

e S122)%
LESS.ZH
= S122) EQ,$31,323

PR, + <142))

+ Si142) EQ,$:1,2,3,423

I_l PRINT, J;

f<<3
i d -/
TRUE

o 4 P
$4 63
L4 =
34 O
<4 5

4 v

INPUT) % n _7

"JLE ON

e —

LINE STATE

NO

LN UL W

Program 19

T
L R

Output -- Program 19

¢ aedd W

/* COMPOUNL INSERTIONS AND DELETIONS v/
A= ((€31,2,3,4,52 LESS,4) WITH,6) EQ,£16,5,3

PRINT. A3

B=(((<110,20,302 WITH,40)LESS,20)WITH, 50)50 (i<
LESS,100);

PRINT.B3}

COMPUTEFINISK; &l

TRUE
TRUE

« « « (END OF

2.11 The "Selection" or "Arbitrary Element" Operator

It is sometimes desirable to operate an elements of a set,
but in an order that does not matter. For this purpose SETLB
provides the ARB. operator, which selects "any old" element of
a set. This does not select a truly random element, but rather
the first one as stored internally within the computer. (The
internal representation is seen when the set is printed out by
a PRINT. statement.) Consequently, successive ARB. calls to the
same set will always select the same element, namely the first.

Referring to the following program, a set A is defined and
is immediately printed out. ARB. A is then invoked twice in
succession and on each occasion the same element is selected.
When the set A is tested for the presence of an arbitrary element
of A, of course, the answer will be TRUE. Next the set A is
changed by removing the arbitrary element of A from it. The ARB.
opelrator is then applied to the new set and, as is seen from the
printed output, the first element of the new set A is selected.

The rest of the program should be self-explanatory.

-34-

ST e e—, “——

Program 20

LINE STATE g I
NO NO 1 RS e 4

T

1 /* ARSITRARY ELEMENTS OF A SETS~/00 S

2 00} SR e

3 A=$11,5,9,1621 L

4 PRINT. A} S

5 PRINT. ARB,A} e

b PRINT. ARR®,A} - VHN

7 PRINT.(ARR,A)+A; LR L

3 PRINT.A LESS,(ARB,A)} & 03

9 PRINT. ARP,(A LESS, (ARB,A)); s
10 COMPUTE S R 0
11 D0} AL " 2N
32 X=ARB.A} il
13 PRINT.(X FQ@, 5) OR.(X EQ, 16) OR,(X EQ, 9) OR.

14 COMPUTE S S E D
15 DO} R e
16 PR[NT.NOT . ‘X'.NL')’ . ,,—. -;-)
17 COMPUTESFINISHS R .

Output -- Program 20

$16 9 1 52 S
16 Y
16 g]

TRUE - -';

$9 1 5>

9

TRUE

1Uﬁﬁ2‘-anL-

QUESTIONS

Chapter 2

1. Which of
@) & 8y Sg SSgREE
(D) RS2 1, = 7>
(C)RE<E: N7V N8,4+2, 3,
(a) <1, -1, 48-4>
(e) <1, -1, 4, -4 >
B = By Yp e
(YRR RO//N6, 2], < 8/, 5
(R)R<RER3773, <1, 7, 5,
(i) <:'JACK', 'HENRY',

2. Assuming

which of the following operations yields a TRUE answer?

SE=R<: 0, 7, 4, 5,

((a) B - S

(D)3 ES-SS

(cHE28r 'S

(d) NOT. (4 + S)

(e) NOT.((7//2) + S)
(E)RCHY oS

() MRS

(h) NL. > S

{) <= 7>~+>8
Assume

which of the

S=$:4’61"l'

T =<

answer?
(a) S INCS. T
(b) S INCS. <: 6 >

the following sets is invalid in SETLB:

SIAREN D >
'STEVE',

VT8 772 5

'JOE', -1 >

following Boolean expressions yields

(d)

INCS. NL.

S - -
(¢) < : 4, 6 > INCS. S ‘, ..m y
(£) T INCS. < : 'JOE' > PRy e
(g) T INCS. T iy s
(h) S INCS. < : 4, 6, 13/2, (-2%(3//2))/2, -1, -1,('JOE');';__
4. Which of the following SETLB Boolean expressions yields @5$$£}_;%£§-
FALSE answer? wn ‘ﬁ};'
(a) 7 EQ. 6 o i
(b) NOT. (4 NE. 4) iy ‘T» =
(¢) 3 NE.(7//2) v
(d) 4 GE.(12/3+1) E
(e) (<:4,5> INCS. NL.) OR. (58LT28) s
(£) N.((8/2) LE. (5+7/2)) T S
(9) (8/2) GE. ((7//2) + 7/2) g i
(h) (T.0.((4+3) GT. (6-(-2))) A. (<:F.,4> INCS. <:(4 LT. 2)2))
5. Which of the following Boolean expressions are TRUE? ,{
(a) (<:1> + <:2>) EQ. <:1,2> o i
(b) (2:1,2,3> =<2 B NECS<tIr -wuxssxqiyf.f':
(c) (<:1,2,3> * <:30,455>) N EQLSEcE:ISP s AR t.? '
(d) (<:1,2,4> // <:2,3,52) NE. <:1,3,4> L :‘1#_
6. What is the value of the following expressions? j*‘32;g:f
(a) ¥(<:1,2> + <:3,4>) b |
(b)) $(<g:1, 2,2, 3> =N<iNin2in3i-auic) .
(c)F +(<:18, 278>t BTATIS)]
(d) +(<:3,5,<:1,2>>) + ¥(<:1,2>) + ¥(<:1,2> +
(e)r $NPOWI(0/, i<z, 50,< =082 70 U H T RRUH QWD)
7. Write out the result of each of 'l:hc‘a‘:I_E:c_;a;‘il.»‘.'l'.:,c:.Tili:'L:If.‘g;’f'TL
(a) <:1,2,3,4,5,6,7,8,9,100> LESS. (5 *2)8 a0l
(b)f <:15,12 <3142, 5,60 WETHERN (G672 /s e
(@)~ 2815708 = Eril i, 7>
(d) <:1,7,112 3> + <:1,12,3> 2

