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1. Introduction 

Most of this introductory section is intended for the person 

who has had experience with computer languages of various kinds. 

In it we will try to describe the general relationship of SETLB 

to other computer languages. The novice will surely find the 

points made somewhat obscure. But this should not in any way deter 

the non-sophisticate from going on with the primer to learn "what 

SETLB is all about." In most of the primer not even a knowledge of 

set theory is assumed; all required information is explained in 

the body of the text, hopefully in such a manner that most, if not 

all, of the material can be absorbed at the first reading. Novices 

to programming are advised to skip this introduction and to begin 

immediately with Section 1.1. 

SETL is a new programming language whose essential features are 

taken from the mathematical theory of sets. SETL has a precisely 

defined formal syntax as well as a semantic interpretation and thus 

it permits one to write programs for compilation and execution. 

The SETL language was first described in a manuscript entitled 

"Abstract Algorithms and a Set-Theoretic Language for Their Expres­

sion," by Jacob T. Schwartz. In the preface and introduction to 

this manuscript Prof. Schwartz discusses the relationship between 

mathematics and programming and stresses the need for a new very 

high level language for the specification of complex algorithms. 

A mathematicized programming set theoretic language is seen as 

answering this need. A later version of this same material will 

be found in "On Programming: An Interim Report on the SETL Project," 

by the same author (Courant Institute Lecture Notes). 

Having general finite sets as its fundamental objects, SETL is 

a J ·anguage of very high level, i.e. , the language incorporates 

complex structured data objects and permits global operations upon 

them, thus freeing the user from the onerous task of specifying the 

detailed internal forms which are to represent the structured objects. 

That is, SETL allows one to specify even very complicated algorithms 

without regard to the details of possible data structures. It relieves 

the user of details concerning layout of arrays, use of pointers, etc. 

-- details which are inevitably encountered early in the treatment 
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of a complex programming problem by conventional techniques. 

It therefore permits one to concentrate on the logical structure 

of the projected program. The programmer is thereby freed to 

describe abstract problem-related entities and their interactions 

in a familiar and analytically natural manner. 

Of course, one pays a price for these great advantages. Namely, 

it becomes all too easy to generate very inefficient programs. 

Generally speaking, SETL pays a substantial price in efficiency 

for its logical power. Nevertheless, it is our feeling that SETL 

will be useful in a variety of significant ways. It is a language 

in which complex algorithmic processes can be formally and precisely 

defined. 

SETL may become quite useful in the teaching of computer science. 

SETL-based introductory courses could treat abstract algorithms 

separately from concrete algorithms for which data structures have 

been specified. SETL allows complex algorithmic processes to be 

represented and analyzed independently of the way in which the 

logical objects to which they refer are mapped onto a computer. 

The subset verion of SETL which is currently implemented on 

the CDC 6600 at the Courant Institute is called SETLB. The suffix 

"B" indicates that the current version was written using the extend­

able, LISP-like language called BALM, conceived and implemented by 

Professor Malcolm Harrison, also of the Courant Institute. 

SETLB is implemented using a preprocessor to "BALMSETL"; 

BALMSETL is an extension of BALM obeying all the syntactic and 

semantic conventions of BALM. When full SETL (rather than SETLB) 

is implemented, many of the current implementation-related 

restrictions imposed by the presently existing linkage to the 

BAIM language will be alleviated. Even though SETL will then 

differ in some important respects from the present SETLB, a user 

of the current version of SETLB will find that his programs require 

only slight modification. 

We wish to acknowledge the assistance of the SETLB group, 

in particular Prof. Jacob T. Schwartz, Kent Curtis, Robert Bonic, 

Dave Shields, Hank Warren, and Steve Tihor, who not only answered 

our questions with patience, but contributed algorithms and 

reviewed the manuscript. 

The work reported in the text is supported by NSF Grant 
NSF-GP-1202X and under AEC Contract AT(ll-1)-3077. 

What follows is an account of the SETLB language. 

-2-



1.1. The SETLB Character Set 

At Courant Institute there are several modified 029 keypunch 

machines. The characters used in SETLB are immediately obtainable 

on the 029 keypunch whereas some of them must be multipunched on 

a 026 keypunch. 

All of the 029 characters are used in SETLB, with the sole 

exception of the -, (not) sign. The SETLB characters a.re the 

26 letters of the alphabet, the 10 digits of the decimal system, 

and the special characters which are illustrated below, together 

with their punched hole representation for the CDC 6600. 

= $ =I * I 7 + t < 

3 0 11 12 4 0 11 12 11 0 12 5 11 12 

8 3 3 3 8 4 4 4 1 6 8 5 2 

8 8 8 8 8 8 8 8 8 

+ - + > < A % V > 

0 12 12 0 2 11 11 5 0 7 6 11 12 

2 7 6 8 6 7 8 7 8 8 2 5 

8 8 8 8 8 8 8 8 

Any of the above synbols may be punched on the 026 by 

depressing the MULTipunch key while individually punching each 

hold. Despite the peculiar appearance of the resulting composite 

print on the card, it will be acceptable on the computer and that 

is the primary consideration. 
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1. 2. SETLB Programs 

SETLB programs are punched on cards in columns l through 72. 

However, in view of the possibility that some time in the future 

column l may be reserved for special purposes it is recommended 

that the instructions occupy colwnns 2 through 72. There are no 

fixed fields such as in Fortran, etc. Each statement must be 

terminated by a semicolon. 

All programs must be structured into blocks which commence 

with DO; and terminate with COMPUTE;. Furthermore, every SETLB 

program must end with a FINISH; statement. 

The division of a SETLB program into several DO; ... ;COMPUTE; 

blocks aids in debugging SETLB programs for the following reason: 

If an error occurs during the execution of any one block the entire 

program will not be aborted but rather only the one block contain­

ing the error. Subsequent blocks will be executed "without preju­

dice," as it were. 

In order to print a value one uses the PRINT. instruction. 

The keyword PRINT. is followed by the list of expressions that are 

to be printed. For example: 

(a) PRINT. A; 

(b) PRINT. A,B; 

( c) PRINT. c, C+D, E*F; 

For our first sample SETLB program we shall set A=l0, B=3 

and C=2. We then print out A,B,C, A+B, A+C, B+C, A*C, B/C, A-C 

and review the output produced. 

The complete program is: 

DO; 

A=l0; 

B=3; 

C=2; 

PRINT. A,B,C,A+B,A+C,B+C,A*C,B/C,A-C; 

COMPUTE; 

FINISH; 
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1.3 Control Cards 

Before showing the form of the resulting output we advise the 

would-be SETLB user that, as usual, certain control cards must be 

included in order for even the simplest program to be accepted by 

the system. We shall now show the complete, somewhat intimidating, 

set of control cards without attempting any explanation of them. 

Here is the complete physical deck for the above program as 

presented to the CDC 6600. 

ID,DT30,CM200000.MULLISH 

ATTACH,SETLABS,SETLB. 

LOADER.RFL,66000. 

SETLABS. (HELP) 

ATTACH(BLM4SVD,SAVESETL) 

ATTACH,BALMTR,BALMTRANS. 

RFL,200000. 

BALMTR,SETLOUT. 

E-O-R 

DO; 

(end-of-record card) 

A=l0; 

B=3; 

C=2; 

PRINT. A,B,C,A+B,A+C,B+C,A*C,B/C,A-C; 

COMPUTE; 

FINISH; 

E-O-F (end-of-file card) 
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1.4 Elementary Programs; the HELP Debugging Aid; 

Comments in Programs 

Here is the output of the above SETLB program, preceded by a 

printed listing of the program. Each line of the program is 

sequentially numbered by numbers placed under the heading LINE NO. 

Other auxiliary statement numbers are printed under the heading 

STATE NO. Since SETLB at present handles only integer arithmetic, 

it is interesting to note the value obtained for B/C. 

Program 1 

LIN& STATE 
NO NO 

1 0 
'- 0 
3 0 
◄ 1 

' 2 
6 3 

' ◄ 
A ◄ 

Output 

/• AN ELEMENTAAV SETLB PpOGR~H, USING .HELP• •I 
co, 

A~1ril 
Ba31 
Cc2] _ . 

PRINT,A,B,C,A•B,A+C,B•C,A•Ci6/C,A~C1 
COMPUTE1 
fJNlSMI 

Program 1 

•• .• AT 1 IN HAIN A IS 10 
•·••AT 2 IN HAIN BIS 3 
••.AT J lN HAIN C 1S?. 
10 3 2 13 12 5 20 1 8 

••• (END or rlLE ON tNPUT) ••• 
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The first thing to be noticed in the above output are the 

first three output lines, each of which is preceded by --- . 

These lines are produced by a SETL debugging feature which prints 

out the values of all variables to which assignments have been 

made. This feature was activated by the inclusion of the word 

(HELP) on the fourth control card listed above. The user will 

find that this (HELP) feature is generally of extreme utility in 

debugging programs. We mention it here merely to alert the user 

to its existence. This important deb~gging feature is discussed 

in detail in Section 14. In describing programs and their output 

subsequently, {HELP) will be left switched off. 

The proper (as distinct from debug) output from the program 

appears on the fourth output line. The first three values are 

those for A, Band C, namely 10, 3 and 2. The value of A+B is 

seen to be 13, A+C is 12, B+C is 5, A*C is 20, B/C, i.e. 3/2, 

appears as the truncated value l; finally, the value of A-C is 8. 

Before passing on from this program it is worth pointing out that 

in SETLB it is quite proper to include unevaluated expressions 

in a print list, even though this is a ~omewhat uncommon feature 

in programming languages. We also note that the list of results 

is printed on a single line and separated by a single space, in 

conformity with the use of a single print instruction. 

The same program was run again, this time with the (HELP) 

feature omitted; here is the listing and printed output. 

Note that with the (HELP) feature omitted no numbers appear under 

the heading STATE NO. 
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Program 2 

LINE STATE 
Nn NO 

1 
2 
3 
4 

' 6 

' e 

output 

/• THE SAME ELE~ENTARY PROGRAM, WITHOUT JSING •HELP• •I 
DOJ 

A~1oJ 
8•31 
C•21 

PRINT,A:B,C,A•B,A•C,B•C,,•C~E/C,ARCJ 
COHPUTe1 
FlNISHI 

Program 2 

10 3 2 13 12 5 20 1 8 

• • • <ENO OF FILE ON INPUT) * • • 

To the above program and output one may make the objection 

that in order to understand the output one has to refer directly 

to the program. Obviously, this is not the most satisfactory way 

of printing output. It is a good idea to print some description 

or other prior to each number outputted in order to identify it. 

SETLB makes it easy to print fixed text. Text to be printed must 

be enclosed by quote signs. On the 029 keypunch machine the quote 

sign is the~ character. 

Another way to improve the readability of a program is to 

include explanatory comments. This may be done by using the$ 

symbol. Anything punched on a card followed by the$ symbol is 

ignored by the computer although it will appear in a listing of 

the program. 
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Program 3 

LINE STATE 
NO ~O 

1 
2 
3 
4 
~ 

6 
7 
A 
Q 

1 r) 
11 
1? 
13 

$ P~OJPAM 3 
$ 

$ TH[S IS JUST A SLIGHT ~ODJFICATION TO TME PREVIOUc; PROGRAM 
$ 

$ tH~LP> HAS BE~N QHITTEn fRCH THE C~NTR □ L rARDS 
DOJ 

Output Program 3 

~A=t 10 ts=; 3 ;c:t? tA+c:; 13 tA+C=t 12 tB+C=t 5 ,~•C=~ 20 ,Pl~=~ 
1 ~A-C=t 8 

• • * <END OF FILE ON INPLT) * * * 

It will be noticed in the above that the print statement is 

now too long to be contained on one card. (Remember one must not 

punch beyond column 72.) All one has to do in such a situation is 

to continue punching the instruction on another card without any 
special preliminaries. This process may be continued indefinitely. 

A statement is always terminated by the occurrence of a semicolon. 

Another form of comment card, resembling that used in the 

PL/1 programming language is available in SETLB. This second form 

of comment begins with/* and terminates with*/. Of course, this 

convention obviates the possibility of including a*/ in a comment, 

but this is no great hardship. 
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QUESTIONS 

Chapter l 

l. Why are the following SETLB programs invalid: 

(a) A=l; B=2; C=3; 

PRINT. A,B,C 

COMPUTE; FINISH; 

(b) DO; 

X=l/2; Y=3/2; Z=4/2; 

PRINT. X, Y, Z 

KOMPUTE: FINISH; 

A separate booklet containing the answers to these and 

all the other questions included in this primer is obtainable 

by writing on official stationery to the authors. 
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2. Sets 

The SETL language aims to make it possible to state problems 

in the language of set theory. A set in SETLB is a clearly defined 

finite collection of elements. 

2.1 Explicit Set Formers 

A set can be formed by the explicit enumeration of its elements 

as in: 

A= {5,1,7,2} 

The order in which the elements appears is of no consequence. 

In other words the set 

B = {2,1,5,7} 

is identical to the set A above. 

A set may have another set, as one of its elements. 

C ={'FUN', {5,1,7,2}} 

Here, C is a set having two elements, the first a character string, 

the second a set of numbers. 

By de£inition, a set has no duplicate elements. Hence, the 

statement 

D = {5,5,1,7,7,2} 

assigns D the same value as set A or B above. 

One quite useful set contains no elements whatever. This 

special set is called the null set. It is denoted by { } or~ 

in set theory and by NL. in SETLB. Note that the set {0} is not 

the null set -- it is a set with the number zero as its single 

element. 

Since the characters { } are not available on the 029 keypunch, 

explicitly enumerated sets are represented in SETLB as follows: 

A= 5:5,1,7,2~; . That is, we begin the enumeration of a set with 

the 5 character, followed immediately by a colon, and then give 

the elements of the set separated by commas. The enumeration is 

terminated by the~ symbol. 

The next program simply specifies several sets in SETLB 

notation and prints them. Its output merits some discussion. 
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Program 4 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
Q 

10 
11 
12 
13 
14 
15 

/• TH~SE \RE SOHE EXAMPLES OF SETS •I 
$ 

l) 0 I 

d=S:•1,-5,·3,~4~; 
C=S:tJACKt,tDAVE1,tHAXt,1HENRYt~; 
lJcS:A,B,C~J 
PRINT,tA=i,A,,8=1,BJ 
PR1NT,1C=t,c; 
l-1RlNT,1D=",O; 
E=S:1,1,2,2,3~; 
PR1NT,1E=i,E; 
F=S:1 1 2 2 3~; 
PR1NT.1F:-t,F; 
COMPUTE: F"JNISHi 

Output Program 4 

'A:; ~1 2 5 7~ tB:t S•l •3 •4 -5~ 
itC:; ~IHENRY; 1MAXt ;JACKI IDAVEt~ 
itD=1 ~~1 2 5 7~ S•t -3 •4 •5~ StHENRY1 tHAX; 1JACKt tOAVE;~~ 
I(::; ~1 2 3? 
itf:; ~11223? 

••• <END or FILE ON J~PUT) ••• 
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Line #8 of the above program instructs the computer to print 

out sets A and B. Both these sets will be printed on a single line. 

Notice that the elements are not printed in the same order as that 

in ·t1hich the set was initially enumerated. (They are in fact 

printed in the order in which they are maintained internally within 

the computer.) Moreover, there are no commas separating the 

elements printed, but rather blank spaces. Nor is the colon or 

the terminal semicolon printed. 

Line #9 prints out the set C and once again we notice that the 

order of printing is arbitrary and that blanks separate the elements. 

Line #10 instructs the compuer to print out the set D. This 

set has A, Band C, which are themselves sets, as its elements. 

Hence the printout beginning with~~ and concluding with>> , 

which at first sight seems somewhat peculiar. 

Line #11 enumerates the set E in a manner involving duplicate 

elements. The printout shows clearly that duplicates are ignored. 

Finally, line #14 prints out the set F. Look carefully at 

the definition of F.! At first sight it may look much like the 

definition of the set E; however, instead of commas being used 

to separate elements, spaces are used. These spaces, however, 

are ignored by the SETLB compiler and as a result and set F has 

a single element, namely 11223. 

2.2 Elementary Operations on Sets 

Given a set A one can ask if a particular element xis a member 

of that set. In set-theoretic notation, this relationship is 

written 

(1) X E A 

Or we can ask whether xis not an element of A 

(2) X '! A 

The answer to such a function is either 'true' or 'false'. 

By the same token we can ask if a set A is equal to a set B, or 

whether A is not equal to B. Lastly, one may want to know whether 

a set A is a subset of set B. 
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To all of these questions the answer is either 'yes' or 'no', 

'true' or false'. Expressions like (1) or (2) are therefore called 

Boolean valued expressions. Boolean values, once formed, may be 

canbined using the logical operators "and" and "or", care being 

taken to parenthesize so as to show the intended groupings. 

In the next program a set A is defined. 

A= ,:'.::5,1,7,2~; 

The question is then asked: is 3 an element of the set A? In SETLB 

this is done with the+ sign, used because the conventional 

mathematical sign 'E' is not available on the 029 keypunch. 

3 + A 

The question "Is 7 an element of A?" is written 

7 + A 

Finally, one asks: is 10 an element of A? This is written 

10 +A. 

Plainly, 3 and 10 are not elements of A while 7 is. Since 

these three tests appear on the same PRINT. statement, the three 

answers 

FALSE TRUE FALSE 

appear on the same line. 

Next, the question is asked whether 3 is an element of A, 

but the result of this test is inverted using the logical operator 

NOT. Since 3 is not an element of A, 3 + A is FALSE. The NOT. 

converts the result FALSE to TRUE which is printed. Similarly, 

for the remaining two expressions. 
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Program 5 

LINE STATE 
NO NO 

1 
~ 
3 
4 
5 
6 

I• SO~E BOOLEAN OPERATIONS• ELEMENT TESTS•/ oo, 
A=S:5,1,7,2~; 
PRINT, 3•A,7•A,10•AJ 
PR l NT, NOT, C 3 .. A >,NOT,< 1 .. A), NOT, (10 .. A >; 
COMPUTEr FINISH; 

Output Program 5 

F'ALS~ 'TRUE F'AI.Sf: 
l'RUE FALS6 TRUE 

••• (ENO or FILE ON INPUT) •• * 
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Three elementary set relationships are tested in the next 

program; each test asks whether a given element is a member of 

a specific set. Since each expression occurs in a separate PRINT. 

instruction, the answers occupy separate lines. 

Program 6 

Output 

LINE STATE 
NO NO 

1 
2 
J 
4 , 
6 

Program 6 

rALSe 
TRUE 
F'ALSB 

I• SOME MORE ELEMENT TESTS•/ 
DOI 
PRINT, 3 .. ~:5,62:; 
PRJNT,2 .. S:1,5,8,22:; 
PRINT,l .. S:2,4,62:J 
COMPUTE; FINISH; 

• * • «END OF' FILE ON J~PUT) • • * 
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2.3 Elements vs. Subsets 

Suppose we define a set by 

This is a set composed of three elements, namely 3,4 and an element 

which itself is the set ~:1,2~. Sets as set-elements are valid 

both in mathematics and in SETLB. We can then ask whether the set 

~:4,3~ is an element of A. In other words, is one of the elements 

in the set A identical with ~:4,3~? The answer is obviously 

negative and so we expect a FALSE printout. 

Inserting the logical operator NOT. before this test changes 

the truth value obtained from FALSE to TRUE. This is seen in the 

following printout. 

Program 7 

LINE STATE 
NO NO 

1 
2 
3 
4 
c:; 

/• SOME SUBSET TESTS•/ 
I) 0 J 
PRINT,S:4,3~ ◄ 1:3,4,S:1,2~~; 
PR1NT,NOT.~:4,3~ ◄S:3,4,S:1,2~~; 
COMPUTEJ FINISH; 

Output Program 7 

F'ALSe 
TRUE 

• • • (ENO OF FILE ON l~PUT> • • • 
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In dealing with sets, as distinct from other types of compound 

SETLB objects to be discussed later, the order in which the elements 

appear is of no consequence. The set 

is exactly equal to: 

in which the same elements are enumerated in a different order. 

It therefore follows that the sets A and B above are equal. This 

can be verified using the EQ. operator. The sets 

and 

are not equal; this can be verified using the NE. (not equal) 

operator. 

If we define the two following sets: 

F = ~:1,2,3,4~; 

can ask whether the set F has the set E as a subset. This test 

~an be made using the INCS. (set inclusion) operator. Since Eis 

a subset of F, F includes E, and the Boolean expression 

F INCS. E 

yields the result TRUE. 

All this is shown in the program which follows. 
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Program 8 

Output 

LINE STATS 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Program 8 

TRUE 
TRUE 
TRUE 

/• SET EQUALITY; SUBSETS•/ 
oo, 

A::~:1,?,32:J 
BaSi3,1,22:J 

PR!NT,(A EC,8); 
Ca:~:82:J 
01:s:92:: 

PRJNT,<C 1':E,D>J 
E•~l3,42:J 
F'11~11,2,3,42:J 

PRINT,Cr I~CS,E>J 
COMPUTEJ FINISHJ 

••• (ENO or FILE ON I~PUT) • * * 
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2.4 Comparison and Boolean Operators 

The ccmparison operators LT. , LE. , GT. , GE. , EQ. , NE. and 

the Boolean operators AND., NOT. and OR. are very useful. The 

following program is intended as an elementary illustration of 

these operations. 

Program 9 

LINE STATE 
NO NO 

1 
2 
J 
4 
5 
6 
7 

I• COMPARISON OPERATORS •I 
OD I 
PRJNT, 6 l.T, ~ AND, 11 GT, 4; 
PRJNT, 6 LE, 6 AND, 11 GE, 4; 
PRlNT, 8 r.1, 1 OR, 2 GT, 100; 
PRJNT, 5 GE, 1 AND, 2 GT, 21 
COMPUTEJ •INISH; 

Output Program 9 

TRUE 
TRUE 
TRUE 
F'ALSe 

• * * <ENO OF' F'lLE ON I~PUT> • * * 
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The next program shows that SETLB allows the abbreviation A. 

to be substituted for AND. and o. for the OR. operator. The 

abbreviation 'N.' for the NOT. operator is also valid. Further­

more, the abbreviation 'T.' for TRUE. and 'F.' for FALSE. are 

also available. 

Program 10 

Output 

LINE STATE 
NO NO 

1 
2 
J 
4 
5 
6 
7 

Program 10 

TRUE 
TRUE 
F'ALS!! 
F'ALSe 

/• MORE ON LOGICALS •I 
DOI A=T ,J B=F" ti 
PRINT, A OR,BJ 
PRINT. A 0 1 BJ 
PRINT. A A~D, BJ 
PRINT, A A, BJ 
COMPUTEJ r:"JNISH; 

• • • «ENO Qr F'lLE ON INPUT) • • • 
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In the following program we evaluate Boolean expressions 

involving a set C and combine these expressions using certain 

Boolean operations including the AND. and OR. operators. The 

reader should reason his way to the results of the-program and 

compare them with the printed output. Notice the abundant use 

of parentheses, made necessary by the rather unhelpful SETLB 

precedence rules. In SETLB unparenthesized expressions associate 

to the right, contrary to convention. Thus: 

4 + C AND. B 

is seen by SETLB as 

4 + (C AND. B) 

and not as 

(4 + C) AND. B 

SETLB users should always use parentheses to indicate the desired 

grouping. 

Program 11 

LINE STATE 
NO NO 

1 
2 
3 

• 
' 6 
? 
B 

I• SOME BOOLEAN OPERATIONS•/ co, 
C111~i5,7',9,1Ut 
PRINT,(44 C) AND, <9~C>J 
PRINT1 (5 4 C) AND,C9•C)J 
PRINT,(4~C) CR, (9•C)J 
PRINT,(j 4 C) AND, f(5•C) ~R,(6~C>)J 
COHPUTE1 F'INISHJ 

Output -- Program 11 

FALSE 
TRUE 
TRUE 
TRUE 

• • • <E~D OF FILE JN INPLT) * * • 
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2.5 More on Subsets 

Pay careful attention to the difference between 'subset' and 

'element'. For example, examine the following: 

B = ~:1,2,3,4~; 

Does B include the set A? That is, is A a subset of B? Since all 

the elements of A appear as elements in B the answer is TRUE. But 

now let: 

Here we have a set C whose first element is the set containing the 

elements 1 and 2. Does the set C include the set A? The answer 

this time is that it does not. In fact 1 is not an element of C, 

but is rather an eZement of an eZement of C, which is quite a 

different matter. The eZements of Care the integers 3, 4 and the 

set 2 :1,2~. 

In order to understand more clearly what is involved here let us 

write out all the subsets of B. and C, producing a list which inci­

dentally includes the sets Band C themselves. Note that the null 

set is a subset of every set. 

Subsets of B 

{1,2,3,4}, {1}, {2}, {1,2}, {1,2,3}, {1,3}, {2,3}, {3}, 

(3,4}, {2,4}, {1,4}, {1,2,4}, {2,3,4}, {1,3,4} {4}, { } . 

Subsets of C 

{{1,2}, 3,4}, {{1,2}}, {{1,2}, 3}, {3}, {{1,2}, 4}, {3,4}, {4}, { } . 

From the above it is clear that the set {1,2} is definitely a 

subset of B but not of c. In answer to the question: is A an 

element of C, it certainly is. Is 1 an element of C? -- no, it is 

not. 

The following program's output shows that B includes the set A 

while C does not include the set A. Whereas it is true that 

A is an element of C, 1 is not an element of c. Clearly A is not 

eq-al to Band it is true that Bis not equal to C. Also, 1 is 
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an element of A and 4 of B. The element 23 is not a member of A, 

but since 4 is a member of C the Boolean expression incorporating 

the OR. is true. All these possibilities are made use of in the 

next program, the last expression of which is a combination of an 

AND. and an OR. -- the reader should calculate for himself the 

results printed. Note that print instructions included in different 

00; ... ;COMPUTE; blocks result in output separated by a blank line. 

Program 12 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

I• SQ11E t,l()RE SET OPERATIONS * / 
I) 0 J 
A:~:1,2~J 
~=s:1,2,3,4~; 
C=~tS:1,22:,3,4~; 
PRINT, 8 I~cs, AJ 
PRINT, C I~cs, A; 
PRINT,A .. C: 
PRlNT,1 .. CJ 
COl'IPUTEJ 
OOJ 
PRINT, A EQ, e; 
PR}NT, 8 NE, CJ 
PRINT,C1 ◄ A) A~D, C4 ◄ B>J 

PRINT,C23 .. A) OR, C4 ◄C)J 
PRJNT,(4,.8) AND, <<84 ◄8> OR, <2 ◄C>)J 

COHPUTEJ FINISH; 

Output Program 12 

TRUE 
f'ALSP 
TRUE 
f'ALSe 

f'ALSe 
TRUE 
TRUE 
TRUE 
f'ALS13 

••• (ENO or riLe ON I~PUT) *. * 
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There is actually a primitive SETLB function which will form 
n all of the subsets of a given set S. This always produces 2 sub-

sets. The list of subsets always includes the set itself and the 

null set. The operator which does this is the power function POW. 

The manner in which it is invoked is illustrated below. Note that 

more than one line is required for the entire printout. 

Program 13 

Output 

LI~E STATE 
NO NO 

1 
2 
3 
4 

Program 13 

I• THE SET OF SUBSETS *I 
001 A=S:1,2,3,4~; 
PRJNT,POW(A)i 
COMPUTEJ FINISH; 

SS1~ S?. 3~ S1 2 3~ NL, Si 2~ S3~ S1 3~ S2~ S1 4~ ~2 3 4~ ~1 2 
1 4~ $4~ 51 2 4~ $3 4~ ~1 3 4~ ~2 4~~ 

• * • CtND OF FILE ON I~PUT) • • • 

Given a set Sit is also possible by using a function called 

NPOW to prunt out only those subsets of S which contain a 

specified number of elements. In the program which follows the 

set A is defined and only those of its subsets which contain 3 

elements are printed. 

When using NPOW note that the first argument within the 

parentheses is the vlaue of N, followed by either the name of 

the set, or the set itself. 

-25-



Program 14 

LINE STATE 
NO NO 

1 
2 
3 
4 
;; 
6 
7 

/• THf. SET or ALL SUBSETS HAVING N ELF.HENTS */ 
oo, 
A=$11,2,3,4,5~J 
PRINT.Al 
COMPUTE J DC; 
PR1NT,NP0~(3,A); 
COMPUTEI rJNISHi 

Output Program 14 

~~1 4 5~ Sl 2 3~ S~ 4 5~ S3 4 5~ S2 3 4~ ~2 3 5~ ~1 3 5~ ~1 ? 
4~ S1 3 4~ S1 2 5~~ 

• * • (END Qt rJLE ON l~PUT) • • • 
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2.6 Union of Sets 

One of the fundamental operations of set theory is that of 

union. This is represented in SETLB by the operator sign+. 
If 

then the union A+B of A and Bis 

~:1,2,3,4~; 

Difference of Sets 

Nex½ consider 

C = ~:1,2,3~; and D = ~:1,2,4~; 

The difference of these two sets is the set which is left when 

all those elements of the set D which belong to set Care. 

removed from C. Therefore, 

(~: 1,2,3~ - <: 1,2,4~) EQ. <:3> 

has the value TRUE. 

Intersection of Sets 

The collection of elements which two sets have in common with 
each other is known as the intersection of the two sets. This 

construction is represented in SETLB using the operator*, the 

asterisk. For example, if 

C = ~:1,2,3~; and D = ~:3,4,5~; 

then the intersection C*D of C with D will be: 

<:3> 

The above examples show how the operators+, - and*, which 
ordinarily are used for arithmetic purposes, are here used for 

the set operations of union, difference and intersection, respec­
tively. 
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2.7 Symmetric Difference 

In dealing with two sets we may wish to refer to those elements 

which are present in either one or the other but not both. This is 

the so-called 'symmetric difference' and is represented in SETL by 

the operator//, two adjacent slashes. If: 

and 

then the symmetric difference of E and F will be: 

~:1,3,4,5~ 

All of the above remarks are illustrated in the next program. 

Program 15 

LINE STATE 
NO NO 

1 /• UNION, P..JTEHSECTION, ~TC, •I 
2 DOJ 
3 PRlNT,(s:5,6? + SllB,19~~ Ea, S:5~6,18,19~; 
4 PRINT,(s:1,?.,3~ ~ s11,2,~,4~) t0, s:4~; 
5 PRlNT,S:4~ EC, (Sll,2,3,4~ ~ Sl1,2,3~); 
6 PRINT,(s:1,2,3,~~ • s12,4,6,E~) EQ, S12,4~J 
7 PRlNT,(s:5,6,7,8~ // S14:6,8~) EQ, S14,5,7~J 
R COHPUTE; F'lNlSHJ 

Output Program 15 

TRUE 
F'ALSE 
TRIJ6 
TRUE 
TRUE 

•••(ENO OF F'lLE ON lNP~T) • • • 
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2.8 The Number of Elements in a Set 

In order to determine how many elements a set contains one can 

use the i operator -- the downwards pointing arrow. (This is used 

instead of the sign#, which is not available on the 029 keypunch.) 

In the first block of the following program a set A of eight 

elements is defined; the set B has one element, while both sets 

C and Dare defined to be the null set, two ways of writing the 

null set being shown. 

Program 16 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
13 
9 

10 
11 
12 
13 
14 

I• TO Fl~D THE NUMBER or ELEHENTS IN A SET•/ 
UOI 
A=S:1,2,3,4,5,6,7,8~; 
~=S:6:>:J 
C=6:~: 
D=NL,; 
PRINT,CiA>; 
PRlNT,CiB>J 
PRJNT,CiC); 
PRJNT,CiO); 
COMPUTEJ 
OOJ 
PRlNT,(CiA) EQ, 3); 
COHPUTEJFl~ISI-<; 

Output Program 16 

8 
1 
0 
0 

F'ALSP. 

••• (ENO or FILE ON l~PUT) •• * 
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2.9 Duplicate Elements 

If a set A containing certain elements is added to another set 

having a number of elements in comm9n with A, the duplicate elements 

are ignored. For example, let: 

A= S:1,2,3,4~; 

B = S:1,3,5~; 

If we now calculate: 

C =A+ B; 

we know from what has been said before that the result will not be: 

C = S:1,1,2,3,3,4,5~; 

since duplicate elements are ignored. Instead, the result is: 

C = S:1,2,3,4,5~; 

Note that C is a set of five elements. The actual number of 

elements present in C can, of course, be tested with the+ operator. 

This is done in the following program. 

?rogram 17 

LINE S1'ATE 
NO NO 

1 
2 
3 
4 
5 

/• DUPLICATE ELEMENTS IN SETS ARE IGNORED •I 
U0I A2S:1,2,3,4~1 B=St1,3,5~;CsA+BJPRINT,C; 
PRlNT,<<•AlEQ, 4 AND,<•Bl EQ, 3)1 
PRlNT,C4C) EQ,5; 
COMPUTEJ f~NlSHJ 

Output Program 17 

S1 2 3 4 5~ 
TRUE 
TRUE 

• • • CEND OF' F°ILE ON l~PUl l • • ·• 
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2.10 Changing the Contents of Sets 

Suppose that we have two sets: 

A= ~:1,2,3~ 

B = <:2> 

We can subtract set B from set A by means of the minus,-, 

operator. Writing C = A - B would produce 

C = ~:1,3~ 

As already explained we can add a set to another set by means 

of the plus,+, operator. Let 

D = <:4> 

Writing E =A+ D would produce 

E = ~:1,2,3,4~ 

Suppose we now wish to delete an element from a set. For 

this purpose we can use the LESS. operator. To insert an element 

into a set the WITH. operator may be used. 

All these operations are performed in the next program. 
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Program 18 

LINE S?ATli 
NO NO • 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
i6 
17 
18 
19 
20 
21 

I• ADDING ELE~ENTS AND DELETING ELEMENTS•/ 
001 
os:1,2,J~J 
ij•$=2~J 
Cs::A•B I 
0c:$r4~; 
PRINT.CJ 
PRJNT,A+DJ 
PRINT,(S:1,2,3?! • Sr2~)J 
PRlNT,(~11,2,3~ LESS,2)J 
PRlNT,(S11,2,3?! • $12~) EQ,S;1,3~J 
PRJNT,(Sll,2,3~ + Sl4~)J 
PRJNT,(S11,2,3?! + $14~) EQ,S:1,2,3,4~J 
COMPUTEJ 
oo, 
E•l:4,5,6~J 
HsE LFSS,5J 
l•E l,ESS,7J 
J;iE. WITH,7J 
PRJNT,HJ PRINT, IJ PRINT,JJ 
COHPUTEJ FINISHJ 

Output Program 18 

S1 3~ 
s1 2 3 4~ 
S1 3~ 
S1 3~ 
TRUE 
s1 2 3 4?! 
TRUE 

S4 6~ 
14 5 6~ 
S4 5 6 7?! 

••• (END or rtLE ON INPUT) ••• 
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The LESS. and WITH. operators can be combined in complex 

expressions. The following program shows just this. 

Program 19 

LINE STATE 
Nl) NO 

1 
2 
3 
4 
5 
6 
7 
~ 

Output 

/• CO~POUNC I~SERTIONS AND DELETIONS*/ 
UOJ 
Ac ((~11,2,3,4,5~ LESS,4) WlTH,6) EQ,~:6,5,3,2,1~J 
PRtNT.AJ -
~=(<(~110,20,30~ WJTH,40)LESS,20)WlTH,50)EQ,(~110,30,100,40,50~ 
l,.ESS,100); 
PR1NT,BJ 
COMPUTEJFl~IS._,; 

Program 19 

TRUE 
TRUE 

• • • <END OF FILE ON l~PUT) • • • 
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2 .11 The "Selection" or "Arbitrary Element" Operator 

It is sometimes desirable to operate on elements of a set, 

but in an order that does not matter. For this purpose SETLB 

provides the ARB. operator, which selects "any (?ld" element of 

a set. This does not seleet a truly random element, but rather 

the first one as stored internally within the computer. (The 

internal representation is seen when the set is printed out by 

a PRINT. statement.) Consequently, successive ARB. calls to the 

same set will always select the same element, namely the first. 

Referring to the following program, a set A is defined and 

is immediately printed out. ARB. A is then invoked twice in 

succession and on each occasion the same element is selected. 

When the set A is tested for the presence of an arbitrary element 

of A, of course, the answer will be TRUE. Next the set A is 

changed _by removing the arbitrary element of A from it. The ARB. 

operator is then applied to the new set and, as is seen from the 

printed output, the first element of the new set A is selected. 

The rest of the program should be self-explanatory. 
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Program 20 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Output 

I• ARgJTRhRY ELEMENTS or A SET •I 
DOI 
A=Sll,5,9,162:J 
PRINT, AJ 
PRINT. AR8,AJ 
PRINT, AR9,AJ 
PRINT, <ARl?,AHAJ 
PRINT,A LESS,(ARB,A>J 
PRINT. ARP,(A LESS, CARB,A))J 
COMPUTl::I 
DOJ 
X=ARB,AI 
PRlNT,CX FQ, 5) OR,(X EC, 16) OR,<X EQ, 9) OR,(X EQ, 1)J 
COMPUTEJ 
DOI 
PRlNT,NOT,(X~NL,)J 
COMPUTEJF"!~ISkJ 

Program 20 

S16 '1 1 5~ 
16 
16 
TRUE 
S9 1 5~ 
9 

TRUE 

TRUE 

• • • fENO Qt tlLE ON I~PUT) • • • 
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QUESTIONS 

Chapter 2 

1. Which of the following sets is invalid in SETLB: 

(a} < 4, 5, -3, 9> 

(b} < . 3, -2, 7> . 
(c} < 7, 8, 4+2, 3, -
(d} ~l, -1, 48-4> 

(e} < 1, -1, 4, -4 > 

(f) < 5, 9, -2 > > - -
(g} < : 9, 6, 2, :< 8, 5 > - - -
(h) < : 3//3, <l, 7, 5, ~, 3, 4, 1 2 > - -
(i) ~: I JACK I, 'HENRY I, 'MAX', I STEVE I, 'KATE'> 

2. Assuming 

S = ~ : 1, 7, 4 , 5, 'HI ' , 7 /2 ~ 

which of the following operations yields a TRUE answer? 

(a) 1 -+- s 
(b) 3 -+- s 
(c) 2 -+- s 
(d) NOT. (4 -+- S) 

(e} NOT. ( ( 7 / /2 } 

(f) IHI -+- s 
(g) I • I -+- s . 
(h) NL. -+- s 
(i) < 7 > -+- s - -

3. Assume 
s = < 

T = < 

-+- s) 

4 , 6 , -1 , ' JOE ' > 

'JOE' , -1 > 

which of the following Boolean expressions 

answer? 

(a) s INCS. T 

(b) s INCS. <: 6 > 

(c) .S INCS. < : - l, 3, 5 > -

-36-

yields a TRUE 



4. 

(d) s INCS. NL. 

(e) < : 4' 6 > INCS. s -
(f) T INCS. < : 'JOE' -
( g) T INCS. T 

(h) s INCS. < : 4' 6, 

Which of the following 

FALSE answer? 

( a) 7 EQ. 6 

(b) NOT. ( 4 NE. 4) 

( c) 3 NE. ( 7 //2) 

(d) 4 GE. (12/3+1) 

> -

13/2, (-2*(3//2))/2, -1, -1, ('JOE') 

SETLB Boolean expressions yields a 

(e) (_'.::4,5~ INCS. NL.) OR. (5 LT. 8) 

( f) N. ( ( 8 /2) LE. ( 5+ 7 /2) ) 

( g) ( 8 /2) GE. ( ( 7 / /2) + 7 /2) 

> -

(h) (T.O.((4+3) GT. (6-(-2))) A. (_::::F.,4~ INCS. ~:(4 LT. 2)_::)) 

5. Which of the following Boolean expressions are TRUE? 

(a) ( _::: 1 ~ + _::: 2 ~) EQ. _:: : 1, 2 ~ 

( b ) ( _:: : 1 , 2 , 3 ~ - _:: : 1 , 2 ~ ) NE . _:: : 3 ~ 

( c) ( _::: 1, 2 , 3 ~ * ~: 3, 4, 5 ~) EQ. _:::: 3 ~ 

( d) ( _:: : 1 , 2 , 4 ~ / / _:: : 2 , 3 , 5 ~ ) NE . ~ : 1 , 3 , 4 ~ 

6. What is the value of the following expressions? 

(a) +(~:1,2~ + _:::3,4~) 

(b) +(_:::l,l,2,3~ - _:::1,2,3,4,5~) 

(c) +(.::::1,2,3~ + .::::3,4,5~) 

(d) +(_:::3,5,.::::1,2~~) + +(.::::1,2~) + +(_:::1,2~ + .::::3,5~) 

(e) +NPOW(0, _:::1,5,.::::1,2,7~,•HI', 'HO'_::) 

7. Write out the result of each of the following operations: 

(a) _::::1,2,3,4,5,6,7,8,9,100~ LESS. (50*2) 

(b) _::::1,2,.::::3,4~,5,6> WITH. (.::::6/2, 1+7/2~) 

(c) ~:1,5,7,8~ - _::::1,4,7~ 

(d) ~:1,7,112 3> + .::::1,12,3~ 
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8. Assume the set 

S = ~:1,5,9,16~ 

is stored internally as 

<16 9 1 5> 

Write the output you would expect from running the following 

SETLB program: 

DO; 

S = ~:1,5,9,16~; 

PRINT. S; 

X = ARB. S; 

Y = S LESS. X; 

PRINT. X, Y, (Y WITH. X); 

Z=ARB.Y; 

PRINT. Z, Y LESS. Z, ARB. (Y LESS. Z) ; 

COMPUT}!:; FINISH; 

9. What results are obtained from the following Boolean 

expressions? 

(a) ~:1,2~ + NPOW(2,~:l,2,3,4~) 

(b) NL.+ NPOW(l,~:1,4,5,7~) 

(c) ~:1,2~ + POW(~:1,4,5,7,3~) 

(d) ~:1,1+2//1,-(2-3/2-1)~ + POW(~:1,4.,5,7,3~) 
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3. Tuples 

SETLB provides not only sets but also tuples as basic data 

objects. Unlike sets, tuples are well defined, ordered sequences 

of components. For example, 

<13,4,8> 

is a tuple of three components. Arbitrary SETLB objects including 

sets or even other tuples can be components of a tuple. Tuples 

differ from sets in that the order in which the components appear 

is important. 

One will often want to affix new components to tuples -- a 

process called concatenation. The tuple concatenation operator 

is designated by the familiar+ (plus sign). One will often want 

to know how many components a particular tuple contains. The 

enumerator is the no less familiar i (downward pointing arrow, 

used instead of the sign#, which is not available in the 029 

keypunch). 

Here is an elementary program involving tuples. 

Program 21 

LINE STATE 
NO NO 

1 I• OPERATIONS ON TUPLES*/ 
2 DOJA=<1,5,9>; 8=<9,5,l>J 
3 PRINT,A EQ, BJ 
4 COMPUTEJ 
5 OOJC:<4,4,4>J D=<4,4>J 
6 ~RJNT, C NE, CJ 
7 COMPUTEJ 
8 DOJ E=<~HJ,,63,S:1,2,3~>1 
9 PRJNT,,A VALIC EXAMPLE Or A J•rUPLEi,EJ 

10 COMPUTEJrl~JS~J 

Output Program 21 

rALSB 

TRUE 

• • • «ENO er r1LE ON l~PUl) • • • 
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The symbols<> are used to delimit tuples; note the difference 

between these 'tuple brackets' and the symbols~: > , which are used 

for sets. 

The first line of output from the preceding program makes it 

clear that the tuples A and Bare not identical even though the 

sets of their components are identical. Nor for that matter are 

C and D equal. The tuple Eis a valid 3-tuple even though its first 

component is a character string (enclosed by quote signs), its second 

is a numerical value, and its third component is a set. 

When one tuple is concatenated with another the new tuple 

formed has a total number of components equal to the sum of the 

lengths of the original tuples, regardless of whether identical 

components are present or not. This is shown by the next program. 

Program 22 

LINE S'fAT6 
NO NO 

1 
2 
J 
4 
5 

Output Program 22 

TRUE 
<1 2 3 1 2 J 4 ,> 

• * ~ (ENO OF FJLE ON INPUT) * * * 

-40-



3.1 Indexing of Tuples 

Since tuples are well defined, ordered sequences of components 

we can retrieve a tuple's comp~nents using numerical indices. The 

first component will be addressed by the index 1, the second 2, 

etc. To retrieve a desired component, its index is merely enclosed 

within parentheses following the name of the particular tuple. 

If either by error or design, the index is greater than the number 

of components of the tuple, OM. results. All this is shown in 

the next program, where it will be noticed that the last example 

involves a tuple followed by an index. In all such cases the 

tuple must be enclosed by parentheses to avoid syntactic problems. 

Program 23 

Output 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Program 23 

TRUE 
TRUE 
OM, 
TRUE 
OM, 

I• INOEXING OF TUPLES *I oo, 
A=l2,4,8,16>; 
PR1NT,CAC1) EQ, 2> AND, (A(4) EQ, 16); 
PRJNT,CAC2) Ea, 7) OR, CA(2) EQ, 4)J 
PRINT,AC5); 
PRINT,AC5> EO, OM,; 
PRJNT,(<7,4,6,2>)(5); 
COMPUTE; FINI~H; 

••• (ENO or rJLE ON INPUT) * * * 
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3.2 The Zeroth Component of a Tuple: An Illustration of 

Error Termination 

An attempt to retrieve the 0th, -1st, etc. component of a tuple 

causes an error termination or a "crash". (For a fuller explanation 

see Chapter 3.4.) This is deliberately demonstrated in the first 

block of the following program. Note that, on a crash, information 

intended to assist in debugging is printed out. Specifically the 

sequence of SETLB system-routine calls leading to a fatally offend­

ing operation is printed out. Since the crash shown in the following 

program occurred in the first block, the program was not aborted 

but continued to the next block in which A(S) was sought, alas in 

vain; thus an omega was returned. 

In the third and last block Bis defined to be a tuple containing 

components which are themselves tuples. B = <<4,6>,<l,3>,<5,8>>; . 

The third component could be printed out simply by writing: 

PRINT . B ( 3 ) ; 

This would give the tuple: 

<5,8> 

Suppose, however, that we want to see not this tuple but its first 

component. To do so all one has to write is: 

PRINT. (B(3))(1); 

this can be seen from the next program. 
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Program 24 

Output 

LINE STATE 
NO NO 

1 ., 
~ 

4 
c; 
6 
1 
A 
C) 

Program 24 

14 
8 

/• MURE UN Jf\01:YING OF T11PLFS •/ 
OOJ A=<tl,2,14,~>J 
PRINT,A(3);rRINT,A(4)JPRiNT,A<O); 
CO~IPJ TI:; 
DOI PRlNT,AC~)I 
COMPJTE; 
POJ d=<~4,6>,<1,3>,<5,d>>I 
PR I ~J T , C R ( ~ J > ( l ) I 
COiiPJH::FINISHJ 

,t RI J ~ - r I M f. V AL U E F. ,1 RO R I N , , TU PL f:: , U F : X , X LESS , TH A •J 1 'I. 
~•••CRASH•••~ 
PRncF.JJURE T~ACE - l,'.j ~FVf:~SI: CALL [Nli ~FUUENCF 
OF'T1.;P~, 

O ►-, 

OF 'J, 

MAIN 

OM, 

5 

ARG 1: <11? 14 B> 
ARr, 2: 0 

AR r, 1 = <11 ? t4 d~ 
AR'1 2 = 0 

AHn 1 = <11 2 14 B> 
Afrn 2 = ( 0 ) 

• • • CE"lO tJF FILE LIN INF'l,.T) • • • 
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3.3 Modifying Tuples 

To add new components to the end of a tuple one can simply use 

the concatenation operator. If, for example, 

A= <1,2,3>~ and B = <4>; 

then A+ Bis <l,2,3,4>. 

SETL provides another method allowing single components to be 

added to the tail end of a tuple. Suppose, for example, that 

B = <10,20,30>; 

and that we desire to attach the component 40 to the tail end of B. 

We can get to the last component by writing 

B(+B); 

To add the component 40 after the present tuple end we can refer to 

the 'element after the last' and write 

B((+B) + 1) = 40; 

In the next program the tuple A is concatenated to B. The 

printout clearly shows this to have been accomplished correctly. 

Note that concatenating <8> to <5,6,7>, in this order, does not 

produce the tuple <5,6,7,8> but rather <8,5,6,7>, something quite 

different. 

In the second block the fourth component of tuple Bis set 

equal to 40, as described above. A printout of the new B shows 

the result. Finally, in the third block, the last component of 

the new Bis modified. 
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Program 25 

LINE STATE 
NO NO 

1 
2 
3 
4 
9 
6 
7 
a 
9 

10 
11 
1?. 

I• ADDING A COMPONENT TO THE END OF A TUPLE•/ 
DOJ A=<1,2,3>J 8:<4>J 
PRlNT,A+B; 
PRINT,(<8> + <5,6,7>) EO, <5,6,7,8>J 
COMPUTEJ 
DOI 8=<10,20,30>; PRINT.BJ 
8((48)+1)=40i 
~RlNT,tNOW B IS t,BJ 
COMPUTEJ no, 
~<•B>=50i 
PRJNT,tNOW 8 ISi,B; 
COMPUTEJFTNISHJ 

Output Program is 

<1 2 3 4> 
F"ALS?. 

<10 ?0 30> 
-NOW B IS, <10 20 30 40> 

~NOW B IS~ ◄ 10 20 30 50> 

* •• (END or F"lLE ON INPUT)*** 
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As is shown in the preceding example, the components of a 

tuple can be modified directly by indexing, in very much the same 

way as arrays are modified in conventional programming languages. 

The next program illustrates this. 

Program 26 

LJNE STATE 

Output 

NO NO 

1 
2 
J 
4 
5 
6 
7 
8 
9 

Program 26 

I• MODIFYING A TUPLE•/ 
001 
A=ct,J,5,7 1 9>J 
PRINT.Al 
A(1):s100J 
PRINT,AJ 
A(2)a80JA(4)•78J 
PRINT,AJ 
COMPUTEJ FlNISHJ 

<1 3 5 7 9> 
<100 3 5 7 9> 
<100 80 5 78 9> 

•••<END OF FILE ON t~PUT) • • • 
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The next program gives another illustration of the modification 

of a tuple. It should be self-explanatory. 

Program 27 

LINE STATE 
NO 1\0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1 4 

/• MODIFYING A TUPLt •/ 
UO I 
A=<1,3,5,7,9>J 
PRINT,AJ 
A<1>=10J 
f'RlNT,AJ 
A(2):?.0; PHl~T,AJ 
pRINT 1 A(4A)J 
PRINT,A( <•A>•1> J 
A(4A)=1oUJ PHl~T,AJ 
AC(iA)+1>=~00J PRINT,A; 
A((iA)+2):300J PRINT,AJ 
8:AJ PRJNT 1 8;PHINT,8(7)J 
COMPUTEJ FINISHJ 

Output Program 27 

<1 3 5 7 9> 
<10 3 5 7 9> 
<1n ~u 5 7 <;> 
9 
011 
<10 20 5 7 100> 
<10 20 5 7 100 200> 
<10 20 5 7 100 200 OM 300> 
<10 20 5 7 100 200 OM 300> 
OM 

• • • <ENO OF FILE ON tNP~T> • • • 
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3.4 The 'Undefined Value' or 'Omega' Concept; 

Additional Remarks on Error Termination. 

Whenever an operation is attempted which violates the formal 

rules of SETLB, it will cause either a 'crash', i.e., an error 

termination, or it will produce an 'indefinite', an 'omega', 

represented in SETLB by the symbol OM .. In general, 'plausible' 

violations will produce OM. ; 'implausible' violations will lead 

at o.nce to an error termination. Note that the presence of an 

omega can be exploited in a program; for example, an element may 

be tested for equality with omega. 

In the following programs, A and Bare valid tuples of length 2. 

If we try to retrieve their third components A(3), B(3), we get 

the 'undefined' result twice. (Note that, as shown ear lier, an 

attempt to retrieve the zeroth, or a negative, component of a tuple 

does not retrieve an omega but causes a crash.) 

Generally speaking, the use of an operator with invalid 

arguments, as e.g., in the combination 

7 INCS. 6 

will also lead to a crash. 

All this is shown in the next program, which also shows how the 

system recovers from crashes. 
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Program 28 

LI NE ::, TATE 
NO I\U 

1 
2 
3 
4 
5 
6 
7 
8 
Q 

10 
11 
12 
13 
14 

01.1tput 

I * 0 :·1 I:: Ll A A I l D I: H ~ 0 H I t: ~ M l NA f I C N ~ * / 
~UJ ~=<~13>J H~<~,o~J 
1-'H 1 N r I A ( ..5), ti l .:S), 8 ( ',) 1 A ( r.), !:I ( 1) J 
~!J,!PIJTt:; -DUI 
e f< 1 N T , ~!j~ ~ W A i, L ,.., P L A I' S l i::H. E lJ P E H A T l O I\ ,t J 
PH1NT 1 ~ INC::,, ~J 
eHINT,'/.T~IS ~~~SAU~ ~lLL NcVEH APPEARtl 
~ cm P v T t: ; 11 U J 
~RlNT,tB~GK lN HUSINl::S~ A~TE~ A CRASH-l 
~HlNT,tN~W F~M ANUTHl::H ~RASH~J 
f.J H 1 N f I A* l.i J 
~ (W1 P U T t: : U U J 
~HlNT 1 tR~CUV1::HY IS PO~SlB~~ AFTEH ANY NU,RE~ OF CRASHESiJ 
~UMPi.JTt:; FlNlSH, 

Program 28 

IIINO~ AN !Mf-'~A~Sl'H.E: O~El<A"(IUN,t 
iINYALID UAfA TYPt: 1 F~H T~I:: SE!L UPtHATJO~I '/. tX INCS, Y, YOH X NOT A 
Sl::T,'1-
~••• L:HASH ***;t 
PR0Cl::uUt-11::: Tr<AL:I::: - Fl ':(l::Vl::r,S~ CAl,.L.lNu St:UUENC!:: 
INCS, 

AR c, 1 = ~ 
MW 2 : 6 

~~ACK II\ aus1~1::~s AfT~H A CHA~H­
ltNO~ ~ OH Al'IU THl::l~ l:RASH;t 
jll1NVALIL UAjA-TYPt: 1 F~R T~~ SE!~ UPl::HiTlO~I ~ -A•Oi 
i••• L:RASH •••-t 
PROCEUURI::: THA~I:: - IN ~1::V~t-lS~ CALLIN~ S~UUENC~ 
TMS, 

MA I I\ 

AfW 1 = <G ..S> 
Akli ~ = <~ 1>> 

• + • (i;NiJ u~· F1Lf. UN l1~1-'~T1 * • *' 
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3.5 The Head and Tail Operators 

The head of a tuple is its first component. The tail is the 

tuple which remains after the head is removed. These portions of 

a tuple may be produced directly by means of the SETLB HD. 

and TL. operators. 

This is shown in the following example. We let 

TUP = <5,6,8,4> 

Prin~ing HD. TUP gives the number 5, The instruction: 

PRINT. TL. TUP; 

prints out the tuple 

<6 8 4> 

Since the tuple TUP has four components, the tail of the tail 

of the tail of the tail of TUP is the null tuple, designated as 

NULT. Anything beyond this gives an omega, as is shown by the 

following program. 

Program 29 

Output 

LJNE Sl'ATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Program 2~ 

I• THF, HEAD A~D TAIL OPERATORS•/ oo, 
TUP=<5,6,8,4>J 

PRJN.T,TUPl 
PRlNT,HD,TUP; 
PRJNT,TL,TUPJ 
PRJNT,HD,TL,TUPJ 
PRJNT,HD,TL,TL,TUP; 
PRlNT,TL,TL,TL,TUP; 
PRlNT,TL,TL,TL,TL,TUPJ 
PRJNT,HD,TL,TL,TL,TL,TUP; 
PRJNT,TL,TL,T.L,TL,TL,TUP; 
COMPUTEJ F'INISH; 

<, 6 8 4> 
5 
<6 8 4) 

6 
8 
('4) 

~u~r: 
OH, 
OM, 

•*•<ENO OF' F'ILE ON l~PUT> • • • -50-



QUESTIONS 

Chapter 3 

1. Which of the following Boolean expressions are TRUE? 

(a) <1,1,4,5,7> EQ. <1,5,4,7> 

(b) <4,7,9,1,2> NE. <1,7,4,7,9> 

(c) (((<1,2,3,5,6,7,4>) (3+3) NE. (3+3)) 

( d) ( ( ( ( < 1 , 2 , 3 , < 1 , 2 , 3 , 4 > 7, 8 >) ( 4) ) ( 3) ) EQ. ( 7 /2) ) 

( e) ( ( ( < 1 , 4 , 5 , 8, < 1 , 4 , 7 > 3 , 5 , 6 >) ( ( < 1, 7 , 3, 2 >) ( 2) ) ) EQ. ( 5) ) 

( f ) ( < 3 , 5 , 7 , 8 , 9 > + < 7 , 8 , 9 , 3 , 5 > ) EQ . < 3 , 5 , 7 , 8 , 9 > 

( g) ( < 1, 2, 3, 4, 5 > + NULT.) EQ. < 1, 2 , 3, 4, 5 > 

(h) (<1,2,3,4,5> + <3,5,6,7>) NE. <1,2,3,4,5,3,5,6,7> 

( i ) ( ( ( < 1 , 2 , 3 , 5 , 6 , > ) ( 6 ) ) NE . (OM. ) ) 

( j ) ( ( ( < 1 , 3 , 7 , 9 , 5 , 3 >) ( ( < 3 , 5 , 7 , 0 , 8 , 9 , 10 , 3 , 7 , 2 >) ( 7 /2) ) ) 

EQ. ( ( < 3 , 5 , 6 , OM. >) ( 4) ) ) 
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4. ADDITIONAL INFORMATION ON SETS AND TUPLES 

4.1. Set Formers 

In defining sets we have till now specified them explicitly. 

For example, we have written 

A= =::1,2,3,4~; 

PRINT. A; 

Given a set (and no matter how it was originally formed) we 

will often want to form certain of its subsets. For example, 

we might be interested in knowing all of the elements X of A 

which are greater than 2. This can be done very directly using 

the following expression: 

PRINT. <X ~At X GT. 2~; 

where the upwards pointing arrow stands for II such that. 11 The 

result is obviously ~:3,4~. Note that when a set is defined by 

such a set former the colon is omitted. 

Similarly if set Bis defined as: 

~:10,20,30,40,50~; 

we might want to know all the elements Y of set B such that Y is 

less than or equal to 30. This set may be built quite similarly: 

PRINT. <Y + B t Y LE. 30~; 

The elements which satisfy the stated condition form the set 

~:10,20,30~. 

Both the above examples are shown in the next program, which 

also contains a third set former. As the omega printed by the 

last line shows, the use of a variable in a set former does not 

affect the value of the variable in any predictable way. 
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Program -30 

LINE STATE 
NO NO 

1 
2 
3 
4 
~ 
6 , 
A 
9 

/• S0HE ELE~~NTARY SET FnRHE~S •I 
OOJ A=~l1,2,3,4~J PRINf,AJ 
PRINT,Sx ➔ AtX Gr, 2?J 
CCli1PUTE J 
OOJ H~s:1n,~o,30,4Q,50>J P~I~T,B: 
PRINT,Sy➔ 8tY L~,30?; COMPUTEJ 
DOJ C:S:~3,~2,·1,n,1,~:3~; PRINT.CJ 
PR1NT,Sz ➔ Ct7. ll,O?.; 
PRINT,Z1U=S z ➔ c,z LT,O~:pPINT,[JCO~PUTE:fIHtSH; 

Output Program 30 

Sl ~ J 4?. 
S3 ◄~ 

S ◄ O 51J 10 20 30~ 
S10 2U 30~ 

so 1 111 2 -2 3 -3~ 
S•1 -2 -3~ 
OM, 
S •1 -2 .. i~ 

• • • CEND OF F'ILE, ON I1~Pl.T) • • • 
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Consider next a set A defined explicitly as follows: 

~:~ 1 3,4,S,6,7,8,9~ 

This is the set of integers greater than one but less than ten. 

This set may be defined directly using a set former, without any 

explicit enumeration being required. We need merely write: 

~N, 1 < N < 10> . 

The same set can be constructed by using a differently worded 

statement. Let C be the set of elements M, where Mis greater 

than or equal to 2 and less than or equal to 9. This set, which 

we may display by writing 

is clearly the 

Note that 

which is used 

"less than or 

PRINT. ~M, 2 <= M <= 9~; 

same as 

in SETLB 

strictly 

equal". 

A, 

the double 

to delimit 

operators<= and not the 2 sign, 

sets, must be used to write 

Naturally, all of the sets mentioned above are equal; this is 

confirmed by the printed output of the next program. 
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Program 31 

Output 

LINE STATE 
NO t-.0 

1 
?. 
3 
4 
5 
6 
? 
R 
9 

10 

Program 31 

I • I ,'l T E r, E R R Ml G i: S 1 N T H F. S c T F C R t-1 F. ~ • I 
OOJ 
A=S:2,3~4,5,e,7,a,9~; 
PRlNT,A; 
B=S"l,:t<M<10~; 
PRINT,81 
C=S>-i,2<:M<=9~J 
PRINT,Gt 
PRINT,(A EU, R) ANC, (B FD,C)J 
C0M?lJTE1 FINISHJ 

SB 9 ~ 3 4 5 6 7~ 
SB 9 2 3 4, 6 7~ 
se 9 2 3 4 ~ 6 7> 
TRUE 

• • • <Et~O UF FILE llN INP\..T) * • • 
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4.2. A Short Digression on Arithmetic in SETLB 

A useful remainder operator is provided in SETLB. The operator 

is written using two adjacent slashes, i.e. the remainder obtained 

on dividing A by Bis written in SETLB as: 

A//B 

This remainder operator is illustrated in the next program. 

Program 32 

LINE STATE 
Nn ~o 

1 
2 
3 
4 

' 6 
7 

$ 
/• TdtS IS TC lLLIISTP.ATE THE REMAit-..OER OPF.RATnR •/ 
$ 
un J 
A.::9: 8=2; 
PR{NT,trl-iE Ri:YAHlnER llr AIB='1-,A//A; 
C O l·l P \J T E J F l "1 l S h J 

Output Program 32 

• • • <EMO OF FILE UN INP~TJ • • • 
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In the current implementation of SETLB, integer numbers only 

are permitted. This implies that built-in trigonometric functions, 

as well as many of the mathematical functions provided in languages 

such as Fortran, etc., are not available to the SETLB user. All 

arithmetic is done in the integer mode; the presence in SETLB 

source programs of a nwnber with a decimal point could lead to 

unsuspected errors. The largest integer possible in the present 

irnp~ementation is 2 18 -1, which is 262,143. 

SETLB provides no exponentiation operator. Of course, one can 

express exponentiation by repeated multiplication. Multiplication 

is designated by the sign*, the slash,/, is used for division. 

Of course, the plus,+, and minus sign, - are used to designate 

addition and subtraction respectively. 

Division by zero, even division of zero by zero yields a zero 

result, and is in no way flagged as an error. 

It is hoped that by the end of 1973 a new version of SETLB, 

eliminating all the above difficulties and restrictions, will 

become available. 

4.3. More Examples of Set-Formers. 

We now return to continue the development of the set former 

concept. In the next program a set A containing the integers 

1 through 10 is formed. This set is printed. 

Next the set B of integers 1 through 10 such that the remainder 

of N modulo 2 is equal to zero is formed. These are none other 

than the even nwnbers 2, 4, 6, 8 and 10, which are then printed out. 

After this we ask whether it is true or false that the set of 

all numbers N * N - 3 for N between six and eight inclusive is equal 

to the set {33, 46 and 61}. It clearly is; the printout confirms 

this. This is seen on the output line labelled 'the value for test l'. 

Next, a set C is defined and we ask whether it is true that for 

every x of c, 2*(X+3) is a member of the set {8,10,12}. Inspection 

shows this to be true; its truth is confirmed by 'test 2' of the 

following program. 
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Referring once again to the set C we ask whether for every 

X of C and for all N greater than 6 but less than 10, X + N is 

a member of the set {8,10,12}. Since the set of all such X + N 

is the set {8,9,10,11,12}, we get FALSE as the printout from 

'test 3'. 

Finally, we form the set of all N greater than 2 and less than 

or equal to 10 such that the remainder of N/3 is equal to 1. This 

set is saved under the name D and then printed out. 

Caution is advised when expressions like N//2 and N//3 are 

used in a Boolean expression. In order to avoid difficulties 

the user is strongly advised to parenthesize all such operations. 

Program 33 

LINE STATE 
NO ~O 

1 
2 
3 
◄ 

' 6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
16 

/• ~ORE UN T~E SET FORMER*/ 
DOJ 
A=SN,O<N<=lO~J 
PRI~T,A~.t WH{Ct,, JS THE SFT A,J 
B=SN, U< N <: lf1 '(ll//2)FC, 0~1 
PRINT,i::l',.tWHIC4 I:i THE SF.i' Bt; 
PRINT,S(N•N)!!~,6<=1'<=H~ Fn,~133,46 61> t.TJ.!E VALUE FnR TFST1.JJ 
COMPUTE1 DJJ ' _, ~ 
C=s:1,2·,3~; 
PRl~T,C~iWHICH TS THE SEf CtJ 
PRINT,S~•(X+~),x~c~ EO, ~18,10,12~.-WHIC~ I~ THE VALLI~ roR TEcT 2,; 
PRJNT,Sx+N,X ➔ C,~<~<10? Eo,Sie,10,12~ tWMICH IS THE VALU~ roR TEST 3~ 
COMPUTE I nu r ' ., 
D=S~,2<N<=l0 t(N//3)EQ,1>J 
PRINT,J~- riHl~H IS THE V~LUE FCR SET DtJ 
C O MP J T E I F l ~J l S t,, I 

Output Program 33_ 

S8 9 l 1n 2 3 4 ~ 6 7~ t ~MICH IS THE SET A~ 
S8 10 2 4 6~ -~HICH JS T4E SF.T 8~ 
TRUE ~TkF. VALUE FOP TEST1, 

S1 2 J~ iwHlCh 15 T~E S~T c~ 
TRUE ~WHICH IS THE VALU~ FOH TEST 21 
f' AL SE ~ W H I CH l S T ti E VA I. U E r C P TEST 3 t 

S10 4 7? ~ ~HIC~ IS THE VALL~ FQR SET n1 

• * • CE"ID Of' f'lLE ON JIIP~T) • • • 

-58-



4.4. Existentials. 

One will often wish to ask whether an element with some given 

particular property exists within a set. Consider, for example, 

the explicitly defined set: 

A= S:1,2,4,6~ 

We can ask, for example, whether there exists an element X of the 

set A such that Xis less than zero. For the above set A, this 

is obviously false. Next we can ask whether there exists an 

element X in A such that Xis equal to 4. This is certainly true. 

The symbol_ is used for testing existence; this replaces 

the conventional mathematical symbol 3, which is not available 

on the 029 keypunch. Using this symbol, the two questions posed 

above may be written as follows in SET~B. 

PRINT. - X +At X LT. O; 

PRINT. _ X +At X EQ. 4; 

Various existential expressions are shown in the following program. 
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Program 34 

Ll~E STAT6 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

I• EXISTE~TIALS •I 
DOI 
A:Sl1,2,4,6~J 
B11,:3,•5,7,•10~J 
PRlNT,: X ◄ At X LT, OJ 
PRINT,: X ◄ 8 t X LT, OJ 
PRINT,: X ◄ A, X EQ, 4J 
PRINT,: X ◄ A, X EQ, 5J 
PRINT,: X ◄ B, X EQ, •10J 
PRINT, NOT,(: X ◄ B, X EQ, 100)J 
COMPUTEJ F"lNlSHJ 

Output Program 34 

f"ALSB 
TRUE 
TRUE 
F'ALS~ 
TRUE 
TRUE 

••• (ENO or r&LE ON INPUT) * * * 
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The existential quantifier has another important feature. 

When it is used to test whether an element with a given property 

exists in a set, it locates the first such element which it finds. 

For example, let us define a set: 

A= ~:1,2,5,-8,9~; 

In the program which follows we ask whether there is an element X 

in A such that Xis less than zero. The result is TRUE; the element 

-8 is less than zero and therefore after execution of the instruc­

tion X takes on the value -8. 

This is shown in the next program. 

Program 35 

LINE STATii 
NO NO 

1 
2 
3 
4 
5 
6 
7 

/* TO ILLUSTRATE THAT THE EXISTENTIAL LOCATES •I 
DOI 

Ai::~11,2,5,•8,9:!; 
PRINT,AJ 
PRINT,:X~~•X LT,0J 
PRINT,XJ 
COMPUTEJ f:"INlSHJ 

Output Program 35 

* * • fEND OF" F"JLE 'ON INPUT> * • • 
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4.5. Universal Quantifier 

Consider the set: 

A= _s:1,2,3,4~ 

We may obviously assert that every element X of A is greater than 

zero. This assertion can be verified in SETLB by evaluating the 

following expression: 

PRINT. V X +At X GT. 0; 

Note that the symbol for "for all" is the v, the 11-2-8 punch, 

not the letter V. (The symbol vis used instead of the 'V' symbol 

conventional in mathematics because 'V' is not available on the 

029 keypunch.} 

If we wanted to know whether it is true that every element 

X of A is less than 2, we could similarly write: 

PRINT. V X +At X LT. 2; 

These and other universal quantifiers are illust~ated in the next 

program. 

Program 36 

LINE STATS 

Output 

NO NO 

1 
2 
J 
4 
5 
6 
7 
8 

I• UNIVERSAL CUANTIVIERS */ 
oo, 
Ac~11,2,3, ◄ ~tB:~:2,•J, ◄ ,7~J 
PRlNT,v X,. A t X. GT, 01 
PRlNT,v X,. B t X GT, 01 
PRINT,v X,. At X LT, 21 
PRINT,v X .,. B t X GE, ?J 
COMPUTElrINIS~J 

Program 36 

TRUE 
J"At.SIJ 
PAt.S9 
PAI.SI! 

••• (ENO Or rlLE ON lNPUl) ••• 
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The universal quantifier, like the existential quantifier, 

can be used for locating an element, though its use in this way 

is less natural. The element located by vx~AtC(X) is the 

first element x for which C (X.) is false. 

For example, let us again define the set A: 

A= ~:1,2,5,-8,9~; 

As will be seen from the next program, this set is stored as 

<-8 9 1 2 5> - -
We then ask whether for all elements X of the set A, Xis less than 

zero; the answer is FALSE. The first stored element, -8, certainly 

is less than zero, but the next element, 9, fails to satisfy the 

condition and so X takes-on the value 9. This is seen in the next 

program. 

Program 37 

LINE STATE 
NO l\,n 

1 /• Tu 1LLUSTS4TE THAT TH~ UNIVERSAL 
2 JUA~TIFI~~ ALSO LO~ATES •/ 
J oo, 
4 A=~:1,2,5••~,9~1 
5 PRI~T,A; 
6 PRlNT,~x ◄ AtK LT,0J 
? PRlNT,X; 
A c u r1 P u r E , F 1 ,~ r s ~ 1 

Output Program 37 

~-s 9 1?. 5~ 
FALSE 
0 

• • • (END OF FILE UN I~P~T) * • • 
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Let us now combine the two quantifier forms -- the existential 

and the universal quantifier. In the following example we use two 

sets: 

B = ~:3,4,5,6,7~; 

Is it true that for every element X in A there exists an element 

Y in B such that X is equal to Y? We put this question in SETLB 

notation by writing: 

PRINT. V X +At (= Y + B t X EQ. Y); 

Then we ask: is it true that for every element X of A there 

exists an element Y of B such that Xis not equal to Y? In SETLB 

this is: 

PRINT. V X +At (= Y + B t X NE. Y); 

These and a few other examples are included in the next program. 

Program 38 

LINE STATE 
NO ~n 

1 
,! 
3 
4 
5 
6 

' A 
9 

10 

/• HJRE ON U~tVFRSALS ANn EXlST~NTIALS •I oo, 
A=S:1,2~3,4~; ~=S13,4,5,h,7~; 
PRlNT,tA=t,A; PHINT,t8:;,BJ 
PRlNT,vx ➔ At(~V ◄ 4tX EQ,Y>: PRlNT,XI 
PRlNT,vx➔ AtC~v◄ a,x NE,Y>1 
PR1NT,~oT,(;Y ➔ At(vx ➔8tX ~Q,YJ>J 
PRlNT,vx ➔8tX GT,0J PHINT-x; 
PRINT,Sx ➔ AtX ~T,0J PRINT:X; 
CO:-iPJTE; FltlllSrll • 

Output Program 38 

-A•- ~1?. 3 42: 
118•- ~3 4 5 6 72: 
F'ALSF. 
1 
TRUE 
TRUE 
TRUE 
OH, 
TRUE 
1 

•••(END or FILE 0N fNP~T) • * • 
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Our final program illustrating the concept and use of universal 

and existential quantifiers is, for the sake of simplicity, broken 

up into eight parts. 

(a) First we ask: is it true that for all integers N greater 

than or equal to 2 and less than or equal to 8, N is greater than 

zero? It certainly is, and we get a printout TRUE. 

(b) Is it true that there exists an integer N greater than or 

equal to 5 and less than or equal to 8, such that N is equal to 6. 

Since N varies over all the integers 5 through 8 it certainly 

includes the integer 6, and once again we get the result TRUE. 

Printing out the value of N gives the result 6. 

( c) Let 

A= ~=3,5,7,31~; 
and 

B = <:1,-7,8,-44~; 

Is it true that for all N greater than zero and less than 5, 

N is a member of A? Since N varies over the integers 1 through 4 

it is quite clear that not every value which N takes on is in A. 

Therefore the answer is FALSE. If after making this test we print 

out N, the number 1, i.e., the first value which violates the 

condition, is obtained. 

(d) Is it true that for all N greater than 1 and less than 25, 

N is a member of A or is not a member of A? This statement is, 

of course, true, largely because of its second clause. 

(e) Is it true that for every X which is an element of A, and 

for every element Y of B, X+Y is greater than -5? This may be found 

on inspection to be false. Note that in the program which follows 

only one "for all" symbol is used; SETLB allows a sequence of like 

quantifiers to be "run together" in the fashion indicated. Since 

the answer is FALSE, Xis set to the first value which violates the 

condition -- in this case 3. 

(f) Does there exist an element X of A such that Xis equal 

to 123? The answer is FALSE. In this case the value of Xis 

undefined and therefore an OM. is printed. 
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(g) Is it true that for every element X of A there exists 

an N between 1 and 4 such that Xis equal to N? Since A contains 

5, 7 and 31 the result.must be FALSE. Printing out X yield~ the 

number 5, the first violation of the condition. 

(h) Is it true that there exists an element X in A and there 

exists an element Yin B such that Xis not equal to Y? The answer 

obtained is TRUE. Note the use of only one "there exists" symbol, 

allowed far the same reason that a single "for all" symbol is 

sufficient in connection with (e) above. 

With these hints, the program whic~ follows should be intelli­

gible. 

Program 39 

LINE STATE 
NO NO 

1 /• MORE U~IVERSALS AND EXISTENTIALS *I 
2 DOI 
3 PRINT,Y2<=N<=e,N OT,o, 
4 PR1NT,:5<=~<=8tN EQ,6J PRINT,N; 
5 A=S:3,5,7,31~J 
6 PRlNT,v0<~<5tN4AJ PRINT,NJ 
7 PRlNT,Y1(~<25tN•A OR,NOT,N•AJ 
a B•s:1,-,,s,.44~1 
9 PRINT,vX4 A,Y•9t(X+Y)GT,-5J PRlNT,XJ 

10 PRINT,:X•A,x EC,123J PRINT,XJ 
11 PRlNT,vX4 At:1<:N<:4tX EC,NJ PRlNT,XJ 
12 PRINT,:X•A,Y 4 8tX NE,YJ PRINT,X; 
13 COMPUTEJ tlNISH: 

Output Program 39 

TRUE 
TRUE 
6 
F'ALSe 
1 
TRUE 
f'ALSP. 
3 
F' ALSP. 
OM, 
f"ALSe 
'3 
TRUE 
J 

* • • (ENO QF' FILE ON I~PUT) * • * 
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4 . 6 . 'Multiple' Assignments 

Suppose that we write: 

<X,Y,Z> = <5,10,15>; 

This has the effect of assigning 5 to X, 10 to Y and <15> to Z 

as seen in the following program. 

Program 40 

LINE STATE 
NO NO 

1 /• ASSIGNMENTS USING TUPLE5 •/ 
2 DOl<X,Y~l>=<5,10,15>J 
3 PRINT,X,tI5 XtJ 
4 PRlNT,Y~tJ~ YtJ 
5 PRINT,Z~tIS ZtJ 
6 COHPUTE1 FINIS~r 

Output Program 40 

'3 1'IS XJI 
10 its Y~ 
<15> 1'1S Z~ 

• • • (ENO OF FILE ON JNP~T) • • • 
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What is the effect of writing: 

<A;B> = <1,3,5,7>; 

where the tuple on the left has two components and that on the 

right four? This assignment gives A the value 1 while the value 

of B becomes the tuple <3,5,7>. 

Next, consider a set X defined to be: 

If we calculate the value X WITH. 9 we obtain a set to which the 

element 9 has been added. Note however that this calculation does 

not affect the value of X; the following program shows us clearly 

that the original set X remains intact after X WITH. 9 is calculated. 

Of course, the assignment X = X WITH. 9 will change the value 

of the variable X. All this is illustrated by the next program. 

Program 41 

LINE STAT6 
NO NO 

1 
2 
J 
4 
5 
6 
7 
8 
9 

10 
11 

/* SOM!: MORE ASSIGNMENTS ANO CALCULATIONS •I uo, . 
<A,B>K<1,3,5,7>J 
PR&NT,A,ll!IS A~J 
PR&NT,~,JIIS BitJ 
(;0f11PUTl:J 
DOI 
X~i11,3,6~1 
~RlNT,CX WJTH,9)J PRlNT,XJ 
x=x WITH~9J PRJNT,x, 
~OMPUT~J FJNISHJ 

Output Program 41 

1 J1119 • .,. 
c~ 5 7,. ,qs 011 

S9 1 3 6~ 
S1 3 6l 
S9 1 3 6~ 

•*•(END Q~ r&LE ON l~PU1) * • • 
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Consider the tuple: 

A= <10,20,30>; 

To assign 5 to A(l), 'HULLO' to A(2) and 'GOODBYE' to A(3) is 
perfectly legal. Subsequent to this we may for example assign 

the tuple <4,5> to A(l). In each case a printout of A would 

show an appropriate component of A to have been modified. 

Program 42 

LINE STATE 
NO NO 

1 
2 
3 
4 

I• INTtRESTING,EXAMPLES or ASSIGNMENTS *I 
UOIA•<l0,20,J0>J PRINT,AI 
AC1>•5JA(2)~iMULLOiJA(3)aiGOOD6YEiJ 
~R1NT,~JA<1>•••,,>JPRINT,AJCOMPUTEJFINISHJ 

Output Program 42 

<10 '-0 30> 
<5 -HULLO- ~GOOVBYE-> 
<<4 '> -HUL~O- iGOODBYE-> 

* • • (ENO or r1Le ON l~PUl) • • • 
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QUESTIONS 

Chapter 4 

1. Assume the set 

S = ~:1,5,-6,0,4,9~ 

What set is generated by the following combinations? 

(a) <X -+ s t X LT. 0> 

(b) <T -+ s t T GT. 0> 

(c) <U -+ s t u EQ. 0> 

(d) <V-+ S t V NE. 0> 

(e) ~NI 1 < N < 10> 

(f) ~M, 2 <= M <= 9> 

(g) ~p I 3 < p < 8> 

(h) ~Q, (3/2) <= Q <= (10/3)~ 

2. How will SETLB, as described in this chapter, evaluate the 

following arithmetic expressions: 

(a) 3 * 2 + 1 

(b) 4 + 3 * 2 

(c) 7/2 
(d) 7//2 
(e) 6 * 6 + 8 * 8 
(f) (4*(19/2)) * 2 

(g) (4 *19/2) * 2 
(h) 1 + 4 - 5 * 6/2 * 3 

3. What set is generated by the following set formers: 

(a) A = ~B, 0 < B < 10> 

(b) B = ~c, 1 <= C <= 10> 

(c) C = ~D, 0 <= D <= 10 t (D/ /2) EQ. 0> 

(d) D = ~E, 2 < E <= 10 t (E/ /3) EQ. 0> 
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4. Assume the following sets: 

S = ~:1,3,-2,-9,11~ 

T = ~:1,3,5,-3,21,-6,-l0~ 

U = ~N, -10 < N < 10> 

Which of the following Boolean expressions are TRUE? 
( a) - N + u t N LT. 0 
(b) - N + T t (N*N) LT. 0 
(c) - N -► u t N EQ. ( +s) 
(d) - N + s t N + (T*U) 
(e) - N + u t T INCS. <. (N-3) , (N-1) ~ 
(f) NOT. (= N + T t (N LT. 5) A. (N GE. 3) ) 
(g) - Q + s t ( (Q EQ. -3) o. (Q) -+ (T*U) ) ) 

(h) NOT. (= Q + u t Q -+ < - N*N, 1 < N <= 10~) 

5. Ass:ume the following sets: 

s = ~1,2,<3>,~:4~,<<5,6 >,<7,8>>,9,~N*N, 1 <= N 

T = ~:3,5,8,9,12,-3,-5,-8,-9,-l2,0~ 

u = ~:3,5,ll,15,-7,30100,-5,71,-ll,-12,-3,l~ 

What will the following statements PRINT.? 

( a) PRINT. V N + T t N + (T * S) 

(b) PRINT. - N + T t VM -+ u t N LT. M; 

(c) PRINT. - M + u t VN -+ T t M GE. N, M; 

(d) PRINT. - N + u, M -+ T tt<:N> INCS. ~:M~; 
(e) PRINT. V N -+ u t - M + T t <N,M> -+ S; 

(f) PRINT. - N + s I 1 <= M <= 10 t < :N> INCS. ~ :M~; 

(g) PRINT. V N + T, M -+ u t N NE. M; 

6. What will be printed by the following program? 

DO; PRINT. A,B,C,S; 

A = 7*5-2; A = 3; 

B = 3+3; B = 4; 

C = 8; C = 5; 

s = <A,B,<C>>; <A,B ,C> = S; 

PRINT. A,B,C,S; PRINT. A,B; 

A = 7; PRINT. 'C IS I, C; 

B = 8; COMPUTE; 

C = 
<~ 

FINISH; 
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7. What will the following programs PRINT? 

a. DO; 

b. 

<A,B,C> = <<1,2>, <3,4~, 5,6>; 

PRINT. A,B; 

<A,B> = <3,4,5,6>; 

PRINT. A,B; 

PRINT. -:/G is -:/,C; 

COMPUTE; 

FINISH; 

DO; <X,Y,Z> = <5,10,15>; 

PRINT. X,· ;/IS THE VALUE OF X;,l; 

PRINT. Y, -:/IS THE VALUE OF Y;,l; 

PRINT. z, iIS THE VALUE OF Z;,l; 

<X,Y,Z> = <7,<8,9,10,ll>,12,13,14,15,~:X,Y,Z~>; 

PRINT. <X,Y,Z>,X,Y,Z; 

COMPtrrE; 

FINISH 

c. DO; 

X = ~:1,2,3,4~ 

Y = X WITH . ( 5 ) ; 

PRINT. +X, +<ARB. X> 

X = Y; 

PRINT. +X, +Y, +(X//Y); 

COMPUTE; 

FINISH; 

8. Write an instruction which will print out the set of all primes 

which divide a given number N, and an instruc~ion which will 

print the set of all primes whose squares divide a given number N. 

9. Write a program which will calculate and print the set of all 
'prime pairs' up to a given N. These are the pairs <P,Q> such 

that Q EQ. (P+2) and both P and Qare primes. Don't make your 

program unnecessarily inefficient: 
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5. SETS OF PAIRS AND TUPLES USED AS MAPS 

5 .1. Sets of Tuples as Functions 

Mathematically speaking, a function of one variable can be 

identified with a set of ordered pairs. For example, the function 

which maps each integer n into its square n 2 can be identified 

with the following set of ordered pairs: 

{<1,1>, <2,4>, <3,9>, ... , <-1,1>, <-2,4>, ... } 

Of course, this mathematical convention (which many readers will 

have met in elementary mathematics courses) is more suited for 

theoretical than for practical purposes. In particular, functions 

like the function n 2 , which are defined for all integers, will 

always correspond to infinite sets of ordered pairs; and since 

SETLB deals only with finite sets, it is not really possible in 

SETLB to regard every function as a set of ordered pairs. However, 

it is possible to regard every set of ordered pairs as defining 

a function; but such functions will a_lways be defined only on a 

finite domain. Moreover, they can be multivalued. In the present 

section we will explain how SETLB uses sets of ordered pairs as 

functions. 

First consider the set F defined by 

~:<'CAT' ,4>, <'MAN' ,2>, <'BIRD',2>, <'FLY',6~~; 

For each of the four creatures 'CAT', 'MAN', 'BIRD', and 'FLY' 

in its domain, this set gives the number of legs which the 

creature has. The value (i.e., the number of legs) associated 

with the various domain elements can be retrieved by writing 

F('CAT'), F('MAN'), F('BIRD'), and F('FLY') respectively. If we 

try to evaluate the value F('DOG'), which is obviously not available 

in the set F, we get the undefined value OM. The domain of Fis 

the set of all first components of pairs in F, and can be represented 

by the formula 

~PAIR(l), PAIR~ F> 

All this is shown in the following program. 
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Program 43 

LINE STATE 
NO NO 

1 
:! 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Output 

I• THE SET OF ALL FIRST COMPONENTS OF PAIRS •I 
oo, 

F•~:<tCAT;,4>,<tHAN;,2>,<tBIROt,2>,<tFLYt,6>~J 
PRlNT,FJ 
PRtNT,tTHE NU~BER OF LEGS A CAT HAS tS;,F(tCATt)J 
PRlNT,tTHE NU~BER OF LEGS A MAN HAS lSt,F(tMAN;>J 
PRJNT,tTHE NU~BER OF LEGS A BIRD HAS IS~,F(;BIROt)J 
~RINT,tTHE NU~BER OF LEGS A FLY HAS lS;,F<tFLY;>J 
PRJNT,tTHE DO~AlN OF THE FUNCTION F IS;, 

~PAIR(l),PAlR~F~J 
COHPUTEJ F'lNlSHJ 

Program 43 

$<-C4T- 4) ctrLYt 6> <t~AN~ 2> <-BIRO; 2>~ 
-THE NUMBER or LEGS A CAT ~AS tsi 4 
-THE NUMBER or LEGS A MAN ~AS ts- 2 
itHE NUMBER or LEGS A BIRD HAS IS; 2 
iTHE NUHB&R or LEGS A FLY ~AS 1s- 6 
-THE DOHAI~ or THE FUNCTIO~ r ts; s;cAT; tFLYt ;MAN; tBlROt~ 

••• <END or FILE ON l~PUT) ••• 



The general rule determining the value F(X) for a set F of 

ordered pairs is this: if F contains precisely one ordered pair 

P whose first component is X, then F(X) is the second component 

of P. Otherwise, F(X) is the undefined element OM. 

New pairs can be introduced into a set of ordered pairs, and 

old pairs modified, by a SETLB operation having an outward form 

very much resembling the "indexed assignment" form familiar from 

lower level languages such as FORTRAN or ALGOL. Suppose, for 

example, that we wish to introduce, into the map F considered above, 

the information that a spider has eight legs, and that a dog has 

as many legs as a cat. We may write 

F ( ' SPIDER' ) = 8 ; 

F ( I DOG I ) = F ( I CAT I ) ; 

This will introduce into F the pairs necessary to record the values 

implied by the two statements above. This is shown in the following 

program. 

Program 44 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I• INTRODUCING NEW PAIRS INTO A SET OF ORDERED PAIRS•/ 
IJ O I 

F=~:<tCATt,4>,<tMAN~,2>,<,BIROt,2>,<trLYt,6>~J 
PRINT,FJ 
PRJNT,tTHE NU~BER Or LEGS A SPIDER HAS 1s,,FciSPIDERi)J 

F(tSPIDERt):8; PRINT,fJ 
F(tDOGt)=F<tCATi>; PRINT,FJ 

PRlNT,tTHE NU~BER OF LEGS A DOG HAS ISi, F(iOOGi); 
COMPUTE; FINISHJ 

Output Program 44 

S<~CATi 4~ c,FLYi 6> <IMAN- 2> <iBIRDi 2>~ 
iTHE NUMAER OF ~EGS A SPIDER HAS rs, OM, 
S<-SRIDER, 8> <ICATt 4> <,PLY, 6> <~MAN, 2> <,BJRDt 2>~ 
~<-SPIOER, 8> <,CATt 4> <,roG, 4> <,~LYi 6> <,HAN, 2> <,BIRD, 

2>~ 
-THE NUMBER Of ~EGS A DOG ~AS IS- 4 

••• (ENO OF rrLE ON I~PUT) * *. 
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A set of ordered pairs can be modified directly by assigning 

new function values, as in the following program. 

Program 45 

LINE STHE 
NO ~O 

1 
2 
3 
~ 

' 6 
7 
8 

Output 

I• .-10 iJ l F I CA i IC t,• iJ F A SET OF OR n ERE n PA t ~ S 8 Y 

co, ASSyGNME~T or NEW FUNCT~CN VAL~ES •/ 

A uE = ~: < ;t SI" tT f4 ;t, 2 0 >, < ;t: 1 AH F. S ;,! , 3 7 >, <; 8 R '1 ,J M;, 5 3 > ~ J 
PRlNT,AGcJ 

AJE(-SX[T~-) : AGECISMlTH1)+1; 
4 ~i E ( ;UI O () R E -! ) : 2 8 ; P R I M i' , A r, E $ 

COMP:JTl::J F'l~ISHJ 

Program 45 

~<ifB~OWN;t 53> <t$;1tTHt 20> <:fJIIMF.S;t 37>2: 
~<,t6ROWl\it 53> <tS.-IITHt 2t> <itt1OQHEit ?.A> <1JP1ES;t 37>~ 

• • • <ENO OF' F'lLE UN INPLT) • • * 
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Let us a ain define a set F: 

F = ~:<'CAT' ,4>,<'MAN' ,2>,<'BIRD',2>,<'FLY',6>~ 

Suppose now that we want the inverse map of the function F. SETLB 

allows us to produce this inverse by using the following statement: 

HAVELEGS = ~<X(2) ,X(l)>, X + F~; 

In effect, thsi interchanges the first and second component for each 

of the tuples X of F. Once this statement has been executed, we may, 

for example, evaluate 

HAVELEGS(6) 

getting as its value that creature with 6 legs, i.e., 'FLY'. This 

is the unique right-hand component of the tuple containing as the 

first component the value 6. 

Writing 

HAVELEGS(2) 

however, will lead to an indefinite result since there are two tuples 

in HAVELEGS whose first component is a 2. 

All of these features are illustrated in the next program. 

However, a new concept, which will be explained now, also appears. 

By using the set delimiters~~ it is possible to obtain the 

set of aZZ vaZues which a multi-valued mapping assumes for a given 

element of its domain. For example, by evaluating 

HAVELEGS~2~ 

we construct the set of all second components of pairs in HAVELEGS 

of which the number 2 is the first component. 

This remark should makeerery part of the following program 

clear to the reader. 
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Program 46 

LINE STATE 
NO NO 

1 
2 
3 
4 
'3 
6 
7 
a 
9 

10 

I• INVERSE MAP OF FUNCTION •I 
oo, . 

F"•~l<ifCATt,4>,<iMAN-,2>,<-BlRD~,2>,<trLYt,6>~J 
PRINT,FJ 

HAVELEGS=S<XC2),X(1)>,X◄t~J 
PRINT,HAVELEGSJ 
PRINT,HAV;LEGS(6)J 
PRINT,HAVELEGS(2)J 
PRINT,HAVELEGSS2~J 
C OM P U T E J f" l N 1-S H J 

Output -- Program 46 

sc-clri 41 c,VLV- 6> <tMANi 2> <-BIRD- 2>~ 
S<2 ~BIRD-> <Z •MA~->< ◄ ifCAT'> <6 -rLY~>~ 
i,FLY~ 
OH, 
SifHA~ht ifB I RD-~ 

• • • tEND OF' F'lLE ON l~PUT) • • ·• 
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Let us once again make use of the function F introduced above. 

Define a set Sas follows: 

s = .::: : I CAT I , I MAN I , I BIRD I~; 

To construct the range of F over the sets, i.e., the set of all 

values which F assumes for any element of S, all one need write 

in SETLB is 

F [SJ . 

Note that the set Sis enclosed in square brackets. This is shown 

in the next program. 

Program 47 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 

I• THE RANGE OF A FUNCTION F' ON A SET ·s •I 
DOJ 

F:$:<,CAT,,4>,<,MAN,,2>,<,BIRDt,2>,<tFLYt,6>~J 
S~$1tCATt,~MAN,,tBIRO,~; PRINT,SJ 

PRlNT,F[SlJ 
COMPUTEJ FINISHJ 

Output Program 4 7 

StCA?t tMAN- iBJROt~ 
S2 4~ 

• • • <ENO OF FILE ON INPUT) • • * 
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We have seen in the preceding pages that SETLB allows a set of 

ordered pairs to be used as a function. In much the same way, a set 

F of ordered triples may be used as a function of two variables. In 

this case, F(A,B) designates the third component of the unique triple 

in F whose first two components are A and B. F may be multivalued, 

in which case F~A,B~ designates the set of all third components of 

triples on F whose first two components are A and B. New triples 

may be inserted into F, and components of old triples modified, by 

assignments of he form F(A,B)=C. Finally, a set of ordered triples 

may also be used as a (generally multivalued) function of one 

variable. For example, F~A~ designates the set of all tails of 

triples in F whose head is in A. All this is illustrated by the 

following program. 

Program 48 

Output 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
? 
8 
9 

10 
11 

Program 48 

/• A rUNCTION Or SEVERAL VARIABLES•/ oo, 
CHlLD•NL,; 
CHILD(tCOHENt,1>•tHORSTtJ 
CHILD(tCOHENt,2)•-fATIMA~; 
CHILO(tCOHEN,,3>•-MUGO~; 

PRlNT,CHlLt; 
PRlNT,CHILD~tCOHENt~J 

CHILO(tCOHEN-,3>•~ELEPHTHERIOStJ 
PRINT,CHILDJ 
COHPUTEJ rtNISHJ 

S<-C~HEN- 1 -HOASTi> <tCOHEN-2 irATIHA~> <,coHEN, 3 tMUGO~>? 
S<1 ~HORSTi• C2 tfATJHA-> (3 -MUGO->~ 
ScicoHEN- 1 tMORST~> <iCOHENt 2 ,rATl~At> <-COHEN- 3 -ELEPHTHERios,>? 

• • • (END or r1LE ON l~PUT) • • • 
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The following example shows the use of a function of three 

variables, represented by a set of ordered quadruples. It shows 

also that the same function can be used as a multivalued· function 

of one and two variables, and even, in cases in which it happens 

to be single valued, as a single valued function of two variables. 

Program 49 

LJNE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
f3 
9 

10 
11 
12 

/• ANOTHER MULTIVALUED FUNCTION •I 
DOJ 

CHILD=ML,i 
CHILO(;a!JONES1,-GIRL~,1>=1HARY1i 
CHlLDCtJONES1,1BOY1,2)~1PETER1J 
CHJLD(tJONES1,1BOY1,3)~1HOtSH1J 

PRJNT,CHILC: 
PRlNT,CHILCS1JONES1~i 
PRlNT,CHILDS1JONESt,1B0Y1,2~; 
PRINT,CHILC(1JONES1,1GIRL1)J 
PRlNT,CHILCS1JONES1,1BOY1~J 
COMPUTEJ FJNISHJ 

Output Program 49 

S<1JnNES1 1GlRLi 1 tMARY1> <1JONES1 ,eov, 2 1PETER1> <1JONES1 ,eov, 
3 it MO I SH1 ;,,~ 

S<1GtRL1 1 1MARV1> <180Y1 2 1PETER1> <1BOY1 3 1HOISH1>~ 
StPEl'ER;;i: 
<1 ill!MARY;a!> 
S<2 ~PETF.R1> <3 1H01SH1>~ 

... . ... <ENO or FlLE ON INPUT) * * • 
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By making the assignment F(A) = OM.;, we remove from the set F 

all ordered pairs whose first element is A. Similarly, by making 

the assignment F(A,B) = OM.; we remove from the set F of triples 

all triples whose first two components are A and B. This important 

special case is shown in the next example. 

Program SO 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Output 

I• REHOVlNG PAIRS •I 
DOI 

rs~l<~A-,1>,<-8t,2>,<~C-,3>~J 
PRINT,FJ 

F'(tAif)=OH,1 
PRlNT,FJ 

F'(tB-)=OH.J 
PRlNT,FJ 

Gs~l<5,50,500>,<5,60,550>,<5,70,575>,<6,60,600>,<7,70,700>~J 
PRINT,GJ 

G(5,70):0M,: 
G(5)sQM 1 J 

PRINT,GJ 
G(6):Q'-1,J 

PRJNT,GI 
G(7,7Q):;OM, J 

PRlNT,GJ 
COMPUTEJ FINISH: 

Program 50 

S<tB~ 2> <t4t 1~ <tCit 3>> 
S<iBi 2> <tO- 3~~ -
S<ic°' 3>~ 
S<5 ,o 500> <5 60 550> <5 70 575> <6 60 600> <7 70 700>~ 
S<6 &O 600> <7 70 700>~ 
S<7 10 700>~ 
NL, 

• * • (ENO QF' F'ILE ON INPUT) • • • 
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5.2 An Observation on the Use of Subexpressions within Set Expressions 

Let us assign X = l; Y = 2; and z = 3. The statement: 

A= ~:X,Y,Z~; 

will form the set {1,2,3}. 

If we now modify X, Y and Z by writing: 

X = 5; y = y + 6; Z = Z - 8; 

and print the set A again we find that the set has not altered at 

all. Cnly a direct reassignment to the variable A will change its 

value. The following program illustrates this.princ;ple. (Warning: 

in other more complex and somewhat different circumstances, 

explained in section 14.5, modification of one set can affect 

another.) 

Program 51 

LINE STATE 

NO NO 

1 
2 
3 
4 
5 

Output Program 51 

/• MJRE UN ASSlGN~tNTS •1 
DOJX:Uy=2;7.:3J 
A=~:X,Y~Z~;PRt~T,AJ 
X=5;Y=Y+6JZ=2-dJPRINT,AJ 
A=~ : X , Y ~ Z ~ ; P Ii I h T , t. ; ,: 0 MP II ff H' I N I SH J 

S1 2 3~ 
~1 2 3~ 
se +r; 5~ 

• • • <END OF FILE ON lNPLT) • * * 
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QUESTIONS 

Chapter 5 

1. Assume the set: 

s = =::<I B.ALL I ' I BLACK I>' < I HAT I ' I WHITE I>' < I TABLE I ' I RED I> ' 

<'BALL', 'GREEN'>~ 

What values result from evaluating the following: 

(a) s ( I TABLE I) 

(b) S('HAT') 

(c) s ( I CHAIR I) 

(d) =:P ( 1) , P -+ S> 

2. Assuming the same sets as in the previous question, how will 

it be affected, if at all, by execution of the following 

statements in succession? 

(a) s ( I BALL I) = 'BLACK I; 

(b) s ( I BAT I) = s ( 'HAT I) ; 

(c) PRINT. s ( I BAT I) ; 

(d) s ( I HAT I) = OM.; 

(e) PRINT. S; 

(f) s = =:<K ( 2) , K(l)>, K -+ S~; 

3. Assume the set: 

SET= ~:<'VW',4>,<'CORTINA' ,5>,<'RR' ,8>, 

< ' W ' , 3 > , < ' CADDY ' , 8 > , < ' VW ' , 2 > ~ ; 

What is the result of executing the following SETLB 

instructions: 

(a) PRINT. SET ::2~; 

(b) PRINT. SET ('VW'); 

(c) PRINT I SET ::'VW'~; 

(d) PRINT. SET ~•vv•~; 

(e) PRINT. SET [~:•vw•~J; 

(f) PRINT. SET [~:'RR', 'W'~]; 

(g) PRINT. SET ( I CADDY I) ; 

(h) PRINT. SET ( I FORD I) ; 
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4. Assume the set 

S = ~:<'SCHWARTZ', 'ALL ABOUT SETL', 5733>, 

<'MULLISH', 'ON FORTRAN', 132>, 

<'LEWIS', ALL ABOUT CAP', 21>, 

<'SCHWARTZ' , MATRIX ALGEBRA', 192>, 

<' MULLISH', ON PL/I', 160>~; 

What is the effect of executing the following SETLB 

instructions: 

( a) PRINT. s ( I s CHWART z I ) ; 

(b) PRINT. s ( I MULLISH I ) ; 

(c) PRINT. s ( I MULLISH' 'ON PL/I'); 

( d) PRINT. s ( I SCHWARTZ I ' 'ALL ABOUT SETL'); 

(e) PRINT. • s~ 'SCHWARTZ'~; 

( f) PRINT. S~'MULLISH'~; 
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6. CONTROL STATEMENTS 

In each of the programs described so far, statements have been 

executed sequentially. That is, after each instruction was executed, 

the following statement was executed, etc. In programming it is 

often essential to remove this restriction, allowing statements to 

be executed in a much more flexible, data dependent, order. State­

ments which accomplish this are called controi statements. SETLB 

provides various control features, which we now wish to outline. 

In describing the effect of the different SETLB control features, 

we will occasionally find it helpful to use flow charts. In our 

flow charts, square boxes will designate blocks of code to be 

executed in an essentially serial way. Diamond shaped boxes 

will be used to denote decision points at which tests having one 

of two possible outcomes will be made. Thus the basic elements 

in our flowchart vocahulary will be as follows: 

(1) □ 
(2) 

block of code 

decision box 

exit path depends on 

answer to question in box 

These simple elements will be seen to suffice for the representation 

of almost all the important control features of SETLB. 

6.1. Iteration over a Numerical Range 

Suppose we set a variable SUM to zero, and then generate the 

integers l to 10 inclusive, adding each integer generated to SUM. 
In SETLB these steps may be written: 

SUM = 0; 

(V l <= N <= 10) SUM= SUM+ N;; 

(The v mark stands for "for all" and is actually the 11-2- 8 punch 

on the 029 keypunch machine.) The result of this operation is the 

sum of the integers l through 10. 

The parenthesized "header" sequence appearing in the second 

line displayed above is an iterator. 
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An iterator serves to repeat the statements (or group of state­

ments) which follow it. The statements which an iterator causes 

to be repeated are called the scope of the iterator. In the example 

given above, the scope of the iterator (v 1 <= N <= 10) is the 

single statement 

SUM = SUM + N; 

The scope of an iterator is ended (or "closed") by a scope terminat­

~ng mark. The simplest form of scope terminating mark is merely 

an extra semicolon. Note that the second of the two semicolons ends 

an iteration scope (while the first punctuates a statement). Other, 

slightly different ways of marking the end of an iterator scope 

will be explained below. Note that each iterator occurring in a 

SETLB program requires its own terminator. 

The following program illustrates the use of iterators of the 

simple form just described. It calculates the sum of the squares 
2 2 

1 through 10 . (Of course, this could be done even more easily 

using a compound operator.) In the seventh line of the following 

program, the iterator; 

(1) 

is used to sum the components of the tuple. The necessary addition 

is performed by the statement: 

SUM= SUM+ TUPLE(N); 

which is the only statement in the scope of the iterator (1). 

Note once again that the iteration scope is terminated with a 

double semicolon. 
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Program 52 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I• SUHMtNG •I 
DOJ SUM:O: 
(w1<:N<=10)SU~=SUH+N•NJJ 
PRlNT,SUM,~tS THE SUH or THE SQUARES 1 TO 10,; 
COMPUTEJ 
OOJ TUPLE=<3,7,8,4>J SUH=OJ 
(Yl<:N<:~TvPLE)SUM:SUM•TUPLE(N)1; 
PRINT,SUM,~IS THE SUH or THE COHPONENTS¢J 
COMPUTEJ F"lNISH: 

Output 52 Program 

385 ~IS THE SUM Of THE SQUARES 1 TO 10~ 

22 ~Is TH6 SUM or THE CCMPONENTS-

••• (END or F"ILE ON I~PUT) ••• 
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The form and meaning of the type of iterator appearing in the 

above program is shown in the following chart. 

(VM <= K <= N)<BLOCK><ENDER> 

K + M 

K ~ K+l NO 

<BLOCK> 

<ENDER> 

NEXT STATEMENT 
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6.2. Compound Operators 

It is sometimes desirable to combine all the members of a set 

using some binary operation. For example, we might want to add 
I 

together the integers 1 through 8, i.e. to fom 1 + 2 + ... + 8; 

or to multiply all these integers together, i.e. to fom 

1 * 2 * 3 * ... * 8. SETLB includes a very convenient diction 

(adapted from that used in the APL programming language) for 

describing the result of such a sequence of similar operations. 

The operation to be used is written to the right of a left square 

bracket, followed by a colon. Next we write what is essentially 

an iterator defining a set of indices from which the elements to 

be combined using this operation can be calculated. This is 

followed by a right square bracket. This, in turn, is followed 

by an expression calculating, from its index, the value of each 

term to be combined. 

To sum the first 10 integers, for example, we can write: 

PRINT.[+: 1 <=I<= 10] I; 

To compute the sum of the squares of the first 10 integers we 

can write: 

PRINT. [+: 1 <= I <= 10] (I*I); 

To compute the product of the first 5 integers: 

PRINT. [*: 1 <=I<= 5] I; 

To compute the product 

( 1+3) * (2+3) (10+3) 

which in standard mathematical notation would be written: 

10 

we can write: 

TT Ci + 3) 
i=l 

PRINT.[*: 1 <= I <= 10] (I+3); 

The next program performs various such compuations. 
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Program 53 

LINE STATE 
NO NO 

1 /• ILLUSTRATICNS or THE COHPOUND OPERATOR •I 
2 oo, 
3 PRlNT,[•11<=1<=8lt: 
4 COMPUTEJ DOJ 
5 PR1NT,[+:1<=1<=8l(l•l>J 
6 COHPUTEJ DOJ 
7 PRJNT.C•:1<i:1<=5JIJ 
8 COMPUTEJ DOJ 
9 PRINT,C•l1<i:1<=5l<I+3)J 

10 COMPUTEJ FINISHJ 

Output Program 53 

36 

204 

120 

6720 

••• (ENO or FlLE ON INPUT) •• * 
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6.2.1. Examples of Set Formers and Compound Operator 

6.2.1.1 A Prime Number Generator and The Sum of Primes 

To generate the set of prime numbers up to 100 we can use 

the set former dictions described previously. The program below 

finds the set of P's between 2 and 100 such that for every N 

greater than or equal to 2 and less than P the remainder of P/N 

is not equal to zero. These are the primes. 

Program 54 

LINE S?ATi 
NO NO 

1 
2 
3 
4 

I• A PRIHE NU~BER GENERATOR •I uo, 
PRINT.~P,2<zP<=100t(v2<~N<Pt(P//N) NE,O)~J 
COMPUTEJ rJNISH; 

Output Program 54 

S97 f7 2 83 67 J 19 5 37 53 71 7 23 89 73 41 11 4~ 59 79 11 47~ ~ 61 13 29 

•• - (END or r&LE ON INPUT) *. * 
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A compound operator may be used to sum up all of the primes 

below 100. The compactness of the program is striking. 

Program 55 

LINE STATE 
NO NO 

1 
2 
J .. 

/• THE sUM Of TME PRIMES BE~cw 100 •I 
OOJ 
PRlNT,C+S2<=P ◄ •100tC~2<•~<Pt(P//N) NE,O>J PJ 
COMPUTE, ,JNJSl'iJ 

Output Program 55 

1060 

• • • <END Or flLE ON JNPVT) • • • 
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"1 

6.2.1.2 Checking a Formula 

It is well known that the sum of the integers 1 ton is given 

by the fonnula: 

Sum = n (n+l) 
2 

This fonnula can be checked by a calculation which uses a compound 

operator. What follows is a program to sum the first 100 integers. 

The sum is computed by writing: 

[ + : 1 <= I <= N] I 

and the result is compared with that arrived at by evaluating the 

formula. The following program shows the results to be identical. 

The sum of the squares of the integers 1 to n is given by the 

formula 

Sum= n(n+l) (2n+l)/6 

This too is evaluated in the next program and is checked against the 

sum computed by writing: 

[ + : 1 <= I <= N] ( I *I) 

Care must be taken to completely parenthesize each of the expressions 

to be compared. 

Program 56 

LINE STATE 
NO NO 

1 /• CHECKING TWO FORMULAS •I 
~ DOJ N•1oJ 
3 PRlNT,(t•ll<!t<•Nll> EQ,r<N•<N•1))/2)1 
4 PRlNT,(r+11<~t<•N1CI•t>>~0,<<N•<N•1>•<<2*N>•1>>16)J 
5 PRlNT,(t•1l<111t.<•N!Cl•l»1 
6 PR1NT,(~N•(N~1)•(<2•N)+1~)/6)1 
1 COMPUTE1 rtNISHI 

uutput Program 56 

TRUe 
TRUE 
38, 
38, 

• • • (END or FILE ON INPUT)* •• 
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6.3. Iteration over the Elements of a Set 

The program which follows uses an iteration to 

sum all the elements of an explicitly given set. 

The necessary iterator has the form (v X + A) , 

and causes a block of code to be repeated for each 

of the elements x of the set A. Note once 

more that the end of the scope of the iterator 

( v X + A) is marked in the simplest way possible, 

by the presence of an additional semicolon. 
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Program 57 

LINE STATEi 

Output 

NO NO 

1 
2 
J 
4 
5 

Program 57 

I• ITERATING AGAIN•/ 
UOJ AsSIJi7,8,15~J PRtNT,AJ 
SUM20:(vX~A>SUH:SUH•XJ; 
PRINT,isuM OF THE ELEMENTS Rt,SUHJ 
COMPUTEJ rlNlSHJ 

$8 J 15 7~ 
~SUM or THE ELEMENTS-~ 33 

*••<ENO OF" FJLE ON INPUT>••• 
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The form and meaning of the set-theoretic iterator illustrated 

by the preceding program is shown in the following chart. 

(V X + S)<BLOCK><ENDER> 

i + s 

NO 

X = arbitrary element of i 

i = i less x; 

<BLOCK> 

<ENDER> 

NEXT STATEMENT 
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In much the same way we may calculate the product of the 

elements of a set. This is done in the next program using a 

compound O·perator as an altern~te to the method just described. 

Should the previous method be preferred, care should be taken to 

initialize PROD to l; if, as in the previous program, a sum 

is to be calculated, we must of course initialize the variable 

SUM to 0. 

Program 58 

LlNE STATE 
NO NO 

1 
2 
3 
4 

I• FINDING THE PRODUCT Of THE ELEMENTS OF A SET 
BY THE COMPOUND OPERATOR METHOD •I 

DOI S=~:1,5,9,16,21,•4~J 
PROD=t•tX~SlXJ PRINT,PRODJ COMPUTEJ FINISH: 

Output Program 58 

••• (ENO or rlLE ON I~PUT) ••• 

Of course, the product just calculated can be calculated both 

ways, as shown in the following program. 
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Program 59. 

Output 

LINE STAT6 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Program 59 

I• THE PROCUCT Of THE ELEMENTS Of A SET •I 
I• •TWO DIFFERENT METHODS• •I uo, 

s~~!1,5,9,16,21,•4~J PR001~1J 
(vX~S) PROD1~PROD1•XIJ 

PRINT.~PRODUCT 1 EQUALS,,PROD1J 
PR002:;C•:X ◄ SJXI 

PRINT.~PROCUCT 2 EQUALS,,PROD21 
CO/!IPUH:r FlNISHJ 

'PRODUCT i cOyA~S- •60480 
~PROOUCT a c0UALS, •60480 

• • t (ENO OF FJLE ON l~PUT) • • • 

6.3. Other Iteration Forms 

The examples given above illustrate the two simplest types 

of SETLB iterators. Each of these iterators can be used to 

repeat all the statements of an entire group or block. 

The following simple program shows how the iterator is used 

in a block of more than one statement. In addition, it illustrates 

four different but equally efficient ways of terminating the 

iterator. 

-99-



Program 60 

LINE STATE 
NO NO 

1 
2 
J 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Output 

/• EXAMPLE OF A MULTISTATEMENT BLOCK*/ 
DOI 

S•Sl5,6,9,•:H:J 
PRINT.SI 

SUM=0 J PROD:1J 
(vX~S) SUM~SUM+XI PROD•PROD•XJJ 

PRlNT,IFIRST CALCULATION OF SUM AND PRODUCTt,SUM,PROOI 
SUf~:01 PROD:1J 
(vX•S) SUM:SUM•XJ PROO=PROD•X;ENDJ 

PRINT,ISECOND CALCULATION or SUH AND PRODUCT~.SUM,PROOJ 
SU"1=0J PROD=1J 
(vX•S) SUM:SUM•XJ PROO•PROD•X;END v; . 

~RlNT,,THJRO CALCULATION OF SU~ AND PRODUCTit,SUM,PRODJ 
SU"l•0J PROC=1J 
(vX•S> SUM:SUM+XJ PROO=PROD•XJEND vXJ 

PRINT,IF'OIJRTH CALCULATION OF' SUM AND PRODUCTit,SUM,PROCJ 
COMPUTEJ F'lNISHJ 

Program 60 

S9 ·l 5 6~ 
irtRST CA~CULATlON OF SUH ANO PRODUCTit 17 •810 
isecnND CALCU~ATlON OF SUM AND PRODUCTit 17 ·-810 
-THiqD CA~CULATION OF SUH AND PRODUCTit 17 -810 
irou1n1,1 CALCUl,.AftO"J OF SUM AND PRODUCTit 17 ·-810 

* • • CEND OF FlLE ON INPUT) • • • 
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The type of SETLB iterator described in the preceding section, 

whose meaning is, "for all X in sets repeat block" is written as: 

(vx-+ S) block; 

SETLB provides other useful iterator forms. In the first 

place, one has iterators of the form: 

(VM < K <= N) block; 

with the meaning "for all K greater than M and not greater than N, 

repeat block." This is the form used in the next program. 

Program 61 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 

/• ITERATOR OF THE FORH (vH<K<:N) •I 
oo, 

M=1i N=5; TUPL•NULT,J 
(vM<K<=~) TUPL•TUPL+<K>;J 

PRJNT,TUPLI 
COMPUTE; FINISHJ 

Output Program 61 

<2 3 ◄ 5> 

••• (END or FJLE ON I~PUT) •• * 
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The form, 

(v M <= K < N) block; 

whose meaning should be obvious to the reader, is also provided. 

This form is used in the following program. 

Program 62 

LINE STATE 

Output 

NO NO 

1 
2 
3 
4 
5 
6 

Program 92 

I• ITERATOR OF' THE FORM (vM<=K<N) •I 
001 

M:t; N=5; TUPL:NULT,J 
(v~<=K<N} TUPL•TUPL+<K>;J 

PR 1 NT, TUPLJ 
COMPUTEJ F'lNISH; 

<1 2 3 4> 

•••<ENO OF FlLE ON t~PUT) • • • 

A fourth variation on the same theme is the iterator 

(v M < K < N) block; 

This iterator is used in the next example. 
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Program 6~ 

LINE STATE· 
NO NO 

1 I• [TF.RATnR OF THE FORM (YM<K<N) •/ 
2 DO I 
3 M:i 1; N=5 J TUPL=NUL T, J 
4 (v~<K<~) TUPL=TUPL•<K>JJ 
5 PRlNT,TUPLJ 
6 COMPUTEJ FINISH; 

Output Program 63 

<2 3 4> 

• • • (ENO OF FILE ON INPUT> • • • 

SETLB provides the additional iterator form, 

(V M >= K >= N) block; 

This causes the repeated execution of block, with K varying 

from M to N, but in decreasing order. This is illustrated in the 

following program. 

Program 64 LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 

Output Program 64 

I• ITERATOR OF THE FORM (vH>•K> ■ N> •/ 
001 

M:5J Ns1J lUPL•NULT,I 
(vH>aK>=N>TUPL•TUPL+<K>JJ 

PR I NT, TUPLI 
COMPUTEJ F"JNISHJ 

◄ 5 4 3 2 1> 

••• (END or FILE ON INPUT)*.* 
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The iterator form 

(V M >= K > N) block; 

also provides for iteration in decreasing order of values of the 

parameter K. This is shown in the next program. 

Program 65 

LlNE STATE 

Output 

NO NO 

1 
2 
J 

• 
' 6 

Program -~s 

The iterator form 

/• ITERATOR or THE rORH (YM>=K>N> •I 
DOJ 
H=5 J N=i J TUPL=t-JUL T, J 

(YM>~K>N) TUPL=TUPL+<K>JJ 
PR l NT, TuPLJ 
COMPUTEJ FINISHJ 

<5 4 3 2> 

•••<ENO OF FlLE ON INPUT) • * * 

(V M > K >= N) block; 

is illustrated in the next program. 
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Program 66 

Output 

LINE Sl'ATE 
NO NO 

1 
2 
3 
4 
'3 
6 

/• IT~RATOR OF THE FORH (vM>K>sN) •I 

OOJ 
M:5; N=lJ T.UPL:NULT,J 
(v~>K>=~> TUPL•TUPL+<K>JJ 

PR 1 NT, TUPLJ 
COMPUTEJ FINISHJ 

Program 66 

<4 3 2 1> 

• • • (ENO OF FfLE ON INPUT) • • • 

An iterator may be combined with a condition to give such 

forms as 

(V M <= K <= N t C(K)) block; 

which means "for all Kin (M,N) such that C(K) is true, repeat 

block." This is illustrated in the next program. 

Program 67 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 

Output Program 67 

/• ITERATOR OF THE rORH (wH<cK<•NtCCK)) •I 
OOJ 

Ms1; N=5J TUPL•NULT,J 
(vM<sK<=NtC(K•K> GT,10)) TUPLcTUPL•<K>J; 

PR l NT, TUPLJ 
COMPUTEJ FINISHJ 

•••(ENO Qr r1LE ON INPUT) • • • 
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Conditions may also be attached to iterators over sets, 

yielding iteration headers like 

(V X +St C(X)) block; 

This header means "for all X in S such that the condition C(X) is 

met, iterate block." This is illustrated in the next example. 

Program .68 

LINE STATE 
NO ~O 

Output Program 6c-

/• tTERATCR CF THE FQRH<~X ➔ StC(X)) •I 
DOJ 

S=~:1,5,-J,2~; SllM=OJ 
c~x ➔ st(X GT,n)) SUH=SuH+X;J 

PRlNT,(sU~ :-,.a,; 
C0:1PJTEJ FINISH! 

TRUE 

• • * (E~D ar FILE 0N tNPLT) • ~ • 
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SETLB allows several iterators to be combined into one compound 

iterator. This is illustrated by the example 

(V X + S, M(X) <= K <= N(X) t C(X,K)) block; 

general form we define a set S. We let M(X) be 

be X + 4 ' and define a condition C(X,K) by 

To illustrate this 

X + 1 and let N(X) 

demanding that the 

iteration is shown 

remainder of.K divided by Xis 1. This compound 

Program 69 

LINE Sl'ATE 
NO NO 

1 
2 
3 
4 
5 
6 

in the next program. 

I• ITERATOR OF THE FORM (vX~S,H<X><=K<:N(X)tC<X,K)) •I 
L) 0 J 

S=~:1,5,3,4~; TUPL=NULT,J 
(Yx~s,CX•1><=K<=(X•◄ )t(K//X)EQ,1) TUPL=TUPL+<X>iJ 

PRlNT,TUPU 
COMPUTEJ rINISH; 

Output Program 69 

<3 3 4 5> 

* * • CENO OF FJLE ON lNPUT) • • • 

Iterators of all the forms described in the last few pages can 

also be used in set-formers, existential and universal quantifiers, 

and compound operators. 

-107-



6.4. IF, THEN, ELSE 

One will often wish to execute portions of a program condi­

tionally, i.e., ~o execute or not execute a block of code, depending 

on whether or not a particular Boolean expression evaluates to 

TRUE. or FALSE. For this purpose, SETLB provides two statment 

forms: the IF-THEN form and the IF-THEN-ELSE form. The former, 

and simpler, of these two statement types has the general appearance 

IF condition THEN block; 

An example would be 

IF A EQ. B THEN C = D;; 

Suppose that this statement is executed. If the value of A is 

equal to B, then C is set equal to D. In the event that A does 

not equal B, C remains unmodified. 

The effect of the general IF-THEN statement is shown by the 

following flow-chart. 

IF <expr> THEN <block>;; 

yes 

<block> 

NEXT 
STATEMENT 

no 

When conditional execution of a block of statements is called 

for, it will often be the case that one wishes to execute one of 

two blocks of code, the first if a certain condition is satisfied, 

the second if the condition fails. For this purpose, SETLB provides 
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the IF-THEN-ELSE statement form. An example of this latter form 

of conditional statement is as follows: 

IF E GT. F THEN G = 10; ELSE G = 15;; 

In the example shown, G will be set to 10 if Eis greater than 

F. In the contrary case, G will be set to 15. Note that if E is 

greater than F the block of code introduced by the word ELSE is 

skipped; i.e. , G = 10; is executed but G=l5; bypassed, with 

control passing to whatever statement follows our sample 

IF-THEN-ELSE statement. 

The general form and significance of an IF-THEN-ELSE statement 

is shown in the following chart. 

IF <expr> THEN <blockl>; ELSE <block2>; <ender> 

no 

<blockl> 

ELSE 

block2 

<ender> 

NEXT STATEMENT 

Note that the <ender> marking the end of the scope of an 

IF-THEN statement, or of an IF-THEN-ELSE statement, can either 

be a semicolon (leading to the apparent "double semicolon" in 

the examples shown above), or can be more explicit, as for example, 

"END IF; II. 
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An "ELSE" can be followed by another "IF," and so on 

repeatedly, leading to an extended IF-THEN-ELSE structure having 

the following form: 

IF condition (1) THEN block(l); ELSE IF condition (2) 

THEN block(2); ... , ELSE block(n); 

In the above statement block(l) is executed if condition(l) 

is true, while if condition(2) is true block(2) is executed, etc. 

For the moment we postpone giving an example of the SETLB 

IF-THEN and IF-THEN-ELSE statements. An example will be given 

in just a few pages, immediately after we have described another 

useful feature of SETLB, the WHILE iterator. 

6.5. The WHILE Iterator 

SETLB provides a convenient way of causing a block of statements 

to be executed repeatedly as long as a specified condition is 

fulfilled. The dictional form provided for this purpose is the 

WHILE statement. 

The form and meaning of the WHILE header is illustrated by 

the following chart. 

(WHILE<EXPR>)<BLOCK><ENDER> 

NO 

YES 

<BLOCK> 

<ENDER> 

NEXT STATEMENT 
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The scope of a WHILE statement may be terminated either by a 

semicolon, or, .as shown in the example below, a more explicit 

terminator, such as END WHILE; . 

The following interesting little program illustrates the use 

of the WHILE iterator. In it, we apply the following procedure 

to each of a succession of integers: 

( a) if the integer is even, keep halving it until 

an odd nwnber is reached; 

(b) if the number is odd, or becomes odd by repetition 

..:::,f the process (a) above, multiply it by 3, add 1, 

and repeat ( a) . 

It has been verified experimentally for very many cases that 

this process, if applied to an integer n, will eventually lead to 

1. On the other hand, this has never been proved! We now give 

a program which verifies this conjecture for all N up to 25, in 

each case displaying the sequence of intermediate steps passed 

through before convergence to 1. The reader will note that the 

expression in line 3 takes advantage of the truncation effect 

of integer division and associativity of arithmetic to the right. 

Program 70 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
a 
9 

10 
11 
12 
13 

/• AN ILLUSTRATION OF THE WHILE ITERATOR •I 
uo, 

(v1<=N<=25> ANS=<N>J 

ENO v1; 

(1-!HILE N NE,1> 
IF<2•Nl2>NE,N THEN 

N=C3•N>•1J 
ELSE N=N/2J 
END IF I 

ANS:sAt\S•<N>J 
END WHILEJ 

PRINT,ANSJ 

COMPUTEI tlNISHJ 
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Output Program 70 

<1> 
<2 1 'll 
<3 11 5 16 8 4 2 1> 
<4 2 1> 
<5 16 8 4 2 1> 
<6 3 10 5 16 8 4 2 1> 
<7 2" 11 J4 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<8 4 2 1> 
<9 2~ 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<10 ~ 16 a 4 2 1> 
<11 J4 17 52 26 13 40 ?O 10 5 16 8 4 2 1> 
<12 ~ J 10 5 16 8 4 2 1> 
<13 40 20 10 5 16 8 4 2 1> 
<14, 22 11 34 11 s2 26 13 40 20 10 5 16 a 4 2 1> 
<15 46 23 70 J5 106 53 160 80 40 20 10 5 16 8 4?. 1> 
<16 ~ 4?. 1> 
<17 ~2 26 13 40 20 10 5 16 8 4 2 1> 
<18 Q ~8 14 7 2~ 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<20 to 5 16 8 4 2 1> 
<21 64 32 16 8 4 2 1> 
<22 l1 34 11,226 13 40 20 10 5 16 8 4 2 1> 
<23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1> 
<24 12 6 J 10 5 16 8 4 2 1> 
<25 ?6 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 R 

4 2 1> 

• • • <END OF FlLE ON lNPUl) • • • 

Indentation was used in the preceding program to make iterator 

and IF-THEN-ELSE scopes stand out; the standard style of iteration 

used in the preceding program is emphasized in the following scheme. 

FOR ALL N 

E 
WHILE N NE. 1 

I 
IF ( ) THEN 

. ELSE END IF 

END WHILE 

PRINT ANS 

---- END FOR ALL 
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In addition to the WHILE iterator discussed above, whose form 

is 

(WHILE G) block; 

and which iterates the execution of a block as long as the condition 

G is fulfilled, SETLB provides a slightly more compound form of the 

WHILE iterator. 

(WHILE G DOING block!) block2; 

The meaning of this second WHILE form is expressed clearly by the 

following flow chart. 

(WHILE <EXPR> DOING <BLOCKA>)<BLOCK><ENDER> 

>---~NO 

YES 

BLOCK 

<ENDER> 

NEXT STATEMENT 

The use of this second form of WHILE will be illustrated in some 

of the longer programs to be given later in the present text. 
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6.6. Labels and GO-TO Statements 

Statements in SETLB programs can be labeled, and control passed 

to a labeled statement by the use of an explicit transfer or GO TO 

statement having the form 

GO TO label; 

'A:ny valid SETL name can be used as a label; labels are designated 

by the fact that they are followed immediately by a colon. An 

example of SETLB code containing both a GO TO and a label might be 

GO TO loop; 

LOOP: etc. 

Various restrictions, inherited from the BALM language which 

underlie SETLB, are imposed on the use of labels in SETLB. One 

may not jump from within an iterator scope to a point outside this 

scope, or vice-versa. Moreover, labels and GOTO's may be used 

only within SETLB subroutine or function blocks of the type 

discussed in detail in section 9. As the reader will see, this 

restriction affects a few technical details of the example follow­

ing below. 

The process described by the code shown below is the same as 

that discussed in the first example of section 6.5. However, we 

now use IF-statements, labels, and GOTO's to replace the WHILE 

iterator used in section 7.5. Aside from this technical change, 

the process carried out remains the same: even numbers are divided 

by 2 until they become odd; odd numbers are multiplied by 3 and 

one is added to the result to get an even number. Since, as has 

just been said, SETLB allows the use of labels only within 

functions and subroutines, we have been led in the example which 

follows to define a function ODDEVEN(N) which applies this process 

to an integer N, building up a tuple which then becomes the 

function value of ODDEVEN(N). In the example which follows the 

function is invoked 25 times from within the scope of the iterator 

(V 1 <=I<= 25). Of the details of the SETLB function definition 

mechanism, precise discussion of which is postponed to section 10, 

one only needs to know that 
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DEFINEF ODDEVEN(N); 

introduces the definition of this function; that 

END ODDEVEN; 

terminates the definition of this function; and that 

RETURN ANS; 

defines the value of the variable ANS to be also the function value 

of ODDEVEN (N) . 

Notice also that the expression N = 3 * N + 1 must be appropri­

ately parenthesized otherwise it will associate to the right i.e. 

be treated as N = 3 * (N+l) rather than the desired N = (3 * N) + 1. 

Program 71 

LINE STATE 
NO NO 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 

onoEVEN 

I• TO SEE IF THE FIRST 25 INTEGERS ALL GO TO 1 •/ 
DOI 
UEfINEF ODDEVENCN); ANS=<N>J 

LOOP, IF(2•CN/2))NE,N THEN GO TO ODOIJ 
N=N/2J ANS=ANS+<N>J GO TO LOOPJ 

0001 IF N ea, 1 THEN RETURN ANSJ 
ELSE N=(3•N)+1JANS•ANS+<N>JGO TO LOOP;J 

END ODDEVE~J 
COMPUTEJ 
uo,CY1<=I<•25) PRINT,ODDEVEN(l)JJ COHPUTEJ rINISHJ 
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Output Program 71 

<1> 
<2 1) 
<3 1~ 5 16 8 4 ~ 1> 
<4 2 1) 
<5 1~ e 4 ·2 1> 
<6 3 10 5 16 ij f 2 1> 
<7 21 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<8 4 2 1> 
<9 28 14, i2 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<10, 16 8 4 2 1> 
<11 14 17 52 26 13 40 ?.0 10 5 16 8 4 2 1> 
<12 6 J 10 5 16 8 4 2 1> 
<13 40 20 10 5 16 R 4 2 1> 
<14 1 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<15 46 23 70 J5 106 53 160 80 40 20 10 5 16 8 4 2 1> 
<16 ~ 4 2 1~ 
<17 ,2 26 13 40 20 10 5 16 8 4 2 1> 
<18 g 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<19 ;e 29 es 44 22 11 34 11 52 26 13 40 20 10 5 16 a 4 2 1> 
<20 Jo s 16 s 4 2 1> 
<21 64 32 16 8 4 2 1> 
<22 {1 34 17 52 26 13 40 20 10 5 16 8 4 2 1> 
<23 ?0 35 106 53 160 80 40 20 10 5 16 8 4 2 1> 
<24 (2 6 3 10 5 16 8 4 2 1> 
<25 ?6 3A 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 

4 2 1> 

• • • CEND Qt tlLE ON iNPUT) • • • 

6.7. A Remark on Programming Style: GO TO -less Programming. 

Long programs become difficult to write, debug, and understand 

if they become highly cobweb-like, i.e., if each of their parts 

is actually (or potentially) related to every other part. It is 

therefore important in approaching a complex programming task 

to structure it carefully into modules which are as nearly 

independent of each other as possible. From this point of view, 

the LABEL-GOTO mechanism is bad, aince a labeled statement is 

potentially related to many other parts of a long program, and 

since GO-TO's jump about a program in a relatively unrestricted way. 

Other iter~tor forms, such as iterators over sets and WHILE iterators, 

as well as other control mechanisms such as IF-THEN-ELSE statements, 
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can be less dangerous. This suggests that GO TO-free coding 

represents a desirable style. Believers in this dictum have 

suggested that the quality of programmers is a decreasing function 

of the density of GO TO statements they produce and even that the 

GO TO statement should be abolished from all "higher level" program­

ming languages, perhaps with very limited or special exceptions. 

SETLB doesn't go to this extreme, but does provide dictions which 
encourage programmers to be stingy in their use of GOTO's. 

6.8. Conditional Expressions. 

In SETLB one can write conditional expressions which take on 

one or another value depending upon whether or not a certain condi­

tion has been fulfilled. For example, we can write an assignment 

involving a conditional expression as follows: 

X = IF A GT. B THEN A+B ELSE A*B 

When this statement is executed, X will assume the value A+B if 

A is greater than Band the value A*B otherwise. This conditional 

expression and others are illustrated by the examples in the next 

program. 

Program 72 

LINE Sl'ATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

/• TO JLLIJSTRATE THE CONDITIONAL EXPRESSION •I 
DOI 

A=U 8=21 
X•IF A GT, 8 THEN A•B ELSE A•BJ 

PRlNT,XJ 
A:s2 i 8=1 J 

PRINT.IF A GT, B THEN A+B ELSE A•BJ 
Y•IF A LT, 8 THEN A•A•A ELSE B•B•BJ 

PRlNT,YJ 
AiiU 8=2J 

PRINT,lr A LT, 8 THEN A•A•A ELSE B•R•B; 
COMPUTEJ FINlSHi 
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Output Program 72 

2 
3 
1 
1 

* • i <END OF FILE ON L~PUT> • • • 

Actually, this conditional SETL expression is a more sophisti­

cated facility than the preceding program might suggest. Indeed, 

continued ELSE IF clauses are allowed within a conditional 

expression. This is illustrated in the next program. In this 

program the result of a first IF test is false, so the following 

ELSE is examined. But as this ELSE is trailed by another IF, 

also with a false condition, a third ELSE is examined. This also 

is followed by an IF, this time with a TRUE condition. Conse­

quently, A-Bis assigned to x, an outcome which is confirmed 

in the printed output. 

Program 73 

LINE STATE 
NO NO 

1 
2 
J 
~ 

' 6 
7 

output 

/• FUPTHER ILLUSTRATION nt T~E CONOITIONlL F.XPRF.SSl~N •I 
DOJ 

A=1J 8•21 CC3J 
X•lf A NE,1 THEN BIA ~LSE If C E0,4 T~EN 
A/8 ELSE Jr C EQ,(A•B~ THEN A•B ELSE leBJ 

PRlNT,Xa 
COHPUTE1 FlNISHJ 

Program 73 

3 

•••{END OF FlLE ON JNP~T) • * • 
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The reader will no doubt recall that in section 6.4 we 
illustrated the use of the IF-THEN-EI.SE statement, and of the 

simpler IF-THEN statement, both of which are available in SETLB. 

In the conditional expression case however, an expression of 

the form IF-THEN without an ELSE is logically meaningless and 

will be flagged as an error if used. 

Note also that a statement containing a conditional expression 

is terminated by a simple semicolon rather than by a pair of 

semicolons. 
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QUESTIONS 

Chapter 6 

1. Using a compound operator, write a SETLB instruction to compute 

the sum of the first 100 integers. 

2. Using two compound operators, write a single instruction to 

compute the difference between the sum of the first 50 integers 

and the product of the first 10 integers. 

3. Write a single instruction to compute the sum of the integers 

between 1 and 100 which are exactly divisible by 3. 

4. Write a single instruction to compute the sum of all the odd 

nwnbers from 1 to 101. 

5. Write a single instruction to compute the product of the prime 

nwnbers from 1 to 20. 

6. The square of a number N is equal to the sum of the first Nodd 

integers. Write a program to prove this for N = 20. 

7. The factorial of a positive number n is defined as 

n * (n-1) * (n-2) * * 1 

Write a single SETLB instruction to compute the factorial of 8. 

8. The number of ways that n objects may be taken mat a time is 

given by the formula: 

9. 

n! 
m! (n-m) ! 

W~ite a SETLB instructior. to compute the number of ways 6 objects 

may be taken 2 at a time. 

Use a SETLB iterator to compute the following values: 

(a) the sum of the first 50 integers 

(b) the product of the first 5 integers 

( c) the sum of the squares of the first 10 integers 

(d) the sum of the factorials 1 through 5 

(e) the sum of the first 10 odd numbers 
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10. (a) Assume the set S: 

S = ~:5,9,-2,4,6~; 

Compute the sum of the elements of S by using (a) a single 

iterator, and (b) a compound operator. 

(b) Assuming the same set Sas above, compute the product of 

its elements, again using both an iterator and a compound 

operator. 

11. Using a single iterator compute the tuple whose components 

consist of 

(a) the first 10 integers 

(b) the first 10 odd integers 

Do this also using a compound operator. 

12. What output is generated by the following program (assume 

that the set Sis stored as defined). 

DO; 

S = ~ : 3 , 9 , - 2 , -1 , 4 ~; TUP = NULT. ; SUM = 0; 

(V X +St X GT. 0) TUP = TUP + <X>;; 

PRINT. TUP; 

(V X +St X LT. 0) SUM= SUM+ X;; 

PRINT. SUM; 

COMPUTE; FINISH; 

13. What will be the result printed by the following program. 

DO; 

A=l; B = 2; C = 3; 

IF (A+B) GT. C THEN D = A*B-C; 

ELSE D = C*B-A; END IF; 

PRINT. D; 

COMPUTE; FINISH; 
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7. CHARACTER STRINGS 

SETLB allows one to deal with data items which are character 

strings, as distinct from tuples, or sets, or numerical values. 

A character string is an ordered sequence of characters. In its 

external representation, it begins with a quote and ends with 

a quote, Between the quotes one may place any keypunch character 

whatever, including, of course, the blank space, but excluding the 

quote sign itself. 

Suppose we define a character string, say "HENRY" and call it 

WORD. To determine how many characters are present in the string 

we merely use the "enumeration" operator, represented, as before, 

by the downward arrow. 

WORD = "HENRY"; 

NWRD = +WORD; 

These operations occur at the start of the following simple 

program, which shows how an iterator can be used to reverse the 

order of the characters in a simple string. In the program, 

character string concatenation, representation by the sign '+', 

is used; this operation is explained in more detail in comments 

which follow the program. The "null character string," which 

consists of zero characters, is denoted in SETLB as NULC. 
LINE ::;TATE 

Program 74 Nn 1\,n 

'.l 
2 
J 
4 
c; 

6 
7 
A 
Q 

10 

Out12ut Program 74 

/* c;-c:VER~ING A rHt,u-CTt:R STPlMG •/ 
DD; 

\.I JP jJ :: ,! l<f: 11 f< V ;I! I 

~.-,! r K p = ~ ~11 f, I" I 
',Jf ~·=r•,Ul C,; 

c .., 1 < = , , <-= 1, 1 , u r"' .i > ~11 • 1..i = 1-1 E 1-1 + w o ri n c 1; 1~ on IJ • 1. - : J , ; 

C'•1U VJ 
Pfii'T,;lrJff; 
pk l :-· T I j F ►J : 
CC',tPdTt:; r {IJ!Srll 

-,HF.NPYt 
JIYR"1£:11t 
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In the preceding program, the variable NEW is set equal to the 

null character string. On the first iteration of the statement 

NEW= NEW+ WORD(NWORD+l-N), N is equal to 1 and NEW becomes NULC., 

the null character string, concatenated with WORD(NWORD+l-N), 

where NWORD = 5. Therefore, NEW is set equal to WORD(5+1-l)=WORD(5), 

which is the letter Y. 

Next, with N = 2, NEW is set equal to the concatenation of NEW, 

which is "Y", plus WORD ( 5+ 1-2) , which is WORD ( 4) . This is, of 

course, "R", and it is concatenated to "Y" to give "YR". This 

process continues, ultimately building up the desired result: 

a string within which the characters of the original character 

string occur in reverse order. 

The program found below gives another simple example of 

character string processing. An English phrase, enclosed within 

quote signs is assigned as the value of the variable A. The program 

then removes all the blanks from the phrase. 

We let N be the total number of characters in the phrase and 

initialize C to be the null character string. 

Using an iterator which bypasses all blank characters in the 

string we concatenate each nonblank character to c. This builds 

up the desired output. 

Program 75 

LINE STAT!; 
NO NO 

1 
2 
3 
4 
5 
6 

I• SQU~EZl~G OUT BLANKS FROM A CHARACTER STRING •I 
00 I -
~=•A DOG HAS FOUR LEGS-J 
N= ♦ AJ C•NULC,J 
(v~<•I<•N t A<l> NE,--) C=C•A(l)JJ 
PRINT,CJ COMP~TEJ FINISHJ 

Output Program 7.5 

* •• CENU or FJLE ON I~PUT) ••• 
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In much the same way we can eliminate any character or set of 

characters from a character string. In the following program we 

eliminate all the vowels from a string, using a compound operator 

rather than an iterator. 

Program 76· 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 

I• TO DEVOWELIZE A STRING •I 
oo, 
A=~THE CAT JU~PED OVER THE BRIGHT MOONtJ 
N=•AJ C=NULC, I 
vow=~=tAt,tEt,tr,,,o,,~ut~; 
PR1NT,(+11<=I<=NtNOT,A(I)~vow] A(l)J 
COMPUTEJ FINISH; 

Output Program 76 

~TH CT JHPC VH lH 9RGHT MN~ 

• • • <END QF FlLE ON TNPUl) • • * 



7 .1. Substrings 

SETLB allows one to extract any part of a character string 

the extracted part is, of course, a string. For example, if: 

A = 'HOTDOG'; 

then by writing B = A(l:3) we extract the substring B which begins 

with the first character of string A and which is three characters 

long. Observe that the numbers 1 and 3 are separated by a colon 

and placed within parentheses. The value of B would therefore be 

'HOT'. In the same way C = A(4:3); would assign the value 'DOG' 

to c. 
When extracting substrings, one cannot use a negative number on 

either side of the colon. 

The next program illustrates the extraction of substrings. 

Program 77 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 

/• SOME SUBST~INGS •I 
OOJ Ac,APOLLO 17 IS THE BEGINNING RATHER THAN THE ENo,; 
PRlNT,A;PRINT,A(8:2);PRINT,A(1813)J 
f'RJNT.A(l:U); 
COMPUTEJ FINISH; 

Output Program 77 

~APOLLO 17 JS TME REGIN~ING RATHER THAN THE END, 
i'17~ 
~BEG~ 
~APOLLO 17 IS TME REGIN~ING RATHER THAN THE END, 

• • • <ENO OF FJLE ON I~PUT) • • • 
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QUESTIONS 

Chapter 7 

1. Assume the character string: 

2. 

S = 'LOVE BLOOMS AT NIGHT'; 

What will be printed by the following instruction? 

(a) PRINT. iS; 

(b) PRINT. 'I I + S(l:5) + 'DW' + S(17:4); 

What is printed by the following instructions: 

A= 'T'; B= 'B'; C= 'S'; D= 'L'; E = 'E'; 

LANGUAGE= C + E +A+ D + B; 

PRINT. LANGUAGE; 

3. Assume the character string: 

STR = 'THE CHLRPING BIRDS WORK AND FLIRT'; 

Write a program to replace every occurrence of 'IR' or 'OR' 

with 'OI' and print out the amended string. 

4. Assume a character string and compute the total number of 

vowels therein. 

5. Assume a character string and compute the number of letters 

in it which are vowels and the number which are consonants, 

ignoring blanks. 

6. Assume the character string 

S = 'MOONLIGHT BECOMES YOU'; 

Write a program to alphabetize the string, squeezing out 

the intervening blanks. 

7. Write a program to reverse the order of the characters in a 

character string. 

8. Set up a mapping M which sends each letter of the alphabet into 

its Morse code representation (for example, M('S') = ' '; 
M('O') = '---'). Using this mapping write a program to convert 

arbitrary sentences into Morse code, and another program to 

perfonn the reverse conversion. 

-126-



8 • MORE EXAMPLES OF THE USE OF SETLB 

8.1 A Sorting Algorithm 

Let a tuple of numbers, as for example 

TUPL = <2,3,9,8,-6,4,5> 

be given. 

It is often desirable to sort such a sequence of numbers, plac­

ing them, let us say, into descending order. We shall now give a 

SETLB program which does just this. The sort program to be given 

will illustrate the use of the SETLB iterator and the existential 
form. 

The following remarks will help the reader to understand the 

program. It sorts by the so-called "exchange" method. Specifi­

cally, it searches from left to right through the components of a 

tuple, looking for components out of order. If an out-of-order 

pair is found, an interchange is performed. Here is the code. 

Program 78 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

/• AN EXCHANGE SORT •I 
uo; 
TUPL=<2,3,9,8,46,4,5>J 
PR 1 NT, TUPLi 
(WHILE :1<=N<4TUPL,TUPLCN)LT,TUPL<N•1)) 

KEEP=TUPLCN)i TUPLCN)=TUPLCN•1)JTUPL(N•1>=KEEP; 
ENO WHILEl 
PR 1 NT. TUPLJ 
COHPUTEJ F"JNISH; 

Output Program 78 

<2 3 9 8 •6 4 5• 
<9 8 5 4 J 2 •6~ 

••• (ENO or F"JLE ON I~PUT) * •• 

EXECi'JT I ON T J ME 2,570 SECONDS 
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8.2. Counting Character Frequencies 

In the following example we use an iterator to count the number 

of times each character appears in a character string. The resulting 

frequencies are then printed out in a sorted tabular format. Sorting 

is accomplished by a method resembling that used in the preceding 

example. 

Program 79 

LlNE STATE 
NO NO 

1 ,. 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

I• FR~QUENCY COUNTER FOR APPEARANCE 0~ CHARACTERS •I 
oo, 
STRING•;tIN THE rOLLOWING EXAHPLE WE USE AN ITERATORtJ 
PRINT,STRI~G; 

FREQ•~L,J I• FREQUENCY FUNCTION INITIALLY NOWHERE DEFINED •I 
C "1<='~<=•STR 11\G) 

ENO VI 

C=STRING(N)J 
IF FREQ(C) EQ,OM,THEN /•ANEW CHARACTER IS SEEN•/ 

FREQCC>=1J I• SINCE FIRST OCCURRENCE •I 
ELSE 

FREQ(C):i::FREQ(C)+1J I• INCREMENT OCCURRENCE NUMBER •I 
E i~ C IF J 

/•NOW MAKE UP A SEQUENCE CONTAINING ALL CHARACTF.RS •/ 
SEQ:i::[+:x~FREQ1<X(1)>; 
I• PEqFORM INTERCHANGE WHENEVER A LOWER FREQUENCY CHARACTER PRECED~S •/ 

/* A HIGHER FREQUENCY CHARACTER •I 
(WMILE :1<=N<•SEQtFRE~(SEQ(N))LT,FREC(SEQ<N+1))) 

X=SEQ(N); SEC<N>=SEQ(N+1)JSF.Q(N+1>=XJ 
ENO WHILE: 

PRINT,;tTHF: CHARACTERS OCCURRING AREl;il!,SEQ,;t, THEIR F"REOIJENCIES AREHJ 
I• N~W PRINT OUT SUCCESSIVE LINES OF TABLE •I 
(v1<=I<=•SEO) PRINT,SEQCI>,rREQCSEQ<I>)JJ 

COMPUTE; FINISHJ 
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Output Program 79 

itlN 1HE f0LL0wtNG F.XAMPLE WE USE AN ITERATOR, 
itTHE CHARACrERS OCCURRI~G ARE:it <,, ,E, ,T, ,A, ,N, ,o, -L- _1, ,w, tR 

t t~t tHi ,xit ~u, tF, tSt tPt tHt> t, THEIR FREQUENCIES AR~:i 
t t J 
itEt 6 
itlt l 
itAit l 
JtN;it ] 
lfO.it l 
itL it l 
itJit J 
;I w ;it ~ 

:ifR.it ~ 
itGt t 
itHt t 
itX-!. t 
ifU.it 1 
ifFit i 
ii!S-!. t 
it Pit 1 
itMt 1 

.... (END or FILE ON !~PUT) ••• 
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9 . S UBP RO GRAMS 

It is very often desirable to apply some one particular process 

P to several different data items or data structures occurring at 

several points within some long program. For this to be done with­

out it becoming necessary to repeat the code defining the process 

P, some mechanism of "detour and return" with transmission of argu­

ments and return of calculated values is required. For this reason, 

all seriously intended programming languages contain procedure defi­

nition mechanisms. SETLB is no exception. It provides facilities 

for defining procedures of two types: subroutines and functions. 

In the present section we will explain the conventions which 

allow subprograms of these two kinds to be defined and used. 

9.1. User-Defined Functions 

A SETLB function is a subprogram and is introduced by the word 

DEFINEF. This keyword is followed by the function name, which it 

is up to the programmer to specify. Names of parameters which are 

to be transmitted between the main program and the function sub­

process are enclosed within parenthese·s. A function subprogram 

always computes and returns a value, its so-called function value. 

This value is returned by executing a RETURN statement. Such a 

statement consists of the word RETURN followed by an expression. 

The value of this expression is the value returned by the function 

subprogram. The whole body of a function subprogram is terminated 

by an END statement, consisting of the keyword END followed by the 

name of the function being ended. A SETLB subprogram should 

generally be defined before it is invoked. 

An example will make the meaning of these generalizations plain. 

Suppose that as part of some larger process we will ofte"n have 

occasion to calculate the sum of the squares of two variables. For 

this purpose, we may well wish to define a function SUMOFSQ, with 

two parameters, which calculates and returns a value equal to the 

sum of the squareaof these two parameters. Once this is done, we 

may, for example, write 

C = SUMOFSQ(A,B); 
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This will have the same force as the explicit C = (A*A)+ (B*B). 

The overall features of the SETLB function-definition mechanism 

are illustrated in the following example, which is presented to 

exemplify principles rather than for its practical significance. 

Notice that the name of a defined function is automatically 

printed out by the compiler on the left-hand side of the line 

following the word 'DEFINEF'; this line is not part of the original 

program. 

Program 80 

LINE STATE 
NO NO 

1 
2 
3 

4 
5 
6 
7 
8 
9 

SUMOF'SQ 

Output Program 80 

I• AN EXAMPLE OF A F'UNCTION •I 
DOI 
UEfINEF SU~OFSQCA,B>; 

RfTUR~ (A•A)+(B•B)J 
ENC S\JMOFSQJ 

COMPUTEJ 
DOI 

A:3; 8=5J C=SUMOF'SQ(A,B)J 
PRlNT,CI CCMPUTEJ F'INISHJ 

34 

• *. (ENO or F'JLE ON INPUT) ••• 
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9.2. Subroutines 

Another important type of subprocess is the subroutine. Sub­

routines behave much like function subprograms; however, they do 

not return a value, but instead are executed for their effect on 

the values of existing program variables. Subroutines are intro­

duced by the word DEFINE, which is followed by the name of the 

subroutine, and then by a parenthesized list of names designating 

the arguments to be transmitted to the subroutine. When a sub­

routine has finished its work, control is returned to the program 

that called the subroutine by executing a RETURN statement. As 

distinct from a RETURN statement in a function-type subprocedure, 

a RETURN statement in a subroutine has simply the form 

RETURN; 

with no expression following it. 

In our next example parameter values X and Y are simply printed 

out by subroutine RETORT; this again is merely illustrative. 

Notice that the name of the subroutine is automatically printed 

out on the line following the keyword 'DEFINE'; this work is not 

part of the original program. 

Program 81 

Output 

LINE STATE 
NO NO 

1 
2 
3 

4 
5 
6 
? 
A 
q 

10 
Program 81 

RETORT 

/• Ai~ ExAMPU: QF' A SURRfJ11TlNE *I 
DOJ 

DEF'INc RETOHT(Y.,Y)J 

PRINT,~x=t,X,tAND Y=t,YJ 
RETUR~J 
END Rt:TORT J COMPUTE; 

DO; 
x=u Y=2, 
RETORT ( X, '1) J 

COMPUTEJ FINIShJ 

•••<ENO OF FlLE ON lNPWT) • * • 
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What follows is another simple example of a main routine which 
uses a single function-type subroutine. The function merely 

calculates the maximum of its two parameter values. 

Program 82 

4 
5 
6 
7 
A 
9 

10 

MYMAX 

/• A USEH DEfJ~FD •MAXIMUM~ fU~CTICN •I 
DOI 

DEFINcF HYMAX(A,~)J 

IF A GT, R THEN RFTUFN AJ 
FLSE RFTUF<N AJI 

ENO HYMAXJ 
COMPUTE: DO J 
As1J A:::,; 
PR I NT , ; THE HA X P' UH Of I, A , ii! AND~ , (l , '# I Sit , MY MAX ( A , 8 ) : 
COMPUTE; F"INISfil 

Output Program 82 

• • • <END OF FILE ON INP~T) • * • 

There is no limit to how many subprograms a program may have. 

Furthermore, a program can use both function and subroutine sub­

programs. This is illustrated in the next program. In the main 

section of this program Xis set to 7 and Y to 2. The function 

CALC is invoked and it computes the sum of the remainder of 

A/Band B/A. The result is printed by the subroutine STATE. 
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Program 83 

LINE STATE 
NO NO 

1 /• AN EXAMPLE or A PROGRAM INVOLVING 
2 ~OTHA SUBFUNCTION AND A SUBROUTINE •I 
3 OOJ OEFINEF CALC(A,B)JRETURN(A//B + B/A)J ENO CALCJ CO~PUTEJ 

CALC 
4 OOJ DEFINE STATE<C>J PRINT,~THE RESU~T JSi,CJRETURNJ END STATEJCOMIUTEJ 

5 
6 
7 

STATE 
UOJ X=7J Y:2; 
STlTE<CA~C(X,Y))J 
CO~PUTEJ FINISH; 

Output Program 83 

• • • <END OF FILE ON l~PUl) • • • 

We shall now give an example showing how the exchange sorting 

procedure described in section 8.1 can be incorporated into a 

subroutine and thereby made useable at many points in a main 

program. In what follows, SORT is the subroutine, which is 

called twice in the main program which follows it. 
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Program 84 

LINE STATE 
NO NO 

1 
2 
3 

4 
5 
6 
7 
8 
Q 

10 
11 
12 
13 
14 
15 

SORT 

/• A SORTJ~G ROUTINE•/ 
DOI 
UErtNE SORT(TuPL)J 

(WHILE ~1<=N<4TUPLtTUPL<N> GT,TUPL(N+1)) 
KEEP=TlJFL(~); TUPL<M>=TUPL(N+l)J TUPL(N+1)=KEEPJ 

END WHILE; 
RETURN; 
END SORTJ 

COMPUTE; nc; 
TUPL~<2,3,9,8,•6,4,5>J 
PRlNT.TUPLJ SORT(TUPL>;PRINT,TUPLJ 
TUPL=<-1,-2,-~,1,2,3>; 
PRJNT,TUPL; SCRT(TUPL)J PRINT,TUPLJ 
COMPUTEJ FINISH; 

Output Program 84 

<2 3 9 8 •6 4 5• 
<•/) :? 3 4 5 8 9• 
<-1 •2 -3 1 2 3) 

<-3 .2 -1 1 2 3> 

• • • (ENO OF FJLE ON J~PUT) • • • 

Next we give a lexicographic comparison function, i.e., a 

function which compares character string lexicographically, 

deciding which of the two strings would appear first in standard 

11 dictionary order. 11 
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Program 85 

LINE STATE 
NO NO 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
JJ 

lLPHBlGR 

/• A LEXICOGRAPHIC COMPARISON ROUTINE•/ 
DOJ 

UE,INEF ALPHBIGR(A,B)J I• DECIDES WHETHER B SHOULD FOLLOW A•/ 

/* DEFINE ALPHABETIC ORDER OF Cf-lARACTERS BY i\ */ 
I• STRING AND BY A MAP •/ 

CHARSTR:,ABCOEFGHIJKLHNOPQRSTUVWXYZtJ 
CHARPOS:S<CHARSTR(N),N>,1<:N<=•CHARSTR~J 

I• FIND MINIMUM OF ARGUMENT LENGTHS •/ 
lF(•A> GT,,B THEN LMINs,BJ 

ELSE LMINuAJJ 
/• SEEK FIRST CHARACTER IN WHICH A AND B DI FFI R •/ 

lF :1<=N<=LHI~t B<N> NE,A<N) THEN 
I• FIND WHICH COMES FIRST IN CHARSTR •/ 

IF CHARPOSCB(N)) GT, CHARPOS(A(N)) THEN 
RETURN T .J 

ELSE 
RETURN F,J 

END IF CHARPOSJ 
~LSE I• IF THE SHORTER OF A AND B IS IDENTICAL WITH T~E FIRST PART */ 

I• OF THE OTHER •I 
lF(•A>LE, •B THEN RETURN T,J 
ELSE RETUR~ F,; 
cNO IF :J 
ENI) ALPHBIGRJ 

COMPUTE J DO J 

PRINT,iCAl COMES AFTER COT IS~,ALPHBIGR(tCOTt,tCAT,>J 
PRlNT,iCARBAGE COMES ArTER CAB rsi,ALPHBIGR(-CABt,tCABBAGEt)J 
PRINT,iDOG CO~ES AFTER DOGWOOD ISt,ALPHBIGR(tDOGWOOn,,tnoG,)J 

~OHPUTEJ FINISHI 

output Program 85 

• • • (END or rtLE ON INPUT) 
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QUESTIONS 

Chapter 9 

1. Write a function subprogram which converts a tuple of integers 

into another tuple in which each component is squared. 

2. Write a function subprogram which returns the arithmetic mean 

of two variables. 

3. Write a function subprogram which returns one-third of the 

cube of a number. 

4. Write a subroutine which prints out the components of a 

tuple in reverse order. 

5. Write a subroutine which prints out the number of components 

of a given tuple and the value of the minimum component of 

the tuple. 

6. Write a function subprogram which, given a character string S 

made up of words separated by blanks, will return a tuple 

consisting of the words of S arranged in alphabetical order. 

7. Write a function subprogram which, .given an integer N, 

will return the set of all primes whose squares divide N. 

8. Write a function subroutine which is able to classify twenty 

names as being either 'girls' names' or 'boys' names'. 

Can you make the program handle such names as 'MARYANN', 

'JOANNA', 'PAULA', 'LINDA', etc. without adding substantially 

to the size of the program required, 

-137-



10. 

10.l 

BUILT-IN FUNCTIONS AND OPERATORS PROVIDED BY SETLB 

Absolute Value Operator 

The absolute value of a number can be found by using the 

absolute value operator ABS. , followed by its argument, as in the 

the next program. 

Program 86 

LINE STATE 

Output 

NO NO 

1 
2 
3 
4 

Program 86 

/* THE A~SOLUiE VALUE FUNCTION •I 
UOJ A=lJ H:i•lJ 
~RINT,A EO,ABS,BJ 
~OMPUT~J FINISHJ 

TRUE 

*••(ENC QF FiLE ON lNPUl) * * * 
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10.2. The Maximwn and the Minimwn Operators 

The maximwn or minimwn of two numbers is found by the two 

dyadic operators MAX. and MIN. , both of which are part of the 

SETLB library. The next program is self-explanatory. 

Program 87 

LINE STAT6 
NO NO 

1 
2 
3 
4 
5 

I• rt~DING THE MAXIMUM ANO MINIMUM•/ 
001 A=lOJ 8::20; 
PRINT, A MAX, 8, ,:: MAXJMUH~J 
PRINT, A ~IN, 8, t• MINIMUM,; 
C011PUTEJ FINISH; 

Output Program 87 

20 ,ii MAXll"UHll 
10 ,. MINIP'U~hl 

• • • (ENO Qt tlLE ON I~PUT> • • • 
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The next program shows that the MIN. operator may also be 

used in a compound operator. First a tuple Tis defined. The 

smallest component is then found by determining the minimum of 

the first and second components, and then the minimum of this 

result with the third component, etc. This process continues 

until every component has been examined. 

Any binary operator, including user defined binary operators 

which are explained in section 9.1, may be used in the SETLB 

compound operators construction. 

Program 88 

LINE STATE 
NO NO 

1 
2 
3 
◄ 
!5 

Output Program 88 

•7001 

••• (ENO or rILE ON INPUT) ••• 
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10.3. The Random Function 

Random numbers are available in SETLB via the built-in RANDOM 

function. The argument of RANDOM is an integer N; the value 

returned will be an integer selected at random from 1 to N. This 

is illustrated in the next program where the roll of two dice 

is simulated for 10 rolls. 

Program 89 

LINE SfATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 

Output Program 89 

I• THE RANDOM FUNCTION•/ 
IJOI 
(vl,<af<=10) 

A=RANDOM(6)J 8=RANDOH(6)J 
Y:A.+AJ 
PRINT,A,B,Y; 

END vU 
COMPUTE: FINISH; 

1 ◄ ' 
1 2 .] 
2 4 6 
1 2 J 
1 5 6 
1 3 ◄ 
5 1 6 
5 ◄ g 
1 ◄ c; 
1 2 ., 

• • • (END or r1LE ON INPUl) • • • 
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10.4. IN. and OUT. 

Elements may be added to or deleted from a set by use of 

the IN. and OUT. operators. The statement A IN. B; has the 

meaning B = B WITH. A; the statement A OUT. B; has the 

meaning B = B LESS. A; 

following program. 

Program 90 

Output 

LINE ~TATE 
NO r,..n 

1 
?. 
3 
◄ 
5 
6 
7 
A 
9 

Program 90 

This is illustrated in the 

I• I ,J Af\Jd 1Jl!T ,, / 
D () I 

.A.=~:1,?,3~I l:l:4J (;::S; 
PPl~'T,A: 

R l!I, Aj 

PR H'T I A; 
C OUT,Ai 

PPl"!T,A; 
C O tl P .J T l:: ; f" I N ! 5 H I 

~1 2 3~ 
S1 2 .S '4~ 
S1 2 4~ 
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The IN. operator is used again in the following program, 

which converts a character string to a set. The program also 

illustrates the use of the "DEC." operator, which converts a 

number to its decimal string representation, and vice-versa. 

Specifically, the literal quantity "25" is defined. When printed 

out, it appears not as an integer, but as a character string. 

However, when this string is acted on by DEC. and printed, the 

integer equivalent, i.e. 25, appears. Next, the character string 

"0123456789" is assigned as a value to the variable DIGITUP 

while DIGITS is initialized to the null set. An iteration then 

generates the set of all the individual "characters" of DIGITUP. 

Program 91 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
Q 

/• CONVERTING A CHARACTER STRING TO A SET •I 
DOJ 
QNUM:t25,; PRINT,,QNUH: ,.,QNUHJ 
NUM~DEC,QNUHi PRlNT,,NUH= ,,NUHJ 
Ul~TUP=,0123456789,J 
DIGITS=NL,i 
(v1<cN<=,OIGTUP) <DJGTUP(N))IN, DIGJTSJJ 
PRINT,,DIGITS: ,, DIGITSJ 
COMPUTE; f"INISHi 

Output Program 91 

1'QNU"4• '/. 1'25, 
1'NUH• 1' 2!:i 
IIIOIGfTS= 1' ~,.7,. t. ◄ ,. 1'9t ,1111 '/.6'/. t.3t. t.8t. iot. -5'/. i2~~ 

••• (END Or flLE ON r~PUT) * *. 
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10.5. The FROM. Operator 

The FROM. operator is used in the fonn: 

A FROM. B; 

where Bis a set. When this statement is executed an arbitrary 

element of the set Bis selected, removed from B and assigned 

as value to A. A FROM. '.B is therefore equivalent to 

A= ARB. B; A OUT. B; 

Program 92 

Output 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 

Program 92 

I• TO ILLUSTRATE A rROH, B •/ 
oo, 

8:~12,5,8,12~J PRINT.BJ 
A. FR0:-1, Bi 
PRINT.BJ PRINl,AJ 
A. FROM, Bi 
PRINT.Bi PRINl,AJ 
COMPUTEJ FINISH; 

:se 2 12 5~ 
S2 12 5> a -
:512 ,~ 
2 

• • • <END or rlLE ON INPUT) • * • 
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10.6. The NOOP Instruction 

A "no operation" statement is occasionally useful. For example, 

one may wish to use such a statement simply to have something to 

which a label may be attached. For this reason, SETLB provides 

a NOOP instruction which does nothing, as illustrated by the 
next program. 

Program 93 

LINE STATE 
NC NO 

1 
2 
J 
4 
5 
6 

I• TO l[LUS?RATE THE NOOj •1 oo, 
T=<2~5,8,12>1 PRlNT,T1 
If Tc3)EQ,8 THEN NOOP1 
ELSE PRINT,~THlS WILL NOT APPEARi11 

C0MPUTE1 F'INJSHJ 

Output Program 93 

<2 5 8 12> 

••• (END or fILE ON JNPuT) ••• 
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10.7. The IS., or General Assignment to the Right, Operator 

In programming one often wishes to assign a name to a 

particular subexpression of a larger expression. SETLB allows 

this to be done by use of the IS. operator. A IS. B is a valid 

expression, having A as value, but also assigning the value of 

A to B. If A is not a variable but a total expression which 

we desire to assign as value to B, then the SETLB evaluation­

order rules require that all of A be included in parentheses. 

If "A IS. B" is part of some larger expression, then "A IS. B" 

should itself be included in paren.theses. All this is illustrated 

in the next program. 

Program 94 

LINE STATE 
NO NO 

1 
?. 
J 
4 
5 
6 

/• AN ILLUSTRATION OF THE 1S, OPERATOR •I 
oo, 

A=2J i:h3J Cs4J D=5J 
PRlNT,(c(((A•B) IS, X1)• C IS, X2)•D> JS, XJ)J 
PR1NT,Xi,X2,X3J 
COMPUTE J rI NI SH J 

Output Program 94 

50 
I.I 4 50 

••• <ENO or rILE ON INPWT) *. * 
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10.8. NEWAT. 

On occasion, one requires a value which is simply different 

from every other value previously referenced from within a program. 

For this purpose SETLB provides the NEWAT. operator. It is 

guaranteed to give a value distinct from any other object or 

value that has been referenced in the entire program. 

In the illustrative program below the value of NEWAT. is 

printed out five times in succession. Each time, a different 

value is returned. 

Program 95 

LINE STATe 
NO NO 

1 
2 
3 
4 

/• ILLUSTRATICN or THE NEWAT, FUNCTION •I 
OOJ 

(v1<=K<=5) PRINT, NEWAT,J; 
COMPUTEJ F"lNISHJ 

Output Program 95 

f3LK1 
9LK2 
8LK3 
9LK4 
9LK5 

• • • (ENO or t1LE ON INPUT) * * • 
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10.9. Object Types 

In order to test whether a particular entity is an integer, 

tuple, set, character string, bit string (any logical value) 

or a blank, one uses the SETLB TYPE. operator. In the program 

which follows, each of these is individually tested against 

the special constants INT., TUPL., SET., STR., BITS. and BLK. 

respectively. As usual, it is imper~tive to_parenthesize 

appropriately when dealing with Boolean expressions. Apart from 

this the next program requires no explanation. 

Program 96 LINE SfATE 
• NO NO 

1 I• TYPE TF:STER •I 
2 oo, 
3 A:3J 8=<4,5>J C:~11,3,5,7~; 
4 O:s;tHQHUM;t; E :T 1 ; F:::iNEWAT,; 
5 PRlNT,CTYPE1 A) EQ, INT,J 
6 PRINT,(TYPE,A) EO, TUPL,J 
7 PRINT,CTYPE,A) EQ, SET, J 
8 PRlNT,CTYPE,A) EQ, STR,J 
9 PRJNT,(TYf'E,A> EO, BITS,; 

10 PRJNT.(TYPE,Al EQ, BLANK,J 
11 COMPUTEJ D01 
12 PRINT,(TYPE,B) EQ, INT, I 
13 PRJNT,(TYPE,8) EQ, TUPL,J 
14 PRJNT,(TYPE,8) EQ, SET, J 
15 PRJNT,(TYPE,B> EQ, STR I I 
16 PRJNT,CTYPE,B> EQ, BITS,J 
17 PRlNT,(TYPE,8) EQ, BLAMK,J 
18 COMPUTEJ DOJ 
19 PRJNT,<TYPE,C> EQ, INT,J 
20 PRJNT. (TYPE,C) EQ, TUPL,; 
21 PRlNT,CTYPE,C> EQ, SET, J 
22 PRJNT,(TYPE,C> EO, STR, J 
23 PRlNT,CTYPE.C> EQ, BITS,; 
24 PRINT,(TYPE,C> EQ, BLANK,J 
25 COMPUTEJ DCJ 
26 PRINT,<TYPE,D> EQ, INT, I 
27 PRINT,CTYPE,D> EQ, TUPL,J 
28 PRINT,(TYPE,D> EQ, SET, J 
29 PRINT,(TYPE,D> EQ, STR, J 
30 PRINT,<TYPE,D> EQ, BITS,J 
31 PRINT,<TYPE,D> EQ. BLANK,J 
32 COMPUTEJ no, 
33 PRlNT,<TYPE,E> EO. I NT, I 
34 PRlNT,CTYPE,E> EQ, TUPL.; 
35 PRJNT,CTYPE,E> EQ. SET, I 
36 PRJNT,CTYPE,E) EQ, STR,a 
37 PRJNT.<TYPE,E> EQ, RITS.J 
38 PRINT,<TYPE,E> EQ, BLANK .J 
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Program 96 (Continued) 

39 
40 
41 
42 
43 
44 
45 
46 

Output 

C0"1PUTEJ DCJ 
PRlNT,(TYPE,F> EQ, INT.J 
PRINT,(TYPE,F> EQ, TUPL,J 
PRJNT,(TYPE,F> EQ, SET,J 
PRINT,(TYPE,Fl EQ, STR,J 
PRINT,CTYPE,F> EQ, BITS,J 
PRlNT,CTYPE,F> EQ, BLANK,J 
COMPUTEJ f:"lNISHJ 

Program 96 

TRUE 
F AL.Se 
F'ALSe 
F'ALSe 
F"ALS~ 
F'ALS?. 

FALSE 
TRUE 
F"ALSC: 
F'ALSe 
F"ALSi:: 
F"AL.S13 

FALSE 
F"ALSe 
TRUE 
F"ALSe 
F'ALSe 
f"ALSe 

F'ALS~ 
FALSE 
P'ALSe 
TRUE 
F'ALSe 
FALSe 

rALSe 
F'ALSe 
f"ALS!i 
PAL.Se 
TRUE 
rALSt! 

f"AL,Se 
F'ALSI! 
F'ALSe 
F'ALSI! 
F'ALS!I 
TRUE 

fEND or flLE ON I~PUT). *. 
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10.10. The ASSERT Debug-Print Statement 

The ASSERT statement is part of the SETLB debug package 

which provides facilities which will be discussed in more detail 

in a later section. ASSERT allows any Boolean (or, for that 

matter other) expressi_on to be asserted to be true at any parti­

cular point in a SETLB program. This expression is evaluated. 

If its value is TRUE, nothing is printed. However, if its value 

is FALSE, the value of every variable occurring in the expression 

is printed; moreover, each such variable value is printed 

accompanied by the symbolic name of the variable. Thus the 

ASSERT statement provides a convenient way for printing variables, 

in a manner very convenient for debugging. 

The following example illustrates the use of the ASSERT 

statement. 

Program 97 

LlNI.: STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 

Output 

I• ASSt:RT: PRINT OUT VALUES IF EXPRESSION IS FALSE •I 
UOJ A=lJ ~=2; C=3J 
PRl~T,<A•G)EQ,(C•A),"1-THIS IS THE FJRSTtJ 
ASSERT( (A+6)EC, <C•A)) J 
PR l ~ T , ( 4 " r: ) E Q 1 ( C * A ) , "I-TH I S I S THE SE C ON D "I-; 
ASSERT< <A•8)EC, CC•A>) J 
COMPUTt:J i:'}tJISH; 

Program 97 

TRUl: tT··IS IS TME F'IRSTit 
PALS~~ HIS IS T~E SECO~D"I­
-AS~e~, ON FAlLEC~ 
•~•A O IN MAIN 

A IS l. 
A IS 2 
C IS J 

• • • ( NO Qr FlLE ON !~PUT) • • • 
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10.11. Macros 

Macros are symbols which represent whole passages of program 

text. Once a macro name has been associated with a body of text, 

each occurrence of the name is replaced by an occurrence of the 

body of text which it represents. Macro-names are associated 

with texts by using rnacrodefinitions. 

The simplest form of a rnacrodefinition is: 

+*<name of macro>= <body of text>** 

The following example shows the use of some simple macros. 

Program 98 

Output 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 

Program 98 

/• USE Or A HACRQ •I 
UOI ••MULL= CCMP0TEJDOJ ** 
••lSH= CO~FUTEJ ,INISHJ ** 
AmS11,2,6~J PRINT,AJMULL 
ij:S:3,4~J PRl~T,BJ ISH 

••• (ENO or FILE ON J~PUT) * •• 
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Macros may also have parameters. The definition of a macro 

with parameters has the following general form 

+*<macro name>(<parameter list>) = <body of text>** 

An example would be 

+*SAMPL(A,B) = IF OB A THEN Z ELSEY** 

Parameter text must be supplied whenever a macro with parameters 

is invoked. For example, the macro SAMPL which we have just 

defined might be invoked by writing 

SAMP L ( X , GT . ) . 

Given the preceding macrodefinition, this is precisely equivalent 

to an occurrence of the text: 

IF 0 GT. X THEN Z ELSEY. 

On the other hand, the macro invocation SAMPL(S,+) is precisely 

equivalent to an occurrence of 

IF 0 + S THEN Z ELSEY. 

Generally speaking, the parameter text supplied with a macro 

invocation is used to replace the occurrences of parameters in 

the body of text associated with the macrodefinition; then the 

resulting text is substituted for the invocation. The following 

example, which relates to the prime-generation code discussed 

in section 6.1.1, illustrates these general principles. 
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Program 99 

Output 

LINE Sl'ATE 
NO NO 

1 
2 
3 
4 
5 
6 

Program 99 

I• A ~ACRO WITH PARAHETERS •/ 
uo, 
••ISPqlMECP)=C~2<=N<P,(P//N) NE,O>•• 
PR!NT,SX,2<=X<=100tJSPRIHECX)~1 
PRINT, [+12<=Q<=100t!SPRIHE(Q))QJ 
COMPUTE; FINISH; 

S97 t7 2 83 67 J 19 5 37 53 71 7 23 89 73 ◄ 1 11 43 59 61 13 29 
79 11 47~ 

1060 

• • • <ENO OF FILE ON INPUT)••• 
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10.12. User-Defined Binary and Monadic Operators 

SETLB allows the user to define not only functions and sub­

routines of ordinary form, but also binary infix operators and 

monadic prefix operators. The following preliminary example 

shows a function of ordinary form which determines which of two 

parameters is the larger. It is written in the ordinary way and 

is no different from any of the function subprograms we have 

encountered. We will soon show how this operator can be made 

available as a user-defined infix operator. 

Program 100 

LINE Sl'ATE 
NO NO 

1 
2 

3 
4 
5 
6 
7 
8 

BIGGER 

/• A rUNCTION IN THE REGULAR FORM •I 
DOI DEFINF.F BlGGERCA,B)J 

lF A ~T,B THEN RETURN T,J 
ELSE RETuRN r,;J END BIGGER; 

X•10J y:5; PRlNT,X,YJ 
lF BISGER<X,Yl THEN PRINT,~THE FIRST ARGUMENT IS Blr,GER~J 
ELSE PRINT,~T~E SECOND ARGUMENT IS AIGGER~J 
6NU 1r; COMPU'TEi FINISHJ 

Output Program 100 

10 5 
~THE FIRST ARGUMENT IS BIGGER, 

••• <END or FILE ON INPUT) * * * 

-154-



By using a slightly different function header, we may define 

essentially the same function as a binary infix operator. This 

allows us to invoke the function by writing an expression with 

one of the arguments preceding the function name and the second 

following it. (It is for this reason that we speak of an infix 

operator.) Specifically, we invoke the function by writing 

A BIGGER. B 

This provides what is often a more natural form in which to use 

the function. 
The following example shows the manner in which an infix 

operator is defined and used. 

Program 101 

L!.INE STATEi 
NO NO 

1 
2 
3 

4 
5 
6 
7 
13 
9 

I• NOW IN THE FORM OF A BIN~RY FUNCTION •I 
DOJ DEFINfF A BIGGER,BJ 
IF A ~T, R THEN RETURN T,J 

gJGGERZZ 
ELSE RETURN F,JJEND AJCOHPUTEJ 

I• THIS SfPARATION OF BLOCKS IS ESSENTIAL FOR THIS PROGRAM TO WORK•/ 
DOI X=7: Y:9; PRINT,X,YJ 
IF X 9IGGER,Y THEN PRINT,tTHE FIRST ARGUMENT IS BIGGER-J 

ELSE PRINT,tTHE SECOND ARGUMENT IS BIGGER-J END IF XJ 
COMPUTEJ FlNISHJ 

Output Program 101 

7 9 
~THE SECOND ARGUMENT IS BIGGERi 

* • • <END QF FJLE ON INPUT)••* 
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User-defined monadic prefix operators are similar to the binary 

infix operators except that they have a single argument which 

follows the name of the operator separated by a period. A monadic 

operator name, like a binary operator, is terminated by a period. 

This feature is illustrated in the following program in which 

an "integer version" of the Newton-Raphson method of determining 

the square root of a number is used. 

Program 102 

LlNE STATE 
NO NO 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

ISQRlZl 

Output 

/• A PSEUDO•SOUARE ROOT ROUTINE AS A MONADIC FUNCTION •I 
DOI 

DEFINEF ISQRT, NJ 
IF N LE, 1 THEN RETURN N;; 

A= N/21 /• FIRST GUESS, •/ 
(WHILE <A•A) GT, N) /• WHILE A IS TOO RIG: •I 

A~ CA+ N/A)/2; I• ITERATE, */ 
ENO; 

RETURN AJ I• CA~ YOU PROVE THAT THIS IS 

Er-.;!) ISQRT,J 
COMPUTE J no; 

(v1<sN<=100 t (CN//5) EQ,1)) 
PRlNT,N,ISQRT,N; END "'1J 
COMPUTEJ FINISHJ 
Program 102 

1 1 
6 2 
11 3 
16 4 
21 4 
26 5 
31 5 
36 6 
41 6 
46 6 
51 7 
56 7 
61 7 
66 8 
71 8 
76 8 
81 9 
86 9 
91 9 
96 9 

FLOOR(SQRTCN)) FOR N ~ 2, •/ 

••• (ENO or FlLE ON INPUl) ••• 
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QUESTIONS 

Chapter 10 

1. Write a function subprogram which computes the absolute value 

of the difference between two numbers. 

2. Assume two tuples of equal length with integer components. 

Write a program to print the larger of each pair of corres­

ponding components. 

3. Assume the tuple: 

T = <5,9,4,3,2,1>; 

Write a program to form a new tuple composed of components 

of the original tuple, ordered randomly. 

4. Write a function subprogram which computes the absolute 

difference of the maximum value element of a set A of 

integers and the minimum value element of a set B of numbers. 

5. Assume the following four sets: 

A = <: 5,7,9,<l,2>,'HI'~ 

B = <: 8,91,3, I GO I , < I BLUE I > ~ 

C = <: 3,5,4,6,18,9,8~ 

D = <. 8,9112-1,8,11~ 

Write a subroutine which uses the operators IN. and OUT. to 

compute and print out the union of the first and third sets 
and the difference of the second and fourth sets. 

6. Write a subroutine which uses the FROM. and MAX. operators 

to select an arbitrary element from sets A and B and 

prints out the maximum of the two. 

7. Write a function subprogram using the FROM. operator to 

convert a set into a tuple. 

8. Which of the following instructions, each or which uses the 

IS. operator, is valid: 

(a) (A+B) rs. C); 

(b} (A+B rs. C) ; 

( c) ((A+B) IS. C) + 2 * C; 
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9. Define values for A and B. Write a program with the following 

effect: if A is less than B, C is equal to A times B; 

Otherwise, C is equal to B
2 

10. Using the monadic operators HD. and TL., write a program to 

determine whether the head of a tuple is equal to the sum of 

the components of the tail. 

11. Show that adding NEWAT. to a set three times in succession 

increases the number of elements in that set by three. 

12. Write a subroutine which takes each element of a set S of 

numbers and prints it out together with a statement 

indicating whether it is odd or even. 

13. Assume a set S: 

S = <: <4,3>, ~: 5,6,8~ , 8, 'YUM' ~; 

Write a program which selects and prints each element from 

the set S together with a statement of whether it is a set, 

tuple, integer or a character string. 

14. Define a generalized function RAND which behaves in the 

following fashion: 

{a) if the argument is an integer, it generates a random 

integer, 1 to the integer. 

{b) if the argument is a string, a random character of that 

string is returned. 

{c) if the argument is a tuple, the function will select 

a random component of the tuple. 

{d) if the argument is a logical value (bit string), a 

random logical value is generated. 

{e) if the argument is a set, it will select a random element 

from the set (not necessarily the same as ARB.). 

(f) if the argument is anything else, it is merely returned. 

15. What will be the printed output of the folLowing program: 

DO; 
A= 3; B= 2 ; C= 1; 

PRINT. {A+B) EQ. C; 
ASSERT{A+B) EQ. C); 
COMPUTE: FINISH; 
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16. The following program uses three macros. What output if any, 

will it generate? 

DO; 
+*BLK=COMPUTE; DO; ** 
+*LAST=COMPUTE; FINISH;** 
+*T (A,B) = (TUP (A)) (B) ** 
TUP=<<l,2,3>,<4,5,6>,<7,8,9>>; 
BLK 
PRINT. T(3,3), T(2,1); 
LAST 

17. Define a binary operator which returns the first N characters 

of a given string. 

18. Define a monadic operator which eliminates the vowels from a 

given character string. 

19. Define a monadic operator which sorts the components of a tuple 

of character strings into.alphabetical order. 

20. Define a monadic operator which, given a set of tuples 

of character strings, produces a set whose elements are 

the same tuples but arranged in alphabetical order. 
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11. READING FROM DATA CARDS 

None of the programs discussed and illustrated so far have 

read data from an external medium; in each case, the program 

contained all the information to perform a desired calculation. 

However, it is sometimes essential to read data from cards during 

the execution of a program. This may be done quite simply, in a 

manner which we shall now explain. 

(1) The following two control cards are inserted immediately 

after the ID card and before the ATTACH, SETLABS, SETLB. control 

card. 

COPYBR(INPUT,INFILE) 

REWIND(INFILE) 

(2) The SETLB program must begin with: 

DO; INFILE= MAKFILE('INFILE' ,72); COMPUTE; 

( 3) Data must be punched in a "stream" form, which we shall 

now explain. 

a) Sets are punched in the manner exemplified by: 

<l 2 3> 

Note that in punching a set on a data card we use no colon, no 

commas and no semicolon. 

b) Tuples are punched in the manner shown by the following 

example. 

<5 6 7 8> 

Note that we use no commas between the components. 

c) Character strings are punched in the following style: 

'JACK' 

with the quote sign fore and aft. 

(4) The data to be read is placed after the control cards 

and separated from them by an end-of-record card. After the 

data comes another end-of-record carafollowed by the SETLB program. 

At the end of the prgram, as always, is the end-of-file card. 

Thus the whole deck structure appears as shown in the following 

sketch: 
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nd-of-record 
JACK <l 2 3> <5 6 7 8> 

<5 6 7 8> 

<l 2 3> 

'JACK' , 

ALMTR, SETLOUT. 

L,200000. 

TTACH,BALMTR,BALMTRANS. 

TTACH BALM4SVD,SAVESETL 

fETLABS. '-. 

LOADER.RFL,66000. 

TTACH,SETLABS,SETLB. 

WIND INFILE) 
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A set of tuples would be punched on the data cards in the 

following style 

<<l 'JACK'> <2 'TOM' 'MARY'> <3 4 5>> 

The reader will deduce the way in which more complicated sets are 

to be. punched. The complete control card set-up for a job reading 

data from input cards is as follows: 

Control Cards 

Program 

ID card 

COPYBR(INPUT,INFILE) 

REWIND(INFILE) 

ATTACH,SETLABS,SETLB. 

LOADER.RFL,66000. 

SETLABS. 

ATTACH(BLM4SVD,SAVESETL) 

ATTACH,BALMTR,BALMTRANS. 

RFL,200000. 

BALMTR,SETLOUT. 

E-O-R 

D A T A . . . 

E-O-R 

{ 

DO; INFILE=MAKFILE('INFILE' ,72); COMPUTE; 

FINISH; 

E-O-F 
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The following program illustrates the SETLB input-output 

conventions: 

Program 103 

Output 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 

Program 103 

I• TO REAO DATA FROM CARDS •I 
00JIN~ILE=MAKPILE(tlNPILEt,72)JCOHPUTEJ 
OOJREAO,NAME;PRINT,NAMEJCOMPUTEJ 
UOJREAD,S~T;PRINT,SETJCOMPUTEJ 
OOJREAD,TlJPLEJPRlNT,TUPLEJCOMPUTE: 
DOJREAD,NAME,SET,TUPLEJCOHPUTEJ 
UOJPRINT,~AHE,SET,TUPLEJCOMPUTEJFlNISHJ 

<5 6 7 8> 

• • • (END Or FILE ON INPUT) 
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12. SOME SAMPLE PROGRAMS. 

12.1 A First Full-Scale Example of the Use of SETLB: 

The Koenigsberg Bridge Problem 

We now present a more substantial program as an indication of 

the ease with which combinatorial problems can be attacked in SETL. 

The problem to be discussed goes back to Euler (1707-83). He 

considered a question whose generalization is now known as the 

Koenigsberg Bridge problem, which arose from the pattern in which 

the various parts of Koenigsberg city were connected by bridges. 

Presumably like many citizens out for a stroll and reluctant to 

walk back along their path, he sought to discover whether it was 

possible to start out from some place in the city and from there 

to cross each bridge in the city only once. 

This problem, which Euler saw could be formulated as a problem 

concerning abstract graphs, is discussed at length in "Graphs and 

Their Uses" by Oystein Ore of Yale University, published by the 

L. W. Singer Company. It is in fact the problem of traversing 

all the edges of a given graph once and only once. Its fame derives 

from the fact that Euler's work on this problem initiated the. 

subject of topology, which has by now grown to be one of the most 

beautiful and important parts of mathematics. 

Euler discovered that all the edges of a graph can be 

traversed once and only once if and only if the graph contains 

either O or 2 points at which an odd number of edges come together. 

If it contains no such points, then one can start one's traversal 

anywhere. If it contains 2 such points, one must start at one of 

these points, and finish at the other. Euler's rule for traversal 

is as follows: as successive edges are traversed, they are removed 

from the graph. At each moment, one attempts to traverse· an edge 

leading to a point which can still be reached along some alternate 

path. If this is impossible, it follows that only one edge can 

possibly be traversed; this is traversed (and, of course, removed) 

and the process continues. 
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These rules are illustrated by the following graph: 

1 

2 4 

3 5 

In the above graph 3 edges come together at each of the 4 points 

2,3,4,5. Hence the graph cannot be traversed without repeating 

any edge. This graph is the first one submitted to the program 

given below. Given this graph, the program prints II impossible 

graph 11
• 

Next, a horizontal arc connecting node 2 to node 4 is added 

to the graph. Then only the two points 3,5 have an odd number 

of incoming edges. This makes traversal possible as the output, 

showing the path 3,2,1,4,2,5,3,4,5 as the path of traversal, 

indicates. 

In the program below graphs are represented by sets whose 

elements are themselves 2-element sets. Each 2-element set 

represents a pair of points connected by an edge. For example, 

the graph depicted above is represented by the set 

To add the edge 2,4 to the grpah, one simply executes 

S = S WITH. ~:2,4~; 

The SETLB program which follows is profusely annotated, and the 

reader should be able to follow its logic. 
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Program 104 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I• 
OOJ 

EULERS •BRIDGES OF KOENIGSBERG• PROGRAM 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
3 ◄ 

35 
36 
37 

M4LK 

/• THIS PACKAGE OF ROUTINES ENCODES 
L,EULERS ALGORITHM FOR THE ~BRIDGES or•. 

I• KOENIGSBERG~ PROBLEM. THE PROBLEM rs: 
GIVEN A GRAPH CONSISTING OF NODES AID*, 

/• EDGES, 'TO TRACE IT OUT, TRAVERSING 
EVERY EDGE <BRIDGE> ONCE AND ONLY O~CE, 
(NODES HAY BE VISITED ~ORE THAN ONC~> •• 

/• EULERS ALGORITHM IS AS FOLLOWS! 
A. THE PROBLEM CAN BE SOLVED ONL~ It 

THE NUMBER OF NODES AT WHICH AN ODD 
NUMBER OF EDGES COME TOGETHER IS 
EITHER O OR 2, *• 

I• B. lF THERE IS A NOCE AT WHICH Al 001 
NUMBER OF EDGES COME TOGETHER, STAR1 
AT SUCH A NODE. OTHERWISE, START 
ANYWHERE, •1 

I• C. IF YOU ARE AT A ~ODE P WHICH 
HAS A NEIGHBOR Q WHICH CAN BE REACHI D •1 

/• FROM P BY AN INDIRECT PATH NOT USIN~ THE 
EDGE<P,Q>, STEP TO a. IF NOT, P WILL •1 

/• HAVE ONLY ONE NEIGHBOR Q, STEP TO Tt·AT, 
D, IN STEPPING FROM P TO Q, ERASf *1 

/• THE EDGE <P,Q> OF THE GRAPH, *1 

/• REPEAT STEPS (D) AND CE) UNTI~ EVERr 
EDGE HAS BEEN TRAVERSED, *1 

I• •••Ir YOU CAN, PROVE THAT THE 
ALGORITHM WORKS,., ••• *1 

I• *I 

'/* THIS MACRO ALLOWS EASY ADDITION OF ~N 
EXTRA ELEMENT TO A TUPLE *1 

••ENOOr(T)aT<<•T>+1)•• 
DE~INEF WALK(GR)J 

LOCAL NODES,X,P,ODDS,O,NP,GRAPHJ 
/• THIS IS EULERS ALGORITHM, IT ASSUMES 

TH~T THE GRAPH l~ GIVEN AS A SET Or 
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·-----------------------------·-

Program 104 Continued 2•ELEMENT SETS ~:P,Q~J THE SET StP,f.~ 
REPRESENTS AN EDGE CONNECTING P AND O,•I 

TRANC 

GRAPH~COPYCGR)J 
/• BEGIN BY FORMING THE SET OF ALL NOD(S 

IN THE GRAPH •I 
NODES~[+:X◄GRAPHl XI 

/• NEXT, CONVERT THE GRAPH FROM A SET ~r 
UNORDERED PAIRS ~IP,Q~ TO A SET OF 
ORDERED PAIRS <P,Q>, ALWAYS INCLUOII G •I 

/* BOTH <P,0> AND <0,P> I~ THE NEW VERSION 
OF THE GRAPH, THIS HAKES IT POSSIBLI 
TO USE THE SETL ·FUNCTIONAL MAPPING~ 
OPERATIONS IN REMAINDER OF THE CODE •I 

GRAPH=(TFSET[GRAPHl IS, Q)+R[QJJ 
/• THE -TFSET• FUNCTION IS DEFINED BELrw •/ 
/* FORM THE SET OF ~ODES kHICH AN ODO 

NUMBER OF EDGES COME TOGETHER, •I 
/• IF THIS HAS MORE THAN TWO ELEMENTS, 

GRAPH CANT BE TRACED •I 
IFC•CSP ◄ NODEStCC•GRAPH~P~)//2) NE,O~ 

IS, ODDS)> GT, 2 THEN 
PRINT,-JMPOSSIBLE GRAPH-J RETURN OH,J END lFJ 

I• CHOOSE A STARTING POINT •I 
P=IF ODDS NE, NL, THEN ARB,OODS ELSE AR8,NODESi 

/* START PATH */ 
PATH=<P>J 
(WHILE GRAPH NE, NL, DOING 

/• REMOVE FROM GRAPH THE EDGE TRAVERSEP 
ON EACH CYCLE */ 

C<P,Q>) OUT, GRAPHJ 
C<Q,P>) OUT, GRAPHJ 
ENDOF<PATH)=QJ P:QJ) 

/* APPLY EULERS RULE FOR CHOOSING NEXT 
POINT OF PATH •I 

IF : Q ◄ (GRAPH~P~ IS, NP)tO~TRANC(GRAPH LESS,<P,0>,P> 
THEN NOOPJ 
ELSE Q=ARB,NP; ENO IFJ 

ENO Wf-llLEJ 
RETURN PATHJ 
ENO WALKJ 
DEFINEF TRANCCGRAPH,X); 

LOCAL SET, NEWJ 
/• THIS IS A ~TRANSITIVE CLOSURE• ROUTi 

GIVEN A GRAPH REPRESENTED BY A SET ~F 
ORDERED PAIRS, IT FORMS THE SET or ~LL•/ 

/• POINTS WHICH CAN BE REACHED FROM THI 
POINT X BY A PATH IN T~E GRAPH •I 

SET~GRAPHSX~; NEW=SETJ 
(WHILE NEW NE, NL,> 

~EW•GRAPH(NEWJ•SETJ 
SET:aSET•NEWJ 

ENO W~ILEJ 
RETUR~ SET; 
ENO TRANCJ 

I• *I 
/* we NOW GIVE TWO SHALL AUXILIARY 

ROUTINES, THE FIRST, TFSET, CONVERT~ 
A TWO ELEMENT SET SIP,O~ INTO AN 
ORDERED PAIR <P,O>J •I 
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97 

98 
99 

100 
101 
102 
103 

104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 

Program 104 (continued) 

TF"SET 

R 

DEF'INEF TFSET<X>J LOCAL Y,ZJ 

Y FROM, XJ Z FROM, XJ 
RETURN<Y,Z>J 
END TF'SETJ 

/* THE NEXT ROUTINE JUST REVERSES AN 
ORDERED PAIR 

OErJNEF RCX)J RETURN <X<2>,XC1)>J ENO RI 

/• HERE IS A SAMPLE GRAPH, IT CAN .. T BE 
TRACED, SINCE IT HAS FOUR NODES AT ~HICH 
AN ODD NUMBER OF EDGES COM!? TOGETHEI_·, •I 

GR4PH;$JS:1,2?,SS1,4~,S:2,3~, 
s:2,5?,S:4,3~,S:4,5?,S;3,5~?J 

PRINT,GRAPHJ 
PRINT,WALKCGRAPH)J 

/• BY ADDING AN EXTRA ARC, WE MAKE 
IT POSSiBLE TO TRACE THE GRAPH, */ 

GR~PH•GRAP~+s:s:2,4?~J 
PRINT,GRAPl-4J 
PRINT,WALK(GRAPH)J 
cor-iPUTF:J FINISH; 

Output Program 104 

S~4 ,~ S2 3~ S1 2? S1 4 2: S3 4~ S2 5~ S3 5~? 
llllHPrtSSIBl,,E GRAPMat 
OH, 
S~4 ,~ S2 3? S1 2? S1 4? S3 4~ S2 5? S2 4? -S3 5~~ 
<3 2 1 4 2 5 J 4 5> 

• • • fENO or f" I LE ON INPUT> • • • 
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12 • 2. A Second Full-Scale Example of the Use of SETLB: 
Translating to Pig Latin. 

The following program consists of three subroutines. The 

first, a programmed monadic operator called TILB., breaks off the 

first part of any string supplied to it, using the first blank 

character as a di vi ding mark. It returns a pair consisting of the 

substring preceding and the substring following the blank. If 

there is no blank, a pair consisting of the whole input string 

and of a null character string is returned. In examining this 

routine, note the manner in which a SETLB existential is used 

to test for the existence of a blank character, and to locate 

the first blank character if it exists, all at once. 

The second subroutine is written as a binary operator and 
is called TRAN. The first argument to the operator is a 

dictionary DICT; the second argument is a string of words, 

separated by blanks, to be translated using the dictionary. 

The routine TRAN. uses TILB. repeatedly, to break off one word 

after another from its input string. Each word WD broken off 

is 'looked up' in the dictionary, by evaluating DICT(WD). 

If it is 'found in the dictionary', i.e., if DICT(WD) is not OM., 

then DICT(WD) is appended to a translation string built up 

progressively by TRAN.; if DICT (WO) is OM., corresponding to the 

case in which WD is not present in the dictionary, then WO itself, 

followed by the parenthesized remark 'NOT IN DICTIONARY', is 

inserted into the developing translation. In examining the routine 

TRAN., note the manner in which a WHILE iterator is used to control 

the statements which build the translated string; the iteration 

terminates when the input INP has been reduced to the null 

character string. Note also the manner in which the IS. operator 

is used twice, once to save the pair returned by TILB. as the 

value of the variable PR, and then immediately again to save the 

first component, i.e. HD., qf this pair as the value of the 

variable WD. 

The first part of the output is produced by using a miniature 

4-word "English to German dictionary". Once this set of pairs is 

supplied, we have the DICT ('THE') = 'DAS' , etc., permitting 

·'translation'. Of course, a simple table look-up procedure like 
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the one programmed here is quite incapable of translating natural 

language with anything like the sophistication required in less 

trivial and artificial cases. 

Our next step is to replace the set DICT., which is used in 

the procedure TRAN., by a programmed function PIGD. Note here 

the important fact which this illustrates: that SETLB variables 

are free to take on values of changing type, and that the expres­

sion DICT(WD) can be evaluated whether DICT denotes a set of 

tuples or a programmed function. As distinct from the 4-word 

tabular dictionary used first, PIGD can translate any English 

word into Piglatin. In accordance with the rules of Piglatin, 

it does this by moving the initial consonants of the word to its 

end, and adding 'AY'. However, if the word begins with a vowel, 

it is prefixed with 'P' and 'AY' is affixed. 

In examining the routine PIGD, note the use of substring 

and concatenate operations, and note also the use of an 

existential to locate the first vowel in a word. 

The above remarks, together with the comments contained 

in the SETLB program which now follows, should make the program 

readable. 

The program's output includes a partial trace initiated by 

the (HELP) control card option. This trace gives a fairly 

detailed 'motion' picture of the program's action. Line 5 

contains instructions whose net effect is to turn on the trace 

for TRANS only. For further details see section 14.9. 
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. I..NE 
'.10 

1 
?. 
J 
◄ 

5 
6 
7 

R 
9 

HO 
111 
112 
1n 
U ◄ 

U5 
U6 u, 
UR 
119 
220 
221 
«2 
«J 

e24 
e25 
e2 f, 
o27 

Program 105 

ST.ATE 
NO 

0 
0 
0 
0 
0 
0 
0 

TILazz 
0 
0 
0 
0 
0 
0 
1 
2 
2 
◄ 
◄ 
7 ., 
0 
0 
0 

TRANZZ 
0 
1 
2 
3 

/• A TA9LE LCOKUP -TRANSj'ATOFi· ROUTINE WITH AN AUXILI4RY •I 
/• STRING 1::3REAK•UP ROUTINE; .ALSO, A 4 - ..IORD •ENGLISH TO •I 
/• GERMAN-DICTIONARY, FrNALLY, A PROGRA~MEn Plr.LATTN •I 
I• u1cr,nNAFiY •1 
NOCHECK STORESJ CHECK STnRES(TRANS)J 
DOJ 

DEFINEF TIL~,STR; LOCAL x; 

/• ROUTINE T) BREAK orr T4E rtRST WORD •/ 
I • 0 f" A N I NP J T S T R I NG Uc; I ~, G L F. r T M ri S T • / 
/• ALANK TO DETF.RMINE B~u~DARY or FIRST•/ 
!• WORD 

IF :1<=N<:,STRtSTRCN) F.Q,; 1 THEN 
X:STR(ltNlJ 

ELSE 
X:STRJ STR=NULc:1 RETLR~<X,~ULC,>J 

END jFJ 
IF N EQ, • STR THEN SfR = NULC,; ELSE STR:STR(~•t:C•~TR)•N). 
RETURN<X(11(4X)~1),STR>i 
END TIL8,J 

Cl)MPuTE; COJ 
DEFINtF QICT TRAN,INP1 LOCAL TRANS,DW,XJ 

T R A f~ s =Nu LC I ' 

CWHILE((MC,(<TILR,INP~IS,FR)>IS,WDlNE,NULC,) 
INP=PR(?)J 
IF(DICTCWD) IS, y) NE, OM, THEN Dw=x, 
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2~ 5 
29 6 
30 6 
31 7 
32 7 
JJ 7 
34 0 
35 0 
36 1 
37 1 
38 3 
JQ 4 
40 4 
41 4 
42 5 
43 5 

44 0 
4i:; 1 
46 2 
47 3 
48 3 
4Q 3 
50 3 
51 5 
52 5 
5J 5 
54 6 
5s; 7 
56 8 

Program 105 (Continued) 

PIGD 

ELSE ow=wn+,(NOT IN tlCTIONARY)tJ 
ENU IF" J 
TRANS:TRANS+OW+t t; 

E~m wHtLEJ 
RETURN TRANSi 
END nICT T~At<.!,J 

DICT~~;~-THE,,,oAS->,<-WiTER,,,wASSERt>,<tl~-,-ISTt>,<tCOLDt,iKALT->~I 
COMPuTE; COJ 
TEXT:,THE WATER IS VFRY CCLD WATER,; 0 RJNT,TEXT; 
PRINT,DICT TRAN,TEXT; 

COHPlJTE: no I 

Ii:-:1<=1\<=•wn,wocN)~VOWS THEN 
IF I\ en. 1 THEM RETLRf\. ,Pt+WD•-AYtJ 
~LSE /• N GT, 1 •/ ~=fl.~11 RETUR~ wncN:(,WO)-K)+wnc1:v)+tAYt; 
END IF NI 

ELSE/• ALL r.oNSTANTS •I ~ETURN WDJ 
E :rn t F J 

END PIGDJ 
COMPuTE.: COJ 

TEXT~=tNOw IS THF. TIM~ Fa~ ALL GOOD M;N TO LF.ARN s~TLtJ 
PfHNr,TEXT21 
PRJNT,PIGC TRAN,TEXT21 

COMPUTE, F"INJSHJ 

•••••••••• SUSPICIOUS VARIA8LES CUSEO LESS THAN 3 TI1ES,•••••••••• 
PR VOWS 
••••••••••••••••••••••••••••• 

+++ SETL8 MACROS vcRSICN ~,4 HAv 2, 1973, +++ 
COMMENT -PHASE 2 OUTpUT F"ROH SETLB TO AAL~SETL TRANSt 

COM~ENT tCOHPILATloN TERMINATED NORMALL~ ---•t 
TIMES CSF.C>, TOTAL= 5,86, PASS!= 1,,a, FASS2= 4,45 

= • = ENn SETLB = =: 
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Output Program 105 (continued) 

;.TME ~ATER IS VERY CoLD ~ATER­
--~ .. ENTERING TRANZZ 
• - - AT 1 lN TRANZZ TRANS IS --
- • - ENTERING TILBZz • 
• • - RETURN FROM TlL~ZZ AT 7 WITH VAj'UE <;.THEit itWATER IS VERY COLn WAT 

ERit> 
• • - AT 7 IN TRANZZ TRANS IS itDAS;. 
- • - ENTERING TILBZz 
• - - RETURN FROM TIL~ZZ AT 7 WITH VAi'UE <;.WATER;. itIS VERY COLD t.lATER~> 

- • - AT 7 IN TRANZZ TRANS IS itDAS WA~SER ,t 
- • ·• ENTERING TILBZz 
- • - RETURN FROM TILBZZ AT 7 WITH VAi.UE <;.IS;. itVERY ~OLO WATER-> 
- • • AT 7 IN TRANZZ TRANS IS itDAS WA~SER !ST it 
- - - ENTERING TIL8Z7 
• • - RETURN F'ROH TILBZZ AT 1 WITH VAi.UE <itVERY;. itCOLO WATERJI> 
• - .. AT 7 IN TRANZZ TRANS IS itDAS WA~SER JST VERY<NOT IN DICTIO~A~Y> it 

- ~ - ENTERING TILBZz 
• • - RETURN FROM TILBZZ AT 7 WITH VAj·ue <Jl!COLD;. itWATERJI) 
- ~ - AT 7 IN TRANZZ TRANS IS itDAS WA~SER JST VERY(NOT JN DICTJO~ARY) ~ 
ALT 'I-
- - - ENTERING TILBZZ 
- • • RETURN FROM TlL~ZZ AT 4 WITH VAj'UE <1'WATER- itit> 
• • .. AT 7 IN TRAN2Z TRANS IS itOAS WA~SER JST VERY(NOT IN DICTIONARY> I< 

ALT WASSER;. 
- ~ • ENTERING TILBZz 
- '! .. RETURN FROM TIL_BZZ AT 4 WJTH VAj'UE <1'-J itit> 
• • .. RETURN FROM TRANZZ AT ? WlfH VAj'UE 1DAS WASSER IST VERY(NOT tN Dt 

CTIGNARY> KALT WASSER it 
itDAS ~ASSER IST VERYcNOT lN DJCTIONARv) KALT WASSER it 

Jl!NOW IS THE Tl ME f'OR ALL GOOO MEN TO j 'EAR~ SETLit 
- • • ENTERING TRANZZ 
- - - AT 1 lN TRANZZ TRANS JS iit 
- - - ENTERING TILBZZ 
- • - RETURN FROM TIL.:azz AT 7 WITH VAi'UE <,tNOWif itIS T,.E TIHE FOR Al..L GO 

OD MEN ·TO LEARN SETi.:it> 
- • - ENTERJNG PIGO 
- - - RETURN FROM PIGD AT 3 WITH VALU~ itO~NAY,t 
- - ·• AT 7 IN TRANZZ TRANS IS itOWNAY t 
- • - ENTERING TILBZz 
- ~ - RETURN fROM TlLBZZ AT ? WITH VAi'UE <JlISit itTHE TIME F'OR ALL GOOD M 

EN TO LEARN SETL"> 
- - - ENTERING PIGO 
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Output Program 105 (continued) 

- • - RETURN FROM PIGD AT 2 WITH VALU~ ,PISAY,t 
- - - AT? IN TRANZZ TRANS 1s ,awNAY plSAY, 
- • - ENTERlNG TILBZz 
- - - RETURN FROM TILBZZ AT., WITH VAj"UE <tTHEt itTIHE FOR ALL GOno MEN 

TO LEARN SETL,t> 
- ••ENTERING PIGO 
• • - RETURN FROM PlGD AT 3 WITH VALU~ ,ETHAY,t 
- • - AT 7 IN TRANZZ TRANS JS ,tOWNAY pJSAY ETHAY it 
- • - ENTERING TIL8Zz 
- • - RETURN FROM TIUnz AT 7 WITH VAi'UE <itTIHF.it itf"OR ALL GOOD MF:N TO l 

EARN SETLJO 
- • - ENTERING PIGD 
- • - RETURN FROM PIGD AT~ WJTH VALU~ ,r~ETAYit 
- • - AT 7 IN TRANZZ TRANS IS -OWNAY plSAY ETHAY IMETAV t 
•••ENTERING TILBZz 
- - - RETURN FROM TILBZZ AT ., WITH VAj'UE <JtFORJt JtALL Goon MEN TO LEARN 

SETLit> 
- • - ENTERING PIGD 
- • - RETURN fROM PlGD AT 3 WITH VALU~ ,oRrAY, 
- • - AT 7 IN TRANZZ TRANS IS jii!QHNAY ~ISAY ETHAY IMETA~ ORfAY ,t 
• - • ENTERING TILBZ7 
- • .. RETURN FROM Tli.lHZ AT 7 WITH VAi'llE qtALLt ,te~OOO MEN TO LEARN SETL 

- - • ENTERING PIGD 
- • - RETURN fROM PIGD AT 2 WITH VALU~ ,PALLAYt 
- - • AT 7 IN TRANZZ TRANS IS itQWNAY plSAY ETHAY IMETAY oRrAY PALLAY ,t 
- - - ENTERING TILBZl 
- • - RETURN FROM Tli.:BZZ AT 7 WITH VAj'UE <Jl!GOODit itMEN to LEARN SETUI> 
- • - ENTERING PIGD 
• • - RETURN FROM PIGD AT 3 WITH VALU~ -OCDGAYt 
- ••AT 7 IN TRANZZ TRANS IS JtOWNAY plSAY ET~AY IMETAY oRrAV PALLAY 00 
DGAY -
- • - ENTERING TILBZi 
• • - RETURN FROM T Ii.BZZ AT 7 WITH VAi'UE ·<Jl!MENt tTO LEARN SETL1it> 
• • - ENTERING PIGD 
•••RETURN FROM PIGD AT 3 WITH VALU~ -E~HAY, 
- ••AT 7 IN TRANZZ TRANS IS -OHNAY plSAY ETHAY lMETAV ORfAY PALLAY 00 
DGAY ENMAY, 
• • - ~NTERING TILBZz 
- - - RETURN FROM TiiJnz AT., WITH VAj'UE <-TO- -LEARN SETLl!i!> 
• • - ENTERING PIGD 
• • - RETURN FROM PIGD AT 3 WIT~ VALU~ ,oTAY-
• • - AT 7 IN TRANZZ TRANS IS JtQWNAY plSAY ETHAY IMETAV ORfAY PALLAY 00 
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Output Program 105 (continued) 

DGAY ENMAY OTAY 'J 
ENTERING TILBZz 

• • .. RETURN FROM Tli.BZZ AT 7 WJTH VAi'UE <,LEAR~'J itSETLit> 
• • - ENTERING PIGD 
- • - RETURN FROM PlGD AT 3 WITH VALU~ 1,EARNLAY, 
- - - AT 7 1N TRANZZ TRANS IS ,tQWNAY plSAY ETHAY IMETAY oRrAY PALLAY 00 
DGAY ENMAY OTAY EARNLAY, 
- • - ENTERING TILBZz 
- •., RETURN FROM nunz AT 4 WITH VAi'UE <1'5ETL1' ti'> 
- • - ENTERING PIOD 
- • - RETURN PROM PIGD AT 3 WJTH VALU~ 1,ETLSAYI' 
• • ~ AT 7 IN TRANZZ TRANS IS itOWNAY plSAY ETHAY IMETAY oRrAY PALLAY 00 
DGAY ENMAY OTAY EARNLAY ETLSAY ,t 
- • • ENTERING TILBZz 
- - - RETURN FROM TILBZZ AT 4 WJTH VAj'UE ·<-J1, ,,> 
- • - RETURN FROM TRANZZ AT 1 WJTH VAj'UE 1,0kNAY PISAY ETMAY IHETAY ORfA 
Y PALLAY OODGAY ENMAy OTAY EARNLAY ETj'SAY 'J 

iow~AY PISAY ETHAY lMETAY oRrAY PALLAv OOtGAY ENMAY OTAY EARNLAY ETLSAY ,. 

• • • (ENO OF FILE ON INPUT> • • * 
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13. SUMMARY OF SETLB FEATURES 

The following pages summarize most of the SETLB language 

features. Not all of these features are described in this 

introductory text. Those features which are described are 

accompanied by page references. 

Feature 

1. Objects 

1.1 Atoms 

Integer 

SETLB Representation 

Examples 

0, 2, 567, -9 

Character string jABCj 

Label 

Boolean 

Blank 

LABEL: X=Y 

1B 

Created by function NEWAT. 

Undefined blank OM. 

Subroutine 

Function 

DEFINE 

DEFI~EF 

References 
in this text 

57 

122 

114 

147 

41,48 

130 

130 

Current limitations: variable names should not exceed 

8 characters and period-delimited operator names should 

not exceed 6 characters. 

1.2 Sets 

1.3 Tuples 

1.4 Type function 

Types 

< : x
1 

, x
2 

, ... , x > 
- n-

< xl , x2 , • • • , xn > 

TYPE. 

INT., SET., TUPL., STR., LAB., 

BITS., BLANK., SUBR. 

1.5 Special constants: 

Null set NL. 

Null-string NULC. 

Null-tuple NULT. 

True T. 

False F. 

Undefined OM. 
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39 

148 

11 

122 

50 

14,17 

14,17 
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Feature 

2. Operations 

2.0 No-operation 

SETLB 
Representation 

NOOP; 

2.1 Arithmetic operators: 

Plus 

Minus 

Times 

Divide 

Residue 

Maximum 

Minimum 

Absolute value 

2.2 Comparison and Boolean 

Operators: 

Equals 

Not equal 

Less than 

Less-equal 

Greater than 

Greater-equal 

Includes 

And 

Or 

Not 

2.3 Character string: 

Decimal convert 

Octal convert 

Catenate 

Repeat 

Substring 

Length 

+ 

* 

I 
II 
MAX. 

MIN. 

ABS. 

EQ. 

NE. 

LT. 

LE. 

GT. 

GE. 

INCS. 

A. or AND. 

o. or OR. 

N. or NOT. 

DEC. 

OCT. 

+ 

* 
C{I:J) 

't 
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References 
in this Text 

145 

57 

57 

57 

57 

56 

139 

139 

138 

20 

20 

20 

20 

20 

20 

18 

20 

20 

20 

143 

122 

125 

122 



Feature 
SETLB 

Representation 

2.4 Set operations: 

Membership 

Number 

With 

Less 

Lesf 

Diminish 

Augment 

Dirninish-f 

Diminish and retrieve 

Union 

Intersect 

Difference 

Symmetric difference 

Arbitrary element 

Powerset 

N-element subsets 

2.5 Tuple operations: 

Head 

Tail 

Component 

Length 

Catenation 

2.6 General set former: 

Form SET where: 

B(X) is an expression 

in Xi X+A; X is an 

element of A 

Alternative: N ranges 

over integers X to get 

X+A 

+ 
WITH. 

LESS. 

LESF. 

X OUT. s 

X IN. s 

X OUTF. s 

X FROM. s 

+ 

* 

II 
ARB. s 
POW(S) 

NPOW(N,S) 

HD. 

TL. 

T(I) 

+ 
+ 

~E(X), X+A> 

~E(N) I l<=N<=M> 

only those E(X) such that ~E(X), X+AtC(X)~ 

condition C(X) is true 

Refer.ences 
in this text 

16 

29 

31,33,68,142 

31,33,142 

142 

142 

144 

27 

27 

27 

28 

34 

25 

25 

so 
so 

39 

40 

11 

95 

Complex i form ~E(X,N) ,X+A,l<=N<=MtC(X,N)~ 
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SETLB 
Feature Representation 

2.7 Set applications 

Application F (X) or F(X 1 , ... ,~) 

Multivalued F<X> or F:Xl, ••• ,~~ 
application 

Range F [X] or F[X 1 , ... ,~] 

2.8 Compound 

operators 

[operator:iterator] expression 

2.9 Conditional 

expressions 

e.g. I+ : X +S ] F ( X) 

[*:l<N<=M,Y+S(N)tC(N,X)]F(X,N) 

IF condition THEN expression ELSE expression, 

e.g. ' 

X = IF A GT. B THEN A+B ELSE A*B; 

more generally 

IF condition THEN expression ELSE IF condition 

THEN expression ... ELSE expression 

2.10 General assignment 

to the right 

operation IS. 

3. Control and Iteration Statements 

3.1 Unconditional GO TO LABEL 

(can only be used in function or subroutine body) 

3.2 Conditional statements: 

IF condition THEN block; 

or 

IF condition THEN block ELSE block; 

or 

References 
in This Text 

73 

80 

79 

90 

93 

117 

146 

86 

114 

108 

109 

IF condition 1 THEN block 1 ELSE IF condition 2 THEN block 2 110 

ELSE blockn; 

Conditional statements can be ended with a semicolon; or 

with the terminator 'END;'; or with 'END IF;' etc. 
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Feature SETLB Representation References 
in this Text 

3.3 Iteration statements 

a) Iterate over a block as long as a condition is fulfilled 

(WHILE condition) block; 

(WHILE condition DOING block 1 ) block 2 ; 

WHILE scopes can be terminated with a semicolon; or with 

the terminators 'END;' or 'END WHILE;' , etc. 

b) Iteration over elements of sets 

For all X in S, repeat block 

(V X + S) block; 

For all Kin (M,N) repeat block 

(V M <= K <= N) block; 

Iterations with decreasing iteration index, etc. are also 

available. 

c) Compound iterators 

(V X + s, M(X) <= K <= N(X) t C(X,Y)) block; 

Iteration scopes, like WHILE scopes, can be terminated in 

several ways. 

3.4 Quantified Boolean expressions 

a) Existential quantifiers 

110 

113 

95 

105 

107 

Exists X in S such that C(X): = X +St C(X) 59 

Exists Kin (M,N) such that C(X): = M <= K <= N t C(X) 64 

Note: If the value of such an expression is true, then the 

variable X or K is set equal to the first element in the 

range for which C(X) is true. 

Existentials which search in decreasing order of iteration 

index, and various compound existentials, are also available. 

b) Universial quantifiers 

For all X in S such that C(X): V X +St C(X) 62 

For all Kin (M,N) such that C(X): V M <= K <= N t C(X) 64 
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Feature SETLB Representation 
References 

in this Text 

Note: If the value of such an expression is false, then the 

variable X or K is set equal to the first element in the 

range for which C(X) is false. 

Various compound universals such as 

V X +At= Y + B t X EQ. Y 

are also available. 

4. Functions, Subroutines and Operator Definitions 

4.1 Functions: 

Function DEFINEF FNC(ARGl, ... ,ARGK) 

Monadic form of operator DEFINEF MON. ARG 

Binary form of operator 

Return value from 

within function 

4.2 Subroutines: 

Subroutine 

Monadic form 

Binary form 

Return 

4.3 Macros: 

DEFINEF Pl BIN. P2 

RETURN EXPRESSION 

DEFINE SUB(ARGl, ... ,ARGK) 

DEFINE MON. ARG 

DEFINE Pl BIN. P2 

RETURN 

+* G =COMPUTE** 

66 

131 

138 

139 

130 

151 Without arguments 

or 

With arguments 

+* HDT =HD.TL.** 

+*TWOSET(A,B,C)=A=HD. C, B=HDT C** 152 

Macro definitions within macros, etc., are available. 

5. Sinister Forms 

Name = expression; 

HD. NAME= expression; 

TL. NAME= expression; 

NAME (x 1 , ... ,Xn) = expression; 

NAME~x1 , .•. ,xk~ = expression; 

NAME (Xl I ••• ,Xk) = OM.; 

NAME (Nl :N2) = expression; 
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Feature SETLB Representation 
References 

in this Text 

6. Input - Output 

PRINT. EXPN1 , ... ,EXPNk; 

READ. NAME1 , ... ,NAMEk; 

WRITE. NAME
1

, .. . ,NAMEk; 

Input/output is file-oriented. 

The following four files are available for I/O. 

4 

163 

a) INPUT system input file from which the source text is read 

by the compiler 

b) INFILE - file from which data can be read by means of a READ 

statement. This file is the file INPUT by default. 

c) OUTPUT - system output file on which the output from the 

compiler is written. Data can be written on this 

file by PRINT. statement. 

d) OUTFILE- file on which data can be written by means of the 

WRITE. statement. It is equal to the file OUTPUT 

by default. 

Redefinition of the files INFILE and OUTFILE can be achieved 

by statements such as: 

OUTFILE = MAKFILE(LOCALFILENAME, LINEWIDTH); 

or 

INFILE = MAKFILE(LOCALFILENAME, LINEWIDTH); 

where 

LOCALFILENAME is a character string, and 

LINEWIDTH is an integer. 

E.g. 

OUTFILE = MAKFILE('MYOUT', 120) 

will cause all output produced by subsequent WRITE. statements 

to be routed to the system (SCOPE) file named MYOUT, and 

grouped into 120 character lines. 
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Feature SETLB Representation 

7. Miscellaneous 

Compile-block opener: DO; 

Incremental compilation 

command: COMPUTE; 

Required terminator for 

complete SETLB program: FINISH; 

Debug statement which 

prints value of all 

variables in expression, 

if expression has any 

value other than TRUE ASSERT<expression> 

8. Additional Information Concerning Iterator Scopes 

A scope is opened by either: 

1. a 'FORALL' iterator 

2. a 'WHILE' iterator 

3. a I DO; I statement 

4: a subroutine or function definition. 

References 
in this Text 

4 

4 

4 

150 

86 

110 

4 

130 

Each such scope must be closed by a corresponding END-element, 

which may have one of the following forms (form C below is 

the preferred one since it allows scopes to be verified at 

compile time): 

a) an extra semicolon 

b) END; 

c) END followed by up to 4 tokens other than semicolon 

followed by a semicolon. 

Examples: 

cl) (V X -+ S) X = X+l; END VX; 

c2) (WHILE X -+ s DOING X = X+l;) Y=X; END WHILE X-+S; 

c3) DEFINE A OP. B; • • • I END A OP.; 

Example cl shows END followed by 2 tokens. 

Example c2 shows END followed by 4 tokens. 
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14. MISCELLANEOUS ADVANCED INFORMATION 

1. SETLB Operator Precedence 

Only two operator precedence levels are used 

a) Various Boolean-valued comparison operators bind more 

strongly than other operators. These include: 

EQ. NE. GT. GE. LT. LE. INCS. 

b) Other operators associate to the right. E.g. 

A-B-C means A-(B-C) etc. 

Please beware of the effects of this rule. 

c) Monadic operators have minimal scope 

-A+B means (-A) +B 

and 

N.X A.Y means (N. X) A. y 

But note that N. A EQ. B means N. (A EQ. B) 
' 

and 

iA EQ. B means i(A EQ. B) 

2. Syntactic Precedence levels 

Four syntactic precedence levels exist. These are in order 

of increasing tightness of binding: 

expression, factor, element and atom. 

a) Expressions are made up of factors. Factors are separated 

by operators. 

b) The first factor of an expression is the scope of any monadic 

operator (or sequence of monadic operators prefixed to the 

expression). Existential and universal quantifiers, and 

compound operators are treated much like monadic operators. 
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c) An atom is 

i) either a 'special quantity name' (e.g. NEWAT.,T.,NULC.) 

ii) or a lexical constant (e.g. an integer or a string) 

iii) or a parenthesized or bracketed subexpression 

iv) or a name functionally applied to a sequence of 

argument subexpressions, e.g., 

F~arg 1 , ... ,argn~'F(arg 1 , ... ,argn) ,F[arg 1 ,argn] 

d) An element is either 

i) an atom 

ii) or an atom functionally applied as in (iv) above. 

3. Code Blocks within Expressions 

SETLB allows a block of code to be used as part of an expression, 

both for the value it returns and for the side-effects which its 

evaluation may cause. A block used in this way is prefixed by a 

[: , terminated by a] and should contain at least one statement 

of the form 

RETN expression; 

The value of the expression in the first such statement executed 

defines the value of the entire block. Example 

Example: 

A= A+ [:X=O; (WHILE F(X) LT. Z) X=X+F(X);; RETN X;]; 

4. Local and Global Variables in Subroutines and Functions 

As has been indicated previously, SETLB is a preprocessor to 

BALMSETL (which is an extension of BALM obeying all the syntactic 

and semantic conventions of BALM). In particular the name-scoping 

rules are those of BALM. This fact has the following consequences: 

A variable not declared explicitly is global. To declare variables 

to be local to a given subroutine or function, use a LOCAL statement. 

Such a statement has the following form: 

LOCAL NAMEA, NAMEB , . . . ; 

It must appear as the first statement within the procedure body. 
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This statement causes the variables in the list following the 

keyword "LOCAL" to be local to the subroutine or function within 

which it appears. 

5. Modification of Variable Values by Subroutines 

BALM is address and pointer-oriented in its treatment of 

compound objects. SETL, on the other hand, is intended to be a 

consistent value-oriented language in which, as a matter of logical 

principle, operations which modify existing variable values create 

entirely new data structures and leave all other variable values 

unchanged. The indicated logical discrepancy between SETL and BALM 

raises a number 0£ problems of which it is important to be aware. 

One such class of problems concerns subroutine arguments. In BALM, 

subroutines may generally not modify their arguments since BALM 

restores all subroutine arguments to their pre-call values immedi­

ately on return from a call. However, 'simple" objects such as 

integers, truth values, etc., are directly represented in BALM 

by their values, while "compound" objects such as tuples and sets 

are represented in BALM by a pointer to the memory address at 

which an array containing its elements are stored. Modifications 

of a compound object leave the pointer to the object unchanged, 

but change the body of the object. It follows that after a 

subroutine call, changes in compound objects occurring as arguments 

will be propagated back to a calling routine. Changes in 

simple objects will not be propagated back in the same way. 

To avert possible difficulties arising from this fact it may be 

necessary to use a variable known globally both to a called and 

to a calling routine in order to get an effect normally obtained 

by using a subroutine which modifies its arguments. Alternately 

one can make use of a function returning a vector value, followed 

by a multiple assignment, i.e. one can rewrite a subroutine. 

DEFINE SUB(X,Y,Z); ... X= ... ; Y= ... ; Z = ... ; RETURN; 

as a function 
DEFINEF SUB(X,Y,Z); ... X= • • • I Y= • • • I z = • • • I 

RETURN <X, Y, Z>; 

and call the subprocedure in the form 
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<A,B,C> = SUB(A,B,C); 

The following example involving a subroutine and a main program, 
illustrates some of the difficulties discussed above. 

Program 106 

LINE STATE 
NO NO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Output 

G 

I• AN0MALIES IN ALTERING DATA OAJF.CTS AND RETURNING •/ 
I• PARA.METERS FROM SIJBROUTH;ES •/ 

/• THESE ~~OMALIES ARE EXPLAINED BY THE FACT THAT: •/ 
/• A, T~E ~BALM• LANGUAGE UNDERLYING SETLB IS A •/ 
I• PCJNTER LANGUAGE, NOT PER~ITTJNG PERMANENT •I 
I• S~BRCUTINE MODIFICATION or ARGUMENTS •/ 
/• 8, ·COMPOUND• STRUCTURES IN eALM ARE •/ 
I• PEPRESENTED BY POINTERS TO THEIR BODIES •I 
DOJ D~FINF. G(~,V,W,X,Y,2)1 

u~r,1v=~L.:X=W1 
(3) IN, Xi 
<2> IN, w; 
Y:Y+1i 
ZP>21; 
RETURN: 
ENTJ G; 
U:F,; V=OM,; W:~:1~1 X=~:1~; Y=1J Z:<3,2>; 
G ( !J, V, W, X, Y, Z) I 

PRJNT,U,V,W,X,Y,ZI 
C0"4PUTE: FlNISHi 

Program 106 

• • • <END OF FILE ON INPUT) * * * 
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6. BALMSETL Reserved Words 

a) The following is an alphabetical list of the reserved words 

of the BALMSETL system which underlies the SETLB system. 

These identifiers should not be used as names of user created 

variables in SETLB. The letter following each word has the 

following significance: 

U: Unary operator 

I: Infix operator 

B: Bracket operator 

P: Procedures 

V: Other global variables 

M: Macro keywords 

P*: BALM primitive which acts like a procedure 

ABS U 
AND I 
APPEND P 
ARB U 
ARGUMENT P* 
ATOM U 
AUGMENT P 
BACKSPAC P* 
BE M 
BEGIN B 
BLANK V 
BLANKQ P 
BCF I 
BCFN I 
BRACKET P 
BREAKUP P 
BSTRQ P 
CFRCMV P* 
CLOSE P* 
CODEQ P* 
COMP I 
COMPILE P 
COMPL P* 
CONCAT P 
CONCATV P* 
CONSTRUC P 
COPY P 
CRASHMAX V 
DEC U 
DFD U 
DIMINISH P 
DIMF P 
DIMFN P 

INEG P* 
INFIX P 
INR M 
INTERSCT P 
INTQ. P* 
IS M 
LAND P* 
LBLQ P* 
LE I 
LENGTH P 
LESF I 
LESFN I 
LESS I 
LET M 
LEVEL V 
LFROMV P 
LIST P* 
LOR P* 
LOGQ P* 
LOOKUP P 
.LT I 
MACRO P 
MAKFILE P 
MAKPROPS P* 
MACVAR V 
MAKALOCA P 
MAKVECTO P* 
MAKVLOCA P 
MAPX P 
MAX I 
MEMBER P 
MIN I 
MODE P* 

READ P 
RDLINE P* 
REMARK P* 
REMINFIX P 
REMMACRO P 
REMUNARY P 
REPEAT I 
RESTAT P 
RESUMEAL P* 
RETURN U 
REWIND P* 
RPLACA P* 
RPLACD P* 
SAVEALL P* 
SAVEBALM P 
SAVESETL P 
SAVSTAT P 
SETINDEX P 
SETMODE P* 
SETOF M 
SETPROPL P* 
SETPROPY P 
SETQQ P 
SETSUB P* 
SETSUBV P* 
SETVALUE P* 
SFRMOID P* 
SFRMOV P* 
SHIFT P* 
SIM I 
SIZ P 
SIZE U 
SKIPWD P 
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DO B NE I SOF I 
DSLSH I NELT u SOFN I 
DUMMY p NEXTELT p STKTRACE P* 
DUP p NEQUAL I STRING P* 
EL I NEWAT p STRINGOF u 
ELSE I NIL V STOP* p 
ELSEIF I NILQ P* SUB P* 
END I NILVECT V SUBST p 
ENDFILE P* NL V SUBV P* 
EQ I NOMEGAP p SUCH M 
EQUAL I NOT u SYMDIF p 
ERROR p NPOW p SYSLIST V 
EXECUTE p NULB V TAIL u 
EXISTS M NULC V TAILN I 
EXPAND p NULL u TAILSPEC u 
FALSE V NULLSET V TALKATIV V 
FIRSTWD p NULT V THEN I 
FOR u NULLTUPL V TIME P* 
FORALL M NUMARGS P* TL u 
FR M OCT u TRACE V 
FROMSET p OCTMODE V TRANSLAT p 
GARBCOLL P* OF I TRUE V 
GE I OFN I TTYFLAG V 
GENSET p OMEGAP p TUPQ p 

GENSYM p OPEN P* TYPE u 
GENTUP p OR I UNARY p 

GETPROP p ORDINAL p UNDEF p 

GETWD p PAIRQ P* UNDFD u 
GO u PAIRTUP* p UNION I 
GOTO u PL u VALUE u 
GT I POW p VECTOR P* 
HD u PRINT p VFROML p 

HEAD u PROC B VFROMS p 
IDENTQ p PROCTRAC p WHERE M 
IDFROMC P* PROPL P* WHILE u 
IDFROMS P* PROTECT P* WITH I 
IDQ P* PRT P* WRLINE P* 
IF u PRTMAP p XOR P* 
IFRO.MID p PTRACE p ZR u 
IN M QUOTE P* 
INCS I QUANT N 
INDEX p RANDOM p 
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b) SETLB Use of BALMSETL Functions 

Many of the BALMSETL reserved words listed above refer to 

functions of interest and may be used in SETLB. For example: 

STRINGOF ( OBJ) This function returns a character 

string which is the external repre­

sentation of the object OBJ. 

o) SETLB-BALMSETL Correspondences 

It is useful --especially for debugging purposes-- to know 

the correspondence betv.8:!11 the symbols used to represent various 

SETLB features and the BALMSETL keywords into which these are 

translated. Most of these names remain the same after translation 

or are only slightly changed and can be easily recognized when 

they are printed out as part of the SETLB debugging information. 

Those whose translated forms are not so obvious are listed here. 

SETLB 

SUBR. 
OM. 

II 
C(I:J) 

+ (when used for length of a string) 

X + A 

+ (when used for #elements in a set) 

X OUT. S 

X IN. S 

X OUT. S 

_:: :Xl, . .. , XN~ 

F (X) 

F<X> F 

F[X] 
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BALMSETL 

CODEQ 

UNDEF 

MOD 

SUB(C,I,J) 

SIZE 

X EL A 

NELT 

DIMF (S ,X) 

AUGMENT(S,X) 

DIMF(S,X) 

GENSET(Xl, ... ,XN) 

F OF X 

F SOF X 

F BOF X 



7. Additional Name Restrictions 

a) Variable names should not exceed 8 characters and 

period-deliminated operator names should not exceed 

6 characters. 

b) Names ending in ZZ are specially used by the preprocessor 

to translate period-delimited operator names and should 

generally be avoided. 

B. Control Card Parameters 

The SETLB translator provides several options which 

the user may select by supplying a list of the necessary 

keywords on the control card initiating execution of SETLB. 

The keywords and their interpretation are as follows: 

a) XRF, the cross-reference option. If this option is 

selected the output file will include a complete cross 

reference map for all names in the SETLB input program. 

b) LIST, code list option. If this option is selected the 

output file from the translator will include a listing of 

the BALMSETL code generated. 

c) ABT, error-abort option. If this option is selected, the 

translator will abort if any errors are detected in the SETLB 

source, or if an internal translator error occurs {such as 

overflow of a needed array) which would make production of 

BALMSETL me~ningless. If the compiler aborts, a dayfile 

message will indicate the reason. If the compiler tenninates 

normally, the dayfile message 1SETLB DONE~ is issued 

d) SYSERR, system-error-trace option. If this option is 

selected, the output listing will contain additional 

information which may help trace errors in the translator. 

The additional output is quite voluminous and has an obscure 

form; thus this option should be used only by someone familiar 

with the SETLB translator and one who is trying to track down 

the source of a potential translator error. 
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e) SL, initial value of SETLISTC control word. Default is 

01; note that SETLISTC word consists of six bits, which 

are interpreted as follows (counting from left to right, 

one to six). 

1 - restore saved word 

2 - save current word, set word to value given 

3 - list tokens sent to parser 

4 - not used 

5 - list macro definitions 

6 - list input cards as read in 

Note that SL value on control card is octal, e.g. SL= 13. 

f) SLO, SETLISTC over-ride. Default is off. If enabled, 

occurrences of SETLISTC within input text are ignored; 

so initial value of SETLISTC word holds for entire run. 

g) L, label option, which provides for up to a ten-character 

label for the run (label must not contain commas ( ,) ) . 

Note that the first statement of the BALMSETL prelude is 

JOBLABEL = USERLABL; 

where USERLABEL is user-supplied label. This provides 

for convenient labelling of BALMSETL input and of any save 

files produced . 

. h) BULL bulletin option. Default is on. If option is enabled, 

then the permanent file SETLBBULLETIN is copied to the 

user's output file. This is to provide users with immediate 

notice of system changes and problems. 

i) HELP request debugging aids. Default is off. If debugging 

aids are requested, SETLB translator will insert calls to 

trace routines in the BALM system at key points of the user's 

source code. Details of the use of these features are 

described under the heading "debugging features" on page 194. 
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Use of Translator Options 

Translator options are specified by providing a list of 

keywords and values, enclosed in parentheses, on the control card 

initiating execution of the translator. A keyword is assigned 

a value by following the keyword with an equals sign (=) and the 

value. The value must be a nonnegative integer, or one of the 

words ON, YES, T, or TRUE (which corresponds to a value of 1), 

or one of the words OFF, NO, F or FALSE (which corresponds to 

a value of 0) The default settings are as follows: 

XRF = FALSE 

LIST= FALSE 

ABT = TRUE 

SYSERR= FALSE 

i.e. 

i.e. 

i.e. 

i.e. 

no cross-reference map produced 

BALMSETL code will not be listed 

on output file 

compiler will abort if errors occur 

no optional system error-trace 

output provided 

In this connection, note that all of the following control 

cards are equivalent: 

SETLB. 

SETLB. (XRF=FALSE, LIST=NO, ABT=TRUE, SYSERR=0) 

SETLB. (L I S T = 0 F F) (since blanks are ignored) 

Here are some additional examples of parameter lists: 

To obtain cross-reference map and list BALMSETL code on 

listing file, use 

SETLB. (XRF, LIST) 

To obtain no cross-reference map and no list of BALMSETL code 

use 

SETLB. 

To provide some trace information if an error occurred on a previous 

run and to force the compiler to produce BALMSETL even in the 

presence of errors, use 

SETLB. (ABT=NO, SYSERR=YES) 
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9. Debugging Features 

The SETLB translator provides very useful debugging •features. 

At the user's request, the tran~lator will insert calls to 

trace routines which the BALM system converts into the BALM 

code which it produces. At execution time the values of 

associated global variables may be set by the user to control 

the generation of debug output by the BALM trace routines. 

The trace features currently available provide for the 

tracing of program flow, entry and return to subprograms, 

and trace of assignments to selected variables. 

As an example of how the trace package works; consider 

~h2 SETLB sequence for the last few lines in a hypothetical 

procedure P: 

A= 10; RETURN A; END P; 

With no debugging aids invoked, this translates into 

the BALM sequence: 

A= 10, RETURN(A), END P; 

If flow tracing is requestea, then the BALM code produced is: 

ATSN(2,=P), 

A = 10, 

ATSN ( 3 ,=P) 

RETURN (A) , 

If, in addition, ENTRY/EXIT tracing is requested, the code 

generated is: 

ATSN(2,=P), 

A= 10, 

ATSN ( 3, =P) , 

ATEXVAL=A, 

ATEXITV(3,=P,ATEXVAL), 

RETURN ( ATE XVAL) , 

If stores to A are being traced, then the code is 

-194-



ATSN (2 ,=P), 

A= 10, 

ATSETV(2,=P,=A,A), 

ATSN ( 3, =P) , 

ATEXVAL=A, 

ATEXITV ( 3 ,=P ,ATEXVAL) , 

RETURN (ATEXVAL) , 

Note that the form t=Pt will print in BALM as -P- since 

the binary use of 

by the BALM system. 

t = f is interpreted as the fquotet operator 

When the code shown above is executed, the output will be 

as follows: 

AT LINE 2 IN p 

AT LINE 2 IN P, A IS 10 

AT LINE 3 IN p 

RETURN FROM 3 IN P WITH VALUE 10 

If, however, the code is .set up for output which is only to 

include the traces of assignments and ENTRY-EXIT statements, the 

output will be as follows: 

AT LINE 2 IN P, A IS 10 

RETURN FROM 3 IN P WITH VALUE 10 

The example illustrates three levels of user control of the 

debug options. The user may separately decide 

A. Whether to generate calls to BALM trace routines; 

B. Which kinds of calls to generate; moreover 

c. The user has available execution time control over the 

debug output-nonoutput decision. This control is 

exercised by changing the values of global variables 

examined by the trace routines. 

We shall now discuss these options in more detail. 
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) 

9.1 Activating the Debug Package in SETLB Translator 

a) Debug control card parameters for the SETLB translator are 

as follows: 

ATSN compile calls tracing program .flow 

ATEQ compile calls tracing assignments 

ATEX compile calls tracing ENTRY and EXIT for routines 

ATSNTRC set initial value of trace switch ATSNTRC 

ATEQTRC set initial value of trace switch ATEQTRC 

ATEXTRC set initial value of trace switch ATEXTRC 

If none of these options is selected, the output of the 

SETLB translator will not include debugging statements. 

The special parameter for HELP is equivalent to the 

combination .ATEX, ATSN, ATEQ, and is the easiest way 

of involving the most commonly used debug options. 

b) SETLB Statements Controlling Debug Features 

A "CHECK" statement is available in the SETLB language. 

This statement has the form: 

<CHECK/ NOCHECK> <FLOW/ STORES/ ENTRY> <NAMELIST>: 

where '/' indicates that one of the options is allowed. 

The <NAMELIST> is optional, and if present, consists of a 

list of names, separated by commas, and enclosed in 

parentheses. A NAMELIST is only available for the STORES 

option. The initial situation assumed by the translator is: 

CHECK FLOW; 

CHECK STORES; 

CHECK ENTRY; 

Ac.cordingly, the debug system's global trace-control switches 

are initialized as 

ATSNTRC=F. ; 

ATEQTRC=T. ; 

ATEXTRC=T.; 
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With these settings effective at execution time, only assignments 

and ENTRY/EXIT traces will be printed. 

With the above setting of its parameters, the translator will 

insert calls to ATSN at the start of each executable statement, 

calls to ATENTRY at start of each procedure, calls to ATEXIT 

before a RETURN statement, and calls to ATSET after assignment. 

The user can control the insertion of the trace calls by 

inserting trace statements in his program. For example, to trace 

assignments to all variables use CHECK STORES; to trace assignments 

to all variables except X and Y, use CHECK STORES; NOCHECK 

STORES (X, Y) ; . 

One of the results of using the (HELP) debugging feature is 

that the printed listing includes, in addition to a card sequence 

number under the heading LINE NO, another sequence number under 

the heading STATE NO, standing for "statement number". This 

latter number refers to the number of preceding executable 

clauses. 

As stated above the BALMSETL system will initialize the trace 

print switches to be TRUE, except for flow trace switch ATSNTPC. 

The SETLB statement 

ATSNTRC=T. ; 

should be executed to initiate full program flow trace. 

As an additional example of the use of the trace switches, 

suppose that an error occurs just after the tenth pass through 

a loop on the variable I. By inserting the statement: 

IF I GT. 10 THEN ATSNTRC = T.;; 

in the loop, a full flow trace will be initiated only when I is 

greater than 10. 
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15. BEWARES 

In this section, we list common SETLB pitfalls which may trouble 

the SETLB user and which he will have to learn to avoid. Most of 

these difficulties relate to the limitations of the current imple­

mentation and will not permanently be characteristics of the SETL 

language. 

"Beware" 

1. Right associativity 

2. Local and global variables in procedures 

3. Variable modification in procedures 

4. Side-effects of compound structure 

5. Reserved words 

6. Name restrictions 

7. Lables and go-to's within iterations 

8. Subroutine arguments used as global variables 

9. Effect of multiple assignments. 

10. Distinction between IN. and+, OUT. and FROM. 

11. Distinction between infix subroutine calls and infix operators 

12. Errors for which no diagnostic or a confusing (perhaps, BALM­

level) diagnostic is issued 

13. If a set defines a function, then in order to change the value 

of the function for a particular argument one may use a 

sinister call, e.g., after executing 

S(l) = 5; 

the new value of Swill be 

S = ~<l,5>,<2,4>~ 

If S(l) is now used in an expression it will return the value 5. 

Please beware that in the current implementation only the 

simplest forms of siniGter calls (such as the one shown above) 

will work. 

]4. The residue (remainder) operator cannot be used as a compound 

operator. 
15. Whenever it is legal the use of parentheses is strongly 

encouraged. 

-198-



Related Literature 

Falkoff, A. D. and Iverson, K. E. APL/360 User's Manual. 

IBM Corporation, Thomas J. Watson Research Center, 

Yorktown Heights, New York (1968). 

Morris, James B., A Comparison of MADCAP and SETL. 

University of California, Los Alamos Scientific Laboratory, 

Los Alamos, New Mexico (1973). 

Schwartz, J. T. Abstract Algorithms and a Set Theoretic 

Language for Their Expression (preliminary draft), 

Computer Science Department, Courant Institute of 

Mathematical Sciences, New York University (1971). 

Schwartz, J. T. On Programming: An Interim Report on the SETL 

Project, Installment I: Generalities. Computer Science 

Department, Courant Institute of Mathematical Sciences, 

New York University (1973). 

Wells, M. B. Elements of Combinatorial Computing, Pergamon Press, 

Oxford (1971). 

-199-



Index 

Absolute value operator ABS. 138 

Arbitrary value operator ARB. 34 

Arithmetic in SETLB 56-57 

Element 

ELSE 

Enumeration operator 

ASSERT. statement 

BALM 

Binary operator 

150 

2,114 

140,154 

Boolean expressions 14,18,22,148 

Boolean operators 20,22 

Built-in functions 

Changing sets 

Character set 

Character strings 

Checking a formula 

Comment card symbols 

Comparison operators 

Components 

Compound operators 

Conditional expressions 

Continuation of cards 

Control cards 

Control statements 

Crash 

Data cards 

Debugging 

DEC. operator 

Del•imi t sets 

Dice 

Difference of sets 

Domain 

138 

31 

3 

122 

94 

8-9 

20 

39 

90,93 

117 

9 

5 

86 

40 

160 

4,194 

143 

11,54 

141 

27 

73 

Error termination 

Existential quantifiers 

-- .locating an element 

Explicit set formers 

Finite domain 

-- sets 

Flowcharts 

FROM. operator 

Function 

-- defined 

GO TO 

GO TO -less programming 

Head operator (HD.) 

HELP 

IF 

IN. operator 

Including set operator 

Indexing of tuples 

Infinite sets 

Integer arithmetic 

Integer numbers only 

Intersection of sets 

IS. operator 

Iterator 

11,23 

108-109 

29,122 

42,68 

59-61,107, 
127 

61 

11 

73 

73 

86 

144 

73 

120 

114 

116 

50 

6-7 

108-109 

142 

(INCS.) 18 

41 

73 

6-7 

57 

29 

146 

86 

Duplicate elements ll,13,30 Koenigsberg Bridge problem 164 

-200-



Labels 

Index 
(Continued) 

114,145 Random function 

LESS. operator 31,33,142 Range of a function 

Lexicographic comparison 135 READ 

141 

79 

163 

Remainder (residue) operator 56 

Macros 151 

Maximum value operator (MAX~ 139 

Member 13 

Minimum value operator (MIN.) 139 

-- as a compound operator 140 

Modifying tuples 44,47 

Monadic operators 154 

Multiple assignments 67 

Scope 

Selection operator 

Set formers 

Set equality 

Set inclusion (INCS.) 

Sets 

Sorting 

Multivalued functions 7 3, 80 Spn.ces 

NEWAT. operator 

Newton-Raphson method 

NOOP. instruction 

NOT. 

Subprograms 

147 Subroutines 

156 Subset 

145 Substrings 

14 Such that 

87 

34 

52,57,107 

19 

18 

11 

127,134 

13 

130 

130,132 

13,18,19,23,52 

125 

52 

NPOW-n-element subset 25 Summary of SETLB features 176 

52 Null character string(NULC.) 122 Symmetric difference 

Null set ( NL.) 11 

Null tuple (NULT.) 50 Tail or a tuple 44 

so 
108-109 

169 

39 

73 

148 

Number of elements in a set 

Object types 

OM. 

Ordered pairs 

OUT. operator 

Pig Latin problem. 

Power set (POW) 

Procedure rules 

Prime number generator 

PRINT. 

Printing fixed text 

29 

148 

41,48 

73 

142 

TL. operator 

THEN 

Translator 

Tuples 

-- as a function 

TYPE. operator 

Undefined value 48 

169 Union of sets 27 

25 Universal quantifier 62,107 

22 -- locating an element 63 

92 WHILE 110 

4 WITH. operator 31,33,68,142 

8 

-201-



This book mny be kcpM AR 7 l 98 } 
FOURTEEN DAYS 

A line will be charged for each dny the book is kept overtime. 

CAYLORO 1'2 



.. 

. , 
I 

:1 

" ., 

J 

,, 

;j\r.jfl •: I i 1 
u!Ji.1-., ... L. 1 ... 

LECTURES 
Mullish 
A SETLB primer . 

/ 

c.6 

', ~1huAL: ~\ff-~(,, t3- Z)~ fuf~ 
Mullish 

AUTHOR 

A SETLB primer. 
TITLE 

[ DATE DUE BORROWER'S NAME 

l • . " 

N.Y.U. Courant Institute of 
Mathematical Sciences 

251 Mercer St. 
New York, N. Y. 10012 

1111111111111mm1~imim11111111 
3 1182 01769 9058 


	Table of Contents
	1. Introduction
	2. Sets
	3. Tuples
	4. Additional information on sets and tuples
	5. Sets of pairs and tuples used as maps
	6. Control statements
	7. Character strings
	8. More examples of the use of SETLB
	9. Subprograms
	10. Built-in functions and oeprators provided by SETLB
	11. Reading from data cards
	12. Some sample programs
	13. Summary of SETLB features
	Related literature
	Index



