ON PROGRAMMING

An Interim Report on the SETL Pfoject

Part I: Generalities

Part II: The SETL Language and Examples of Its Use

(Parts I and II are consolidated in this volume)

J.acob T. S chwart;. z

Revised June 1975

NOTICE
‘| This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy ‘
and A \L jon, norany of |
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express ot implied, or sssumes any legal f
Bability or resp ibility for the

or 1 of any i ion, app productor | |-
1 | process disclosed, or represents that its use would not
| infringe privately owned rights.

T SR ATt NP
- sentr Computer. Science; De :
Aol Computer; Scke ce, Department:-.»

. N
Courant Institute of Mathematical Sciences

New York University

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED'

)

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

This work was supported by the National Science Foundation
Contract NSF-DCR 75-09218 and by the U. S. Energy Research
and Development Administration,: “Contract E(11l-1)-3077.

-~ b F ‘ —
ASR BRI .o T AT T T R

The Courant Institute fpubiisﬁés a number of
sets of lecture notes. A list of titles
currently available will be sent upon request.

Courant Institute of Mathematical Sciences
251 Mercer Street, New York, New York 10012

ii

Table of Contents

Preface
Item
1. On the sources of difficulty in programming
2. A second general reflection on programming
3. Additional general reflections on programming
4. On the uitility of an inefficient specification language
5. Introductory discussion of SETL B
6.. Some central technical issues in programming language
design
. SETL implementation and optimization
. Technical perspectives -
. A precis of the SETL language
10. Correspondence between SETL and SETLA
11. SETLA user's manual
12. Description of the SETL language

First Part. Object types} expressions.

1.

2.
a.
b.
c.
d.

e.
£.
g.
h.
i.
j.
k.

Introduction

Grammar of expressions

Elementary set expressions

Elementary tuple expressions

Functional application '

Boolean expressions, quantified expressions,
precedence rules

Integer arithmetic expressions, string expressions
Real arithmetic expressions

Label expressions'

Blank atoms
Set formers

Conditional expressions

The use of functions with expressions;
programmer—-defined operations

Examples of the use of the SETL expression forms
The object-type operator. The special operator, is.

-iii-

Page
vii

12
21
28
38

44
54
69
79
88
90
160

160
160
l64
165
165
166

168
172
173
174
174
175
176

177
178
179

|

Item 13. Description of the SETL Language.

‘Second part. Assignment statements.

Item 14. Description of the SETL Language

Third Part. ~Additional Statement and Expression Forms

1. Labels, go-to statements, iterations, and
-,‘ compound operators
2. . ~ Iterators over tuples, character strings and

bit strings

3. If-statements, flow statements
q. Subroutine and function definitions,
' initialization
5. Additional examples of the use of SETL
a. . Elementary examples

b. Sorting
6. Namescoping, ariation of references caused by
recursive subroutine calls and returns. Initiali-
zation rules applying to subroutine names
7. Macros

(o]
.

Input and output

Item 15. A library of examples of the use of SETL
1. Algorithms .for lists and trees
. A lexical scanner algorithm

. Miscellaneous combinatorial algorithms

2

3

4. Algorithms for permutations

5. A data-compaction algorithm

6. An algorithm for the SETL input-read process

7. Parsing and other miscellaneous compiler-
related ‘algorithms (including macroprocessor)

8. Algorithmé.for tpeorem proving by the
resolution method .

9. ‘Some artificial intelligence algorithms

iy~

Page
181
181

196

196
196

203
204

212
216
216
217

227
249
255

260
260 .
267
278
301
307
310

317

355
397

Item 16. Some Optimization algorithms

1. Graph ordering

2. Intervals, derived graphs, and live-dead analysis
3. An algorithm for use-definition chaining

4. Node splitting; an algorithm for live-dead

analysis including node splitting
5. An algorithm for redundant expression

elimination and code motion

6. Operator strength reduction
7. Some packing algorithms useful in register
assignment

Item 17. Additional Features of the SETL Language

1. Supplementary Discussion of Generalized Assignment
2. An Extended Example of the Use of Generalized -
Assignments
3. Code Blocks within Expressions.
Inyerted Subroutine, Functiprn, and Macro Definitions
4. Additional Discussion of the SETL Namescoping

Facility: the AlZas Declaration

Item 18. Internal Specification of the SETL Primitives

1. Introduction. Design Issues and Decisions

2., SETL Object Representations at the Machine Level
and at the Level of this Specification

. Special Conventions Concerning Q

Keypunch Conventions Used in the Specification

L6 2 B S ¥

. Table of Contents, Index of Routines in
this Specification, with an Account of
Call-Caller Relationships
6. Detailed Specification of the SETL Primitives
Bibliography
Appendix 1. Catalog of SETL Newsletters as of June 1975

Index

—v—

423
423
427

435

439

452
470

485
489

489
500
509

512

515
515

518

526
o

528

529
537

657
658
663

| THIS ‘PAGE.
'WAS INTENTIONALLY
- . LEFT BLANK, .- ..

Preface

The work of which the present manuscript gives first results
has its roots in certain musings concerning the relationship
between mathematics and programmiﬁg in which the author has
from time to time indulged. On the one hand, programming is
concerned with the specification of algorithmic processes in a
form ultimately machinable. On the‘other, mathematics describes
some of these same processes, or in some cases merely their
results, almost always in a much more succinct form, yet in a
form whose precision all will admit. Comparing the two, one
gets a very strong even if initially confused impression that
programming is somehow more difficult than it should be. Why
is this? That is, why must there be so large a gap between a
logically precise specification of an object to be constructed
and a programming language account of a method for its construc-
tion? The core of the answer may be given in a single word:
efficiency. However, as we shall see, we will want to take this
word in a rather different sense than that which ordinarily
preoccupies programmers.
| More specifically, the implicit dictions used in the language
of mathematics, which dictions give this language much of its
power, often imply searches over infinite or at any rate very
large sets. Programming algorithms realizing these same construc-
tions must of necessity be equivalent procedures devised so as to
cut down on the ranges that will be searched to find the objects
one is looking for. 1In this sense, one may say that programming
18 optimization and that mathematics is what programming becomes
when we forget optimization and program in the manner appropriate
for an infinitely fast machine with infinite amounts of memory.
At the most fundamental level, it is the mass of optimizations
with which it is burdened that makes programming so cumbersome
a process, and it is the sluggishness of this process that is
the principal obstacle to the development of the computer art.

These reflecﬁions suggest that some of the weight of program-
ming be thrown off by passing f;om the programming dictions

ordinarily.uséd to a more highly "mathematicized" language.

-vii-

Our hope to be able to make something of this générai idea is
raised by the observation that efficiency has two rather different
sides. One is mathematical and abstract in character. What
intermediate logical constructs must be built as a process
proceeds, and how large are the sets of logical objects over
which searches must be extended during such a process? The other
side of efficiency is machine-related and basically two-fold.
First, we must ask the question of inner loop efficiency: into
what tabular representations can necessary abstract structures

be mapped with advantage} and once this representation is
established, how efficiently can the necessary coded processes

be made to effect these tables? Then we must ask a fundamental
question related ultimately to the speed chasm which separates
electronic from electromechanical memories: How large are the
data sets with which an algorithm will force us to deal? How can
these data sets best be staged between different grades of memory
so as to hurry the completion of an algorithmic process? We may
remark that machine-related efficiency issues are apt to have as
much or more to do with these memory management problems as with
problems of inner loop coding, even though most programmers,
especially those with an assembly-language background and bias,
tend to think more of the latter. Our hypothetical mathematicized
programming language would almost completely mask all machine-
related efficiency issues. There is, however, no reason why’it
should hide those more abstract issues of process design which

can easily have a more important bearing on efficiency. Indeed --
and this is one of the benefits for which we may hope -- it should,
by masking the former, enhance our ability to concentrate on the
latter. .

The foregoing considerations lead one to suspect that a program-
ming language modeled after an appropriate version of the formal
language of mathematics might allow a programming style with sbme
of the succinctness of mathematics and that this might ultimately
enable us to express and to experiment with more complex algorithms
than are now within reach. The notion of language‘that appears

here then demands additional clarificgtion. Speaking very general.

-viii-

4

a computer language is a set of notations referencing objects

and processes, and satisfying all the following constraints:

1. A formal distinction between well-formed and ill-formed
programs exists, and a "syntax checker" capablé of administering
this distinction can be built.

2. That class of objects and processes to which well-formed
programs refer can be defined rigorously.

3. A "compiler" capable of transforming a well-formed
program into the objects and processes that it represents can be
built. These objects can in fact be represented within a computer,
and the processes can in fact be carried out.

Since it refers as a matter of course to infinite sets, the
language of mathematics has only the first two of these properties,
not the third. Nevertheless, it is clear that in searching for a
mathematicized programming language we will wish to start from some
appropriate version of the language of mathematics. With which of
the several variants of formal mathematics that might be contenders
shall we begin? We choose to begin with set theory, formally
represented, let us say, in its von Neumann-Bernays form. This
is a language relatively free of artifice, close to the heuristic
spirit of informal mathematics, and a formal system with which, in
cne or another version, there is a great-body of safisfactory
experience. 1In particular, we know that using the very small and
simple set of primitivies that this language embodies that the
whole structure of mathematics, from abstract algebra to complex
function theory, can be built up rapidly, intuitively, and in a
manner largely free of irritating artificialities. Taking this as
our starting point, our problem becomes the following: Adapt
set-theory to be machinable.

A development project sponsored by the National Science Founda-
tion began at New York University in the Fall of 1970 and has
continued up to the present date. Our project has concentrated -
on expressivity rather than efficiency as a language goal. We
have felt that our somewhat unusual concentration has removed

some of the obscuring underbrush that often surrounds the discussion

-ix-

»

of fundamental issues in programming and has alib&éd us to
comprehend certain -issues more clearly than before. The target
language of this project was designated as SETL (for 'set
language').
Our work over the last few years has been embodied in a
miscellaneous collection of semi-internal publications, the main
items of which are as follows: i
(a) A manuscript entitled "Abstract Algorithms, and a Set-
Theoretic Language for Their Expression." This discusses certain
general issues of programming language design; gives "users
manual"” information on a first version of the SETL language, and
then presents a fairly wide variety of algorithms in SETL.
(b) A series, currently at No. 82, of miscellaneous studies
and working papers growing 6ut of the overall project. This sefies
has appeared under the name 'SETL Newsletter'.
(c) A shorter early form of the manuscript (a), coﬂtaining
however a certain amount of material which was not repeated in
(a) and which does not appear in the present manuscript.
currently (summer 1975) 3 language ('SETLA') embodying a
substantial subget of the intended SETL language has been
implemented for the CDC 6600, and is in experimental use }
at NYU. Development of a fuller compiler ' yielding considerably : [
\

more efficient code continues under way.

- X

The material presented in the present volume is the second of
three expected parts of an overall summary of work during the past
several years on SETL, a new programming language drawing its
dictions and basic concepts from the mathematical theory of sets.
The general approach followed in this work, which has been carried
out in the Conputer Science Department of New York University, was
presented in the first volume of a series of three, entitled
Installment I: Generalities. The present installment focuses
directly on the details of the SETL language as it is now defined.
It describes the facilities of SETL, includes short libraries of

miscellaneous and of code optimization algorithms illustrating the
use of SETL, and gives a detailed description of the manner in '
which the set-theoretic primitives provided by SETL are cufrently
implemented. A third volume, to be entitled Installment III:

Extension and Optimization, is planned.

To have cited original sources for the: numerous algorithms
for which SETL codes are given in the present volume would have
involved us in a considerable bibliographic effort, and we have
not done so. The reader will recognize, however, that algorithms
due to D. Knuth, John Cocke, Ira Pohl, Jay Earley, R. Floyd,
and many other workers in various fields of computer science appear
in the following pages. Those interested in tracing the
algorithms which we give back to their original sources may
consult the comprehensive treatise of Knuth, which gives extensive
bibliographies and a careful historical account of many algorithms.

An effort has been made to achieve accuracy in the SETL
algorithms given in the present work. Each of these algorithms
has been read by several people; where implemenfed SETLB versions

—ofthe algorithﬁs ekist, the algorithms given have been compared
with them. Nevertheless, it is to be feared that some bugs remain
in our algorithms. Readers discovering such bugs are asked to

send corrections to the author.

=-Xxi-

Currently (Spring 1973) a revised and considerably more
efficient version of the presently available SETL subset language
('SETLB') is approaching completion. When running, this new
version will permit a substantial increase in the level of
experimental SETL use. ,

A comprehensive catalog of SETL-related material, including
an up-to-date listing of the miscellaneous studies and working
papers appearing occasionally as the 'SETL Newsletter', has
been prepared. This catalog can be obtained by writing to

SETL Publications Coordinator
Computer Science Department
New York University.

251 Mercer Street

New York, New York 10012

The work presented here is, like all computer work collective;

all of it owes much to my collaborators on the SETL project.

Mr. Henry Warren played a central role in the detailed design .

and coding of the 'run time library' of routines realiiing the
primitive SETL operations. David Shields has made numerous
important contributions both to the specification and to the

. realization of SETL, as did Kurt Maly, Elie Milgrom, and Gray
Jennings. We have profited in many ways from close contact with
the elegantly realized BALM language of Malcolm Harrison, and from
frequent technical discussions with Harrison. Useful criticisms
of earlier versions of SETL, and in some cases extensive sugges-
tions for its imporvement, were made by Jay Earley, Rudolph Krutar,
Patricia Goldberg, and G. Fisher. Ken Kennedy developed many of
the SETL otpimization algorithms presented in Item 16. The
progress made to date in realizing SETL reflects the efforts of
Aaron Stein, Bob Abes, Ed Schoenberg, Stephanie Brown, Edith Deak,
and Samson Gruber. Kent Curtis of NSF has been an important source
of general encouragement for our project, and has made substantial
direct technical contributions to it. Milton Rose of the AEC had
much to do with the inception and continuation of our work. I

would also like to thank Robert Bonic for useful discussions

concerning SETL, and Sam Marateck, Sheldon Finkelstein, Jer ry Hobbe -

Robert Paige’, Kamal Abdali, Beatrice Loerinc, Max Goldstein,
Henry Mullish, Aaron Tenenbaum, George Weinberger, Michael Brenner,

and Peter Markstein for their participation in our work.
: -xii-

. o

Item 1. ON THE SOURCES OF DIFFICULTY IN PROGRAMMING.

Erogramming'is difficult, expensive, and highly time-consuming.
That this should be so is surprising in view of the fact that a
programming effort normally begins with what in most scientific
disciplines is not a problem but its solution, namely, an overall
algorithmic plan worked out to a convincing level of heuristic
completeness. We see the explanation for this surprise as lying
in certain general principles of complex constructions,
principles which suggest certain views concerning basic strategic
issues in the design of pfogramming languages.

The development of a complex program, like the construction of

. any highly structured object, consists of a progression of steps

that supply piece after piece of a total. For the total to be
correct it is, of course, necessary that all these separate
elements cohere correctly. Each element must therefore satisfy
certain constraints. The set of all those constraints that affect
the choice of a program element E may be called the local context
of E. Note that in typical programming situations local context
will be defined by a miscellany of restrictions, particularly

the following.

1. Syntactic restrictions determined by the programming
language being used and by any definitional extensions to the
language that may be operative in a given context.

2. Semantic requirements reflecting particular properties of
subprocesses (already defined or to be defined) that are to be
invoked in a given context.

3. Semantic requirements related to the structure of the data
objects to be manipulated in a given code section. '

4. Accumulated odds and ends, as, for example, restrictions
implied by the previous uses of particular data items, subroutine
names, or so forth. '

As noted, a program is built by choosing a sequence of elements,
each correct in its local context. The probability that a given
element E will be correctly chosen will fall off rapidly with

lncreasing complexity of its local context, and, beyond a certain

-1~

S

threshold T of complexity, this probability will effectively be
zero. The inverse of this probability measures the .difficulty

of choosing a given program element corrrectly, or, what comes

to much the same thing, the number of iterations in debugging

that will be required before the fully corrected form of an
element is attained. 1In this connection it is useful to bear in
mind the (merely suggested) shape of the difficulty versus context-

complexity curve shown in Figure 1 below.

D(c)

Figure 1. Local context complexity ¢ vs. the difficulty

D(c) of completing an item in compound structure.

The line of thought which leads us to the curve shown in Figure 1
may be extended to give an overall theory of the programming process.

Suppose that a total program P consists of elements El""’E and
that the local complexity of context of the element E is C. Then we
suggest that the overall effort required to complete the entire

program P will be measured by
(1) ‘tot(P) - D(Cy) * ... - D(C)

where D is a function growing rapidly with C and becoming quite
large at some finite complexity threshold T. A formula of this : |
sort can account for various observed features of the programming

process, including the very large fluctuations ‘that the quantity

-2-

tot (P) exhibits even when P remains fixed. (One group of program-
mers may complete a project many times more rapidly than another,
even when both groups are involved with quite similar projects.)
We take this to reflect the rapid growth of D(C) with C, a growth
that would imply that relatively small increases in logical
systematization, applied consistently, could have a substantial
effect on the effort tot(P). The very large observed variations
in individual programmer activity can similarly be derived from

smaller individual variations in complexity tolerance.

1 The formula for total programming effort suggested above leads
also to potentially useful insights concerning the development of

a programming project during its lifetime. When an element E of

a program is initially "sketched out," the logical complexity of
its local context is momentarily elevated because various still-to-
be-resolved uncertainties concerning undeveloped elements of P
form part of the initial logical context of E. We call this transi-
tional element in the context complexity of E external irresolution
complexity. When the whole of a first.draft of P is completed,
this temporary contribution to local complexity disappears, ideally
allowing the elements E to be confirmed (or revised as necessary)

a good deal more surely and rapidly than when they were first
elaborated. A contrary force arises, however, from the fact that
various details specified during the development of elements
Ejse..,E (and especially those relating to data structures)
become part of the context of E. We call this contribution to the
context complexity of E accumulated external complexity. The accumu-
lation of external complexity may cause projects to behave pathologi-
cally, the context complexity of key elements actually increasing
over the life of the project, which may make project completion
impossible or at least very much more tedious than initially
estimated.

These last remarks suggest certain principles that might be
applied to determine the order in which the various parts of a
complex project can most usefully be tackled.

1. The most complex elements of the project should be surveyed
first, and the relationships of these elements to the remaining
project elements (their "external environment") determined to some
degree of approximation. Overall decisions concerning those aspects
of the simpler project elements that form significant parts of the
logical context of the more complex elements should then be taken.
These decisions are to be made tentatively but should be sufficient-
ly firm and detailed to relieve the more difficult elements of most
of their external irresolution complexity.

2. Full program development should then begin with the most
complex project elements, which should be brought relatively far
along before detailed work on the simpler project elements is begun.
Accumulated external complexity will then complicate only the
>impler project elements which will have a less harmful effect
than increases in the context complexity of already compllcated
elements. [continued on next page]

-3~

The view of the programming process embodied in formula (1)
leads to the conclusion that a main aim of any programming
language design must be to provide tools which make it possible
to describe the whole of a desired totality in a maximally
modular fashion. That is, we need to invent mechanisms capable
of preventing the propagation of complexity between sections of
an extensive program.

Here however a basic difficulty arises. By making a program
highly modular, which implies the wholesale use of standardized
data structures and standardized rather than specially tailored
process-patterns, we commit ourselves to a style of programming
which may imply certain very substantial inefficiencies. A
modular style of programming hides away many important internal
process details which could be exploited by a (purely hypothetical)
all knowing anddperfectly accurate hand programmer, uses ineffi-
cient general routines in situations which a hand programmer
could recognize the use of much more efficient special sequences
to be appropriate, and so forth. It is this fundamental difficulty
with which the language designer struggles, attempting to invent
dictional patterns which are highly expressive and yet can be
compiled into reasonably efficient running code. We may represent
the general outline of the relationship between linguistic modular-
ity and efficiency by the "tradeoff curve" shown in Figure 2 below.

As shown in Figure 2, the more we are willing to complicate
a program by the addition of efficiency-enhancing special devices,
the more we can expect its run-time efficiency to improve (provided,
of course, we neglect the effects of errors in judgement). Converse-
ly, the more we insist on extreme simplicity in the statement of

an algorithm, the less we are able to guarantee efficiency.

[continued from previous page]l

The above considerations underscore the importance of braking
a complex project into smaller relatively independent pieces
and of staging the project in a structured manner that allows
the treatment of potentially complicating factors to be post-
poned when possible. Linguistic mechanisms that accord with this
intent will be used in the SETL language.

Iime, memory

requirements

of run
before optimization

with optimization

Complexity (of program) -+

Figure 2. Tradeoff between Program Complexity and Efficiency,

Showing the Effect of Optimization.

If, hwoever, we find ourselves able to construct an automatic

optimizer which, after analyzing the text of an algorithm, can

transform it, producing a more efficient text incorporating many

of the efficiency-enhancing special devices which a hand programmer‘f;"
would normally use, much potential loss of efficiency can be

A avoided. Improved optimization techniques therefore form an

essential part of an overall attack on the problems of programming,

In every case, however, the language designer will expliéitly or

implicitly choose a point on the tradeoff curve of Flgure 2 as the
target of his design. That is, he will decide on the extent to which
efficiency of target program is to be sacrificed in favor of simplicity
of program text. In this functional sense€ SETL aims to be a language of

the highest degree of expressivity consistent with even that modest
degree of run-time efficiency needed to support any amount of
-actual computer usage. Formalized mathematics itself is of course
the language that results when even this modest demand for
efficiency is dropped. |
We have therefore as our target a language intended to be of

maximum expressivity in the sense just described; this will be a
language in which programs are built of a small number of powerful

lements fitting together in a mannexr governed by uniform simple
conventions, rather than of a great many microscopic elements

relating to each other in complex and irreulgar ways. Drawing

-5-

from earlier discussion the principle that lack of modularity is
the main danger which the use of such a language is to avoid, we
must next ask: what are the principal forces which when programs
are constructed tend to increase the degree of interrelationship
between their elements? ’

We locate the most substantial of these forces within the
logical linkages which connect the separate processes invoked
within a program to the data structures to which these processes
refer. Since processes in procedural languages are transient
but their effect on data objects carries forward, process defini-
tions will normally not exert so pervasive a force as data
structure definitions in propagating complexity. df course, if
inappropriate subprocesses are specified as standard, this can
propagate complexity to remote contexts. Nevertheless; really
virulent increases in the local complexity of a program will
normally be traceable to data structure related sources. Thus,
to hold the complexity of local context within a program below
a fixed limit, we must more than anything else standardize the
data structures that a program and a programming language use.

The use of standardized data structures will imply a certain
standardization of the processes that manipulate these structures.
In particular, we will find it necessary to avoid the use of
processes that can create strﬁctures of non—staﬁdard form. This -
restriction concerning the processes to be used has then signifi-
cant implications of its own. If we ever make use of
operations that transform these structures into nonstandard forms,
the nonsfandard details of these forms become part of the logical
context of every instruction that might manipulate a nonstandard
structure. Complexity can build up very rapidly in such situa-
tions, and for this reason we. will prefer to avoid them. Thus,
once having chosen certain data structures for standard use, we
will normally proceed at once to standardize. a family of basic
operators addressing these structures and to describe compound
processes .only (or almost only) in terms of the set of basic
operators thus designated. The approach sketched hére, which makes

use of standardized data structures and of combinable basic

operators affecting them, is that which lies at the basis of every
yrogramming language design. The standardization upon which we
insist can, of course, have a negative effect on the efficiency
that our method will attain in any particular case; and it is
this consideration that may again and again tempt us to the use
of more highly varying nonstandard forms. Within the approach
envisaged here, howver, efficiency enhancing nonstandard varia-
tions are allowable only in a phase of programming subsequent

to the initiél layout, in terms of standardized elements, of a
programming approach. By relegating efficiency related design
supplements and redesigns to a second stage of programming, we
confine, to a limited set of specified contexts, a significant
class of programming activities likely to propagate complexity.
In particular, we become better able to avoid inadvertent deci-
sions in particular contexts which propagate complexity to other
portions of a program, decisions of this kind can, when higher
level preplahning is absent or insufficiently detailed, have most
unfortunate complexity propagation effects. Moreover, by thinking
first in terms of a standardized class of data structures, and
only subsequently of those concrete variations that are truly
desirable for increased efficiency, we will often find that the
range of variations that must be made is smaller than could have
been realized at first, so that these variations can themselves
be standardized. 1In such cases, we will be able to develop auto-
matic optimization methods that incorporate efficiency-enhancing
variations in programs written in languages of high level and
that produce programs that compare favorably to those developed
in lower ‘level languages by programmers forced to function in
contexts straining their maximum complexity tolerance.

A data structure S in which many processes interface may itself
tend to grow complex, and we will therefore wish to prevent its
full complexity from affecting, to an unnecessary degree, the
various processes that must address it. We therefore wish it to
be possible for each process P to deal only with those aspects of
- S that are of concern to P, ignoring all others. That is, each

rocess P should be able to view S in whatever logical "projection"

-7-

is appropriate. To allow this we will wish P and S to be linked
via access functions that allow P to reference those aspects of S
that it must. Note in particular that we find it desirable to
represent the necessary access operations explicitly, rather than
to represent them implicitly in coding ‘patterns to be used
throughout P. In particular, those basic attributes of § to be
accessed and modified ought to be explicitly named within P and
not represented in implicit fashion by compound access sequences;
mnemonic names, rather than numerical subpart addresses, should
be used for attributes, etc. ' '

The emphasis that we have placed on the role of data structures
in determining certain of the fundamental properties of programming
languages that address them suggests certain further points. A
programming language ought to incorporate powerful methods for
the definition of compound data forms and for the specification
of new operations applying to and combining them. Explicit mech-
anisms that allow operators to be related to the data structures
on which they are to act should be provided. The ordinary
semantics of assignment statements needs to be generalized con-
siderably, allowing structures just as general as those which

appear on the right-hand side of assignments to appear also on

" the left. We will also wish to develop a special declaratory ..
extension of our algorithm oriented principal language; this
extension will enable the "data strategy" (encoding, packing,
‘access paths) to be applied in realizing a given algorithm to

be specified declaratively in a succinct and centralized way.

In addition to the data related issues treated above, various
other ways in which language design can aid in limiting context
complexity may be noted. Note, first, that by making decisions
in separated stages whenver possible, solving initial parts of‘
a problem without foreclosing possible approaches to the parts
which remain, we can reduce the complexity level with which we
must deal at any given time. This may be called the principle
of deciston postponemenf. In decision postponemenﬁ lies one of

the basic advantages of the use of specification languages and

the "two stage" programming style to be discussed below. Various
more direct hints concerning language design may also be drawn
from this principle. First, a language should be able to treat
in a syntactically identical way semantically analogous entity
classes which may be substitutable for each other, so that the
decision concerning which type of entity is actually to be used
can be postponed. This implies also that we will wish to be
able to postpone the choice of the detailed encodings and data
layouts to be used in realizing an algorithm until the soundness
of the algorithm has been verified.

The inner details of a program section should be isolated to
a maximum degree from detailed conventions determined by other
program sections. This may be called the principal of structurdl
isolation. Note in particular that semantically unitary items
established outside a program element E should be represented
within E by unitary names and not by complex sequences defined
by external pfogram sections.

Those items to whose details a given item E is most closely
related should find places physically near E without distracting
less closely related material being included. This may be called
the principle of grouping by logical relation. In accordance with
this principle we find it undesirable for a language to establish
rigid conventions concerning the order in which syntactic elements
must appear. In many situations, it will be useful for program
text to embody a 'footnoted' style, with the main outlines of
process and flow being shown in a "lead paragraph", and with
details which flesh out these outlines following. An adequate
language will provide for a variety of linguistic styles providing
textual clarity in a variety of logical situations, and will
incorporate powerful extension mechanisms allowing a user to
develop significant personalized language features. The language
extension tools to be provided must be adequate to deal with
those common situations in which masses of detail must be repeated
with obligatofy small variations because of language problem mis= -
match. But these tools should also allow profounder global

transformations of a source text, expansion of the basic
_semantic object classes which a language recognizes, and growth
in the family of declarations which a language provides.

Specialized control and linkage structures may also aid in
increasing the power of a language to deal with certain important
classes of situations. "Whenever" dictions of the type used in
many simulation languages are also quite useful in describing
certain classes of algorithms. Various special types of plan-
forming algorithms can be expressed most natufally in a language
allowing "non-deterministic branch" dictions. Some of the
problems of module linkage, subroutine naming, etc. which arise
in connection with large programs are ameliorated if special
linking dictions, providing for a more highly centralized control
of subroutine naming and linking than is ordinarily used, are
available.

We may note in conclusion that no language design is entirely
complete until the debugging tools to be made available to a
language user have been thought out. This is a matter often
neglected in current practice. Presently, the sequence of events
in debugging is typically as follows:

1. Anomalous,program behavior indicates that an error exists.
Direct consideration of the error by a knowledgeable programmer
will normally point the finger of suspicion at some more or less.
restricted section of a total system or program.

2. The code section which has fallen under suspicion is taken
up for examination. When originally composed, this section was
considered, on the basis of an informal set of mutually supported
programmer assumptions concerning its action and the moment to
moment state of the data structures which it uées, to be correct.
Certain of these assumptions will have been verified in particular
cases by test runs. However, both original programmer assumptions
and test history will normally have been 10st when a bug appears.
It will therefore become necessary to reconstruct these vital
logical assumptiohs from the program as it stands, using for this

purpose whatever disjointed or systematic indications of intended

logic the program text happens to contain. Note that this
reconstruction may have to be performed many times, often from

comments, that are quite fragmentary.

-10~-

3. Once reconstructed, the original programmer assumptions
concerning the way the program should work will be reverified,
using a mixed assortment of generally manual techniques. Those
few assumptions which seem to play a key role, or which have
come under suspicion, will be spot-checked. In debugging, one
will find it necessary to explore an often very large program
event space using tools that are generally quite weak. The
program event space to be explored will be particularly large
in those cases in which a compiled code lacking all-information
concerning the intended meaning and origin of bit patterns runs
past an original fault for thousands or millions of instructions
before encountering an error which it can recognize as such.

One may also be required to scan large amounts of source text,
without useful programmed tools being available for this purpose.
Debugging tools which can alleviate the deficiencies which
have been depicted can be designed and should be a part of every
language system. A means should be provided by which programmer

assumptions concerning the functioning of a program can be

stated explicitly and can remain an integeral, permanently
maintained part of a program text, capable of being switched on
and off in stages as debugging is pursued now and again at
different levels. All the "assumption statements” generated
during the debugging history of a program should be retained in
appropriate forms in its text, so that they may be systemati-
cally reverified if the text is modified and debug mode is
reentered. A powerful "program event" oriented language should

be provided for the dynamic detection and rapid isolation of
run-time events of debugging significancé. An interactive scan
language making it easy to gather together whatever fragments

of source text become important at a given moment of debugging
shouldvalsb be provided; this should allow relevant passages of
text gathered from all the parts of a large program to be display-
ed together. Finally, a language should include an appropriate and
extendable family of "meaning declarations" which, by supplying
more information to a compiler than can be gathered immediately
‘rom a bare program text, make various compiler administered static

and dynamic>consisten¢y checks possible.

-11-

Item 2. A SECOND GENERAL REFLECTION ON PROGRAMMING.

What is programming? I will elaborate a series of answers
to this pregnanf dquestion.

1. To start with, programming is the activity that builds
the interface between man, on the one hand, and computers, on
the other. Certain of its characteristics will then be deter-
mined by man and others by the computer. The goal of programming
is the construction of .advanced function, which requires the
perfection of complex programs. Therefore '

2. Programming 18 the process of constructiné complex objects.
In the preceding pages, certain basic laws affecting such processes
of construction were outlined. To repeat, compound objects are
built by successive correct choices of a sequence of elements
Ejre.o E each element E must be chosen in a logical context
that summarizes all those aspects of other elements that are
relevant to the choice of E. We call the collection of all these
-influences the local context of E, and call any reasonable numer-
ical measure of this collection the context complexity of E. It
may then be observed that the chance of choosing E correctly falls
off very rapidly as its context complexity increases, and effec-
tively becomes zero at a not very large threshold T. This observa-
tion allows us to define the class of constructible objects: an.
object 1is constructible if it can be built by choosing elements
successively, each in a context of complexity less than T. A
function is programmable if it can be realized by a program that
is constructible.

To construct a large object successively, one must therefore
combine many subelements. The rules according to which elements
may be combined are, of course, part of the logical context of
every element. These rules must therefore be simple. But a
simple set of rules allowing the indefinitely iterated combination
of simple elements into a large totality defines some sort of
"algebra." Therefore

3. Programming constructs compound obgjects from"simpler elements

by combining elements according to the rules of some "algebra'.

-12-

To program, therefore, one must be aware of some such algebra,
which must be capable of generating objects representing useful
processes. Before they can be used, such algebras must be found.
We conclude therefore that in a deeper sense

4. Programming is the discovery of algebraic principles allow-
ing the iterated combination of elements into compound objects
representing useful processes.

Next, observe that although the maximum threshold T of toler-
able complexity postulated above will vary from person to person,
for no one person is it very large. In this regard a group of
people is no better than a single person. Therefore an object
not constructible in the above sense can really never be
constructed directly, either by individuals or by large teamé.
And it is very unlikely that such an object will be formed
spontaneously by the action.of, a random process, even if this
process acts repeatedly over long periods of time. Objects
irreducibly unconstructible must therefore remain nonexistent.
The barrier to their existence should be as firm as those set’
for mathematics by theorems of the type of Godel.

There is, however, a way in which we can hope to find a way
around the obstacle revealed by these .pessimistic reflections.

To see this, observe that the maximum context complexity of the
elements of a compound object:is by no means independent of the
representation of the object. What in one representation may
appear as a densely interconnected mass will in another repre-
sentation appear as an object, perhaps still large, but consist-
ing constructibly of items no group of which are impenetrably
related.

To discover this second representation of a programming
problem is to break the problem's back, since this discovery
allows one to build what formerly were obscurely integral
objects using systematic incremental techniques, that is, to
proceed by the progressive accumulation of tables of information
possessing no overwhelming degree of internal interconnectedness.

In a still higher sense, therefore,

=13~

5. Programming is the discovery of viewpoints or logical
transformations that uncover hidden algebras in terms of which
compound objects representing useful processes may be built.

That is, programming is simplification, and, like mathematics,
18 a hunt for lucky simplifications.

It is worth emphasizing that the discovery of these simplifi-
cations is the essential goal of experimental, as distinct from
applied, programming. If in a strictly research situation we
build a highly compound object, we do so only in the hope that
immersion in the realities of a particular construction process
may put us in mind of principles allowing this process to be
simplified.

The transformation of a constructible compound object into
that more highly interwoven form in which it directly represents
some interesting function plainly amounts to a kind of compilation.
(The practical possibility of carrying out such transformations is,
~of course, the contribution of the machine to the process of
programmlng, which, in the preceding remarks, we have viewed almost
exclusively from the human side of the man—machlne interface.) We
may therefore say that

6. Programmiﬁg 18 the discovery of algebras allowing the
construction of objects worth compiling and is the programming
of compilers for these objects.

Elements that programmers are to combine need to be simple
externally. But, as long as their internal complexity can be
hidden, they need not be simple internally. Indeed, when objects
having simple external description but embodying powerful function
can be ailowed within an organized algebra, the programmer's reach
is multiplied. Hence '

7. Programming is the discovery of highly functional logical
entity types possessing simple external descriptions and thus
capable of being integrated into an algebra useful for the
construction of still higher functions.

The abbve remarks predicate an indirect method for creating -
functlonlng machine-level process representations. ‘Our reflections

concerning context complexity suggest that in the construction of

-14-

highly compound objects such an indirect approach is inevitable.
owever, since this-approach is, to begin with, fixed upon simpli-
fication and standardization as goals, in following it we run the
risk of ignoring alternative constructions that might realize a
given function in a particularly efficient way. Efficiency-
oriented departures from a standardized approach are traditionally
the prerogative of skilled human programmers. The mind, ranging
analytically, can incorporate very useful variations into a basic
approach, as long, that is, as the additional complications that
such departures cause do not carry one over the threshold T of
allowable context complexity. The programming range that we
contemplate will, however, involve transformations of form so
repeated and elaborate as to exclude the possibility of external
meddling with the compiled versions of objects: Given that we will
have to allow efficiency-enhancing variations to enter into the
compilation process, it follows that in the programming range we
contemplate it will be found necessary to systematize these
variations and to build a prégram capable of weaving them into

the compiled version of an initial text. Such a program must,

of courséL be able to analyze programs in sophisticated global ways.
The programmer may assist this optimizer by adding, to a text to be
compiled, disjointed declarations that summarize and transmit
significant conclusions concerning the text, but his role may not
safely be allowed to exceed this limit. We may in this regard say
that

8. Programming is optimization, that is, ts the programming of
optimizers able to analyze and improve other programs and is the
discovery of principles that allow the sitmplification of such
optimizers.

The use of the indirect technigque suggested above, involving the
optimizing compilation of sequences of constructible objects, will
eventually allow functions that lie utterly beyond the scope of
more primitive direct methods to be programmed. Nevertheless, just
as Godel's theorem assures us that certain rather simple questions
lie quite out of the range that the method of mathematical proof

‘an reach, so we may also take it that certain functions that might

~15-~

be of great use are not programmable in that no constructible

object can represent them, even after compilation.. It is there-

fore of interest to consider whether the construction of artificial
intelligences is at all possible. Might it not be that, among all
those objects constructible within the maximum complexity threshold
T of the human mind, none exists that can represent all theé capacity
of the mind?

In coming to grips with this question, one must first of all
realize that it concerns innate and not learned capacities. That
which is learned is drawn from an acgumulation of separately
encountered facts, presented in no particular order or relationship.
No inextricably interwoven object is immediately represented in
the pile of fragments presented as input to the learning process.
If facts within the mind are interwoven in uncompilably complex ways,
they can be so only because the mind is innately éapable of
establishing exceedingly complex connections. If the ability to
learn can be programmed, the teaching process will be trivial.

That which we seek to duplicate is therefore as fully present
in the neolithic savage as in the savant. ’

But?might not this innate facility, in spite of the somewhat
restrictive definition that the above remarks give it, still be
unprogrammable? It might. But I doubt that it is. Hard evidence
in this area is still missing. To argue from what has not been
done, or from the collapse of inflated initial pfojections, is
an absurdity, given that the computer is still less than twenty-
five years o0ld. It seems to me that the fragmentary evidence‘
that does exist ought to incline one rather strongly against such
arguments. Substantial progress towardthe programming of mental
function has been made in a few cases. For example, the parser-
compiler type of program captures a striking part of the ability
to learn languages. Note that, in accordance with the general
principles stated above, it is the discovery of an underlying
algebra, specifically the algebra of pattern combination in the
manner embodied in BNF grammars, that enables us to construct
such programs. A “

One may conjecture that mental faculties that, like the ability

to learn languages, are generalized and involve explicit learning

-1l6-

will prove to be more readily constructible than faculties, such
as visual pattern analysis, that are more rigidly fixed. Learning
at the level of language learning is surely of late eVolutionary
arrival, and one may therefore surmise that this faculty has not
had the time to grow as complex as have others. In view of the
general pattern that evolution exhibits with regard to physical
organs, we may take another hint from this observation. Speech
and higher reasoning, recently evolved, may possibly embloy
specially adapted versions of faculties that antedate them. If
this is true, then successful duplication of the mind's language-
handling faculty may provide clues valuable for the analysis of
still other mental functions. .

The optimistic remarks of the preceding paragraph, if theylcan
be trusted, lead one to try to put the question of artificial
intelligence quantitatively. The programmability of a complex
function is, as we have seen above, defined by the battery of
simplifying transformations that determine one's programming
technique. How many as yet undiscovered simplfication‘principles
remain to be found before artificial intelligences will, in this
sense, become programmable? If and when these principles become
‘available, how large a body of compilable text will be required
to define the intelligence? I emphasize again that the text in
question is that which organizes the intelligence's capacity to
learn, not that possibly larger body of text that defines the total
mass of facts available to it. That is, an intelligence is defined
by those highly integral programs that determine the principles
according to which it organizes more disjointed information tables
subsequently fed to it. It would be rash to try to answer the
questions just raised. Nevertheless, putting them serves, when
one notes the extent to which a simple yet well-organized programming
system such as LISP makes it possible to define quite striking
language processing faculties by quite a small body of text, to
buttress optimism. Putting these questions also serves to emphasize
the central importance, for the eventual construction of artificial
intelligences, of progress in programming technique. They also tell

Is what to look for: transformatians that allow originally integral

-17-

functions to be represented incrementally and in this sense to
become learnable. Thus, for example, we may recognize that the
organization of at least part of the language-analysis function
around an explicit Backus algebra of syntactic patterns is a very
significant step, the sort of thing that we must energetically
seek to extend. Other functions can be cited for which organizing
"algebras" are desirable and might be possible. An associational
"feature noticing" function of a generalized sort would be useful
in a wide variety of situations, for example in optimization by
the method of "special cases,“ where such a mechanism might permit
the easy addition of new optimizations. At a more technical level,
a language of memory management, allowing certain central problemé
of concrete algorithms to be treated systematically, could

enhance our ability to produce efficient versions of concrete
algorithms rapidly.

In connection with this last remark we may raise yet another
quantitative question concerning artificial intelligence. The
capacity of an intelligence is measured both by the level of
function that its responses embody and by the speed with which these
responses can bg generated. Assuming that it becomes possible to
construct an intelligence, how fast will this intelligence be able
to think? This question touches on all those questiqns of efficiency
that, by concentrating on)abstract programming issues in our preced-
ing remarks, we have neglected. 1Its answer will, of course, be
determined both by the basic capacities of the hardware available
at a future date and by the extent to which optimization is able to
overcome the natural tendency to inefficiency of a highly compiled
programming style. Until now, almost all the most dramatic
increases in program speed have come from basic hardware speedups.
In a few cases, as with the development of the fast Fourier transform,
fast sorts, hashing, and list-organized search techniques and the
improvement of certain little used combinatorial algorithms, program-
ming has made similar contributions to efficiency. The domination
of efficiency by hardware shouid continue for at least a while

longer, as clock cycles diminish toward 10 nanoseconds and especially

-18-

as improved manufacturing prbcesses weaken the I/O barrier by
\aking greatly expanded electronic memories available. In this
regard programming may for a while have the largely subsidiary

role of choosing algorithms that bypass potential combinatorial
disasters. A more systematic but perhaps less immediately
significant contribution of programming to efficiency will

probably come through the continued development of optimization
methods, especially those that, like cross-subroutine optimizations,
aim at preventing the efficiency losses that a naive and highly
compiled programming technique would imply.

Efficiency loss through the use of such techniques is in fact
far from being a crucial problem. It has generally been true that,
once able to organize a given programming area clearly, one has
also been able to invent systematic optimizations that permit
indirect programming techniques to attain an efficiency comparing
not badly with results obtained by the use of much more expensive
and eventually quite impractical manual techniques. In regard to
the programming of intelligence, it may also be remarked that, once
we are able to create a faculty, we may expect to be able to improve
its efficiency substantially by providing it not in the most general
form possible but in a specialized, "reflex-like" rather than fully
"adaptable" form.

As the simplifying techniques needed to organize complex
functions are progressively revealed through the progress of
programming, the significance for efficiency of those elemtnary
subprocesses exercised most constantly by the compiled form of
programs written using these techniques will become plain. By
realizing such "inner" subprocesses in hardware, one improves their
efficiency through the elimination of unnecessary generality and by
that use of large-scale parallelism that gives such great advantages
to hardware realizations. An example of the type of situation we
have in mind is curréntly seen in the tendéncy to simplify program-
ming by speaking in terms of extremely large "virtual" memories.
Such an approach makes constant use of certain simple "memory-
mapping" operations and has led to the construction of these functions

n hardware. Similar future influences of programming concept on

nardware design are to be expected.

-19-

Artificial intelligences, if realized, will take programming
as one of their first tasks, and it is interesting to try to guess
the effect that this might have on programming. One of the great
advantages of such intelligences will be their enormously large
complexity tolerance, as compared to the capacity of the natural
mind. In connection with the remarks made above we surmise that
this will greatly extend the class of programmable functions,
though in what way is not clear. Certainly, however, they should
be capable of optimizing programs to a degree impossible to the
natural mind and in this way can contribute substantially to the

improvement of their own efficiency.

-20-

Item 3. ADDITIONAL GENERAL REFLECTIONS ON PROGRAMMING.

I. What constitutes progress in programming?

Donald Knuth has called programming an 'art', and has argued
the apprbpriateness of this designation at some length.l In
this short essay I should like to argue (though of course terms
are not necessarily matters of great consequence) that programming
is not an art but a nascent science. The distinction that I see
is this: art, though ever changing and fresh, does not and cannot
progress, since it lacks any real criterion of progress; but
science does progress.

To establish programming as a science is therefore to propose
a convincing criterion of progress for it. To this end a comparison
with mathematics is enlightening. Mathematics is the search for
interesting proofs, and for general frameworks which allow inter-
esting proofs to be found. A proof is defined by its target
theorem T, but nonrecursively; even after T is conjectured (which
may itself be a significant event) its proof can be arbitrarily
difficult to find. Thus the moments of progress in mathematics
(typically they are discrete and sharply defined) are (simplifying
somewhat) the moments at which proofs are found. Note also that
once T is proved, and assuming that T is truly interesting, it
will illuminate some broader area, and in particular will ease
one's approach to other interesting theorems.

There certainly is a side to programming, namely the invention
of algorithms meeting efficiency constraints whose satisfiability
is nonobvious, which has just this flavor, and which is there-
fore as much a science as mathematics. (Knuth is of course one
of the main developers of this 'single-algorithm' oriented part
of programming science). The Fast Fourier Transform is no less
an invention than the Pythagorean Theorem. But should the other
side of programming, namely its integrativé side, i.e., the

growing collection of techniques used to organize large systems

1 See Knuth, Computer Programming as an Art, CACM 17, 11 (Novem-
ber 1974), p. 667.

-2]-

of algorithms into coherently functioning wholes, be considered
as an infant science also, or must it remain an art?

I argue that this part of programming is a science also,
albeit a science only in its infancy. To see that it is, one
must observe that the ¢rucial obstacle to the integration of
systems of programs providing very advanced function, which will
generally be large systems of programs, is met when their
complexity rises above the very finite threshold beyond which
the mind can no longer grasp them totally. (This point is
developed at greater length in Item 1 above.z) Those who have
had the ekperience of working with systems of this level of
complexity will realize that one's ability to cope with them
is quite limited, and always threatens to founder entirely. With
the active help of a computer, by assembling multiperson groups
(less prone to fatigue than individuals), and by concentrating
on one system portion at a time one can ' manage such systems.
But even while being successfully developed and maintained they
remain elusive and largely inexplicable; in a manner never fully
comprehended or controlled, they evolve. 1In contrast, a system
which remains below the threshold critical for full comprehensi-
bility can be designed with assurance and implemented with a |
firm grasp.

Thus programming progresses when schemes which make it
possible to realize significant function without overstepping
this critical threshold are invented. Each such scheme will
address some more or less broad application area, and will provide
objects, operations, and also a semantic framework within which
these objects and operations can be combined together into large
structures, the whole allowing significantly many functions
which formerly would have required superthreshold realizations
to be written out completely without the critical threshold of
complexity being crossed. Proof of the success of such a scheme

comes when, by approaching a major application in a way conforming: !

2 The same point is also central to Dijkstra's essay Concerning
Our Inability to Do Much, p. 1 in Structured Programming, ’
0. J. Dahl et al., Academic Press, 1972.

-22-

to the rules of the scheme, one finds that it has become compre-

ensible, though it'was not so before. A framework of the kind
envisaged is of course a language, and another proof of its
success will lie in the fact that this language allows one to
speak clearly and directly about important matters which previously
could only be depicted in roundabout and clumsy ways. (In
mathematics, major definitions have the same effect.) Note also
that the restrictions which such a framework embodies can, if

they prevent complexity from rising rapidly, be just as important
as the flexibility it providés.3

Once such a framework has been invented, and when some

process or function has been specified in it, it will generally
not be hard, though of course it may be tedious, to take this
specification and transcribe it, perhaps to gain efficiency,

into some available and appropriate programming language. Because
numerous errors are bound to infest any lengthy or complicated
process of transcription, it is generally useful to implement
languages which realize the framework or something close to it in
as polished, succinct, and helpful a form as possible. Among
other things, this can call for the development of elaborate program
program analysis methods, which for example may be used to support
rich systems of explicit or implicit declaration, to provide
sophisticated diagnostics, or to perform optimization which the
user of a language of very high semantic level is expected to omit.
But such development is tool-building rather than fundamental
progress. In this sense, I consider that SNOBOL and SIMSCRIPT,

for all their lack of poiish, embody very significant inventions:
SNOBOL the string/pattern algebra and a natural framework for
organizing operations in that algebra; SIMSCRIPT the event and
scheduling notions so helpful for simulation. Similarly I would
say that'the interest of ALGOL 68 lies not in its syntactic polish,

but in the way it handles object types and coercions, and in the
fact that the kind of systematic approach to declarations which

it embodies promises to reduce levels of run-time error very
decidedly.

This point lies at the heart of Dijkstra's celebrated note

Go-To Considered Harmful, CACM 11, 3 (March 1968), and of
various of Hoare's interesting comments on programming technique,
e.g., Monitors: An Operating System Structurlng Concept, CACM 17
(October 1974) p. 261. _23-

II. What programmers should know.

It is now useful to recast the views concerning the programming
process which grow out of the point of view developed in the
preceding pages, formulating these views as recommendations
concerning the intellectual equipment and cast of mind which a
creative, high level programmer should attempt to acquire. We
have in mind programmers (or desiéners) who originate
programs, rather than programmers (alas! the vastly more numerous
group) whose work is the extension and repair of programs poorly
done and documented in the first place, and the adaptation of
these programs to shifting system interfaces. And we will stress
the 'higher' rather than the commonplace aspects of the program-
mers' intellectual armament.

A programmer should understand:

1. Algorithms, i.e. various important algorithmic inventions
using which significant processes can be performed with special
efficiency. Examples are heapsort, fast Fourier transform,
parsing techniques, fast polynomial factorization methods, etc.
He should understand that a formal concept of program performance
exists, and have some familiarity with the combinatorial techniques
used to analyze algorithm performance. 1In this connection, it is
also important to understand that there exist procésses which no
program can carry out rapidly, and others which no program can '
carry out at all.

2. Semantic frameworks, which allow individual algorithms to
be organized into large program structures. He should understand
the use and significance of such fundamental semantic invéntions
as subroutine linkages, space allocation, garbage collection,
recursion, coroutines, and various structures useful for organi-
zing processes acting in parallel. He should be familiar with
object/operator algebras which are of general significance or which
play an important role in significant application areas: sets
and mappihgs, strings and patterns, Curry combinator and lambda

-24-

calculus, etc. He should understand the way in which semantically
iignificant languages make these frameworks and algebras available,
and the way in which the syntactic features of a language
facilitate the use of its underlying semantic capabilities.
3. The programmer should have a conscious view of the
programming process, understand the way in which programs, in
their earliest origins, coalesce out of less organized intellectual
1 structures, and understand the objective/psychological influences
which can either facilitate the development of a final, efficient
and reliable program version or abort this development. Accumulating
complexity should be understood as a central peril to successful
program construction, and techniques for managing and minimizing
this accumulation should be appreciated. Particularly important
among these techniques are the orderly multilevel development of
more and more efficient program versions through a sequence of
progressively less high language levels, and also prespecifica-
tion, for each major application, of a well-tailored set of
application-specific primitives, expressed as macros, structure
declarations, or auxiliary subroutine definitions. Simple clean

logical structure should be perceived as a central goal of

‘ programming; and each simplification seen as a victory, each
complication as a defeat. The programmer should learn to struc-
ture his programs in spare, logically clean ways which keep open
the possibility of subsequent functional expansion.

' 4. The step which leads from a high-level program representa-
tion to a lower level and more efficient version of the éame
program should be seen and approached as a process of manual

| optimization to be carried out in a mechanical spirit. For use
in this process, the programmer should have knowledge of a wide

variety of optimization approaches and optimizing transformations,

adapted to the various language levels at which optimization will
be directed, and ranging from high level global program restructur-
ings to machine level inner-loop bit-tricks.

5. The manner in which the global properties of an algorithm
determine the data structures appropriate for the representation

f the objects which it manipulates should be understood. The

programmer should have a wide variety of data structures at

-25-

.

his disposal, and understand the efficiency with which these
structures can represent more abstract data objects and opera-
tions.

6. The fact that very small inner loops are often critical
for program efficiency, and that conversely most of a program
lies outside its efficiency critical paths, should be understood,
which implies that it is important to measure actual program
behavior before committing to the optimization of any particular
section of code. (Note that the optimization of large non-
critical program sections represents an unwarranted expenditure
of program resource.) He should be familiar with the tools
for measuring program behavior which various languages,
operating systems, preprocessors, and program editors
provide.

7. The programmer should understand the techniques which can
be used to adapt programs to run well in specific operating
environments; this implies knowledge of data staging, overlay,
paging, and virtual memory techniques. The principal factors
which affect program performance in these environments should be .
understood} as should the way in which programs can be structured
to isolate environment dependencies and preserve interenvironment
portability.

8. The correctness of a program rests on a web of logical
relations, implicit in and guiding the program's development;
this set of relationships, if made . manifest and formally complete,
would constitute a formal proof of the program's correctness.

An essential part of program development is to guard the
integrity of this web as successively more specific program
versions are developed, to structure programs so that the logical
assumptions on which it rests do not become unmanageably complex,
and to check the logical integrity of the program systematically
and repeatedly as it is developed. The fact that some programming
language constructs aid in the preservation of logical integrity,
while other more dangerous tools tend to tear a program's under-

lying web, should be appreciated.

-26-

The process of debugging is that of searching, in the possibly
7ery large execution-event space of an ill-behaved program, for
primary anomalies, i.e., places at which good input leads
immediately to bad output; these are the events which point to
program errors. The debugging tools which make it possible for
this large space to be searched should be mastered; bugs should
be recognized as inevitable and programs prepared in ways which
facilitate their detection and removal; but debugging should be
seen as a process for the repair of a relatively small number of
tears in an extended and delicate logical. fabric, rather than a
process which can bring order into a heap of disconnected strands.
During program debugging, the programmer should always understand
the degree to which the tests which he has administered 'cover'
all. the possible lurking-places of bugs, and should design tests
systematically for maximum coverage. The types of program
constructs likély to give rise to bugs, and the types of bugs
typically to be expected, should be understood, and the kinds of
static and dynamic consistency-checking likely to uncover bugs
rapidly understood also.

‘Finally, the several techniques of formal program-correctness
" pro £ should be known, and the implications of these techniques
for the construction of relatively bug-free programs and for bug
detection comprehended.

9. In conclusion ,we list the various important hand skills and habits
of an elementary but important sort which the programmer should
have. He should know the interactive, editing, and program
maintenance aids available to him; program carefully, check
conscientiously, and document scrupulously, always remaining
aware of himself as a team member whose expensive product must
reliably serve others. He must realize that programming is a
highly unstable process, in which a disorganized effort can
consume ten times, or even a hundred times, more resource than
a well devised effort with the same goal, and that especially in
programming, work is a sigmned quantity, and mere acéivity, no
matter how energetic, is no proof of significant contribution

0 a goal.

-27-

£
~

Item 4. ON THE UTILITY OF AN INEFFICIENT SPECIFICATION LANGUAGE.

We have suggested in the preceding paragfaphs that a programming
language considerably more mathematical and expressive than those now
in use can be designed, and have implied that the development of such
a language must be a central element in any attack on the present
problems of programming difficulty. The increasing disdain for new
language that some of the most sophisticated computer scientists have
aexpressed of late leads me to put the following question very directly:

Is it reasonable to expect that the definition and implementation
of such a language will, merely because its mathematicized character
and systematic adaptation to the purpose of algorithm specification,
create any advantages at all? I contend that the answer is yes,
and I contend, morever, that the benefits that such a language will
provide are numerous and substantial. I buttress this claim by indi-
cating one of the most general of the beneficial effects expected,
an effect upon computer science education. The availability of a
mathematicized programming language should in relatively short order
lead to a restructuring of the way that computer science is taught.

Presently one begins with a basic course, titled variously but
generally called something like Introduction to Data Structures and
Algorithms. When an appropriate abstract specification language
becomes available, this fundamental subject matter should fall into
two parts,which might be separately called abstract'aZgorithmics and
concrete algorithmics. Abstract algorithmics will be concerned with
the depiction and analysis of complex algorithmic processes, inde-
pendently of the way in which the logical objects to thich they refer
are to be mapped into a computer. Much of the present work is
intended as a first illustration of what abstract algorithmics is
ultimately to be. Concrete algorithmics, on the other hand, has
the following as its problem: Given a family of abstract objects
and processes that are to affect them, how can these objects best
be mapped into tabular form and the associated processes actually
carried out? Note that by isolating and first solving some of the
problems of abstract algorithmics, we may expect to be able to

discuss concrete algorithmic problems in a more satisfactory manne:

-28-

than has hitherto been typical. Before one knows what one wants
:0 do in a complex situation, one is really not in a very good
position to study the ways'in whicn one might do it. Conversely,
once an abstract algorithm is put forth, one is generally able

to envisage a much wider range of concrete approaches to its
optimization than would otherwise be possible. From the point

of view of the present work, prior systematic attempts at the
depiction of algorithms have generally failed to separate the
abstract from the concrete parts of the algorithmic questions that
they study but have mixed the abstract with the concrete, rather
to the disadvantage of both. It may also be mentioned that it

is abstract rather than concrete algorithmics that stand closest
to a third principal branch of computer science, that which plays
so large a role in Donald Knuth's magnificent series of books,
namely the formal performance analysis of algorithms.

A second benefit is this: The succinctness and descriptive
power of a mathematicized programming