8. Assume the set
S = <:1,5,9,162

is stored internally as
S1IGRNO I 55

:‘EW Write the output you would expect from running the following
" SETLB program:
E&.)j DO;
i S = <:1,5,9,16>;
Gt PRINT. S;
e X = ARB. S;
) Y = S LESS. X;
] PRINT. X,Y, (Y WITH. X);
Z = ARB. Y;
PRINT. Z,Y LESS. Z, ARB. (Y LESS. Z);
COMPUTE; FINISH;

9. What results are obtained from the following Boolean
expressions?
(a) <:1,2> + NPOW(2,<:1,2,3,4>)
(b) NL. + NPOW(1,<:1,4,5,7>)
(c)m<:15,2> > POW(<:1,4,5,7,32)
(d) <:1,1+2//1,-(2-3/2-1)> > POW(<:1,4,5,7,3>)

3. Tuples
SETLB provides not only sets but also tuples as basic data
objects. Unlike sets, tuples are well defined, ordered sequences

of components. For example,
<13,4,8>

is a tuple of three components. Arbitrary SETLB objects including
sets or even other tuples can be components of a tuple. Tuples
differ from sets in that the order in which the components appear
is important.

One will often want to affix new components to tuples -- a
process called concatenation. The tuple concatenation operator
is designated by the familiar + (plus sign). One will often want
to know how many components a particular tuple contains. The
enumerator is the no less familiar v (downward pointing arrow,
used instead of the sign #, which is not available in the 029
keypunch) .

Here is an elementary program involving tuples.

Program 21

LINE SYATE
NO NO
il /* OPERATIONS ON TUPLES */
2 DOJA=<1,5,9>; B=<9,5,15}
3 PRINT.A EQ, B3}
4 COMPUTE}
5 DOJCs<4,4,4>; D=<4,4>;
6 PRINT, C NE, D3
7 COMPUTE
8 DO} E=<#¥HI#%,63,211,2,32>»;
9 FRINT.#A VALIC EXAMPLE OF A 3=TUPLE#,E;
10 COMPUTEIFINISK;
Output —-- Program 21
FALSBE
TRUE

AA VALID EXAMPLE OF A 3«TUPLEZ <#HI# 63 <1 2 32>

* « ¢« (END QF FJLE ON INPUT) * » =
.39

The symbols < > are used to delimit tuples; note the difference
between these 'tuple brackets' and the symbols <: > , which are used
for sets.

The first line of output from the preceding program makes it
clear that the tuples A and B are not identical even though the
sets of their components are identical. Nor for that matter are
C and D equal. The tuple E is a valid 3-tuple even though its first
component is a character string (enclosed by quote signs), its second
is a numerical value, and its third component is a set.

When one tuple is concatenated with another the new tuple
formed has a total number of components equal to the sum of the
lengths of the original tuples, regardless of whether identical

components are present or not. This is shown by the next program.

Program 22
LINE STATE
NO NO
; 66 MORE ON TUPLES #/
| A=<1,2,3>; B=c<q 2
3 SR ’ 13:41'5)3
; ng*;;(($A)+($B)) EQ, (4 (A+B))}

PR]NT.CICONPUTE;FINISH5

Output -- Program 22

TRUE
€1 23123 4 5>

* * s (END OF FJLE ON INPUT) * & «

=20~

3.1 Indexing of Tuples

Since tuples are well defined, ordered sequences of components

we can retrieve a tuple's components using numerical indices. The
first component will be addressed by the index 1, the second 2,

etc. To retrieve a desired component, its index is merely enclosed

within parentheses following the name of the particular tuple.
If either by error or design, the index is greater than the number

of components of the tuple, OM. results. All this is shown in

the next program, where it will be noticed that the last example

involves a tuple followed by an index. In all such cases the

tuple must be enclosed by parentheses to avoid syntactic problems.

Program 23

LINE STATE
NO NO
1 /* INDEXING OF TUuP
! LE
2 Doy 2
3 A=(2’408116>;
s ss;s;.::g%; Eg, 2) AND, (A(4) EQ, 16);
. 2 + 7) OR, (A(
6 PRINT.A(5); e 10
7 PRINT.A(5) EQ, OM,;
8 PRINT-(<7!40612>)(5)}
9 COMPUTE; FINISH;
Output '-- Program 23
TRUE
TRUE
OM,
TRUE
oM,

* * « (END OF FILE ON INPUT) * = +

41

3.2 The Zeroth Component of a Tuple: An Illustration of
Error Termination

An attempt to retrieve the Oth, -1st, etc. component of a tuple
causes an error termination or a "crash". (For a fuller explanation
see Chapter 3.4.) This is deliberately demonstrated in the first
block of the following program. Note that, on a crash, information
intended to assist in debugging is printed out. Specifically the
sequence of SETLB system-routine calls leading to a fatally offend-
ing operation is printed out. Since the crash shown in the following
program occurred in the first block, the program was not aborted
but continued to the next block in which A(5) was sought, alas in
vain; thus an omega was returned.

In the third and last block B is defined to be a tuple containing
components which are themselves tuples. B = <<4,6>,<1,3>,<5,8>>;
The third component could be printed out simply by writing:

PRINT. B(3);
This would give the tuple:
<5, 8>
Suppose, however, that we want to see not this tuple but its first
component. To do so all one has to write is:
PRINT. (B(3)) (1);

this <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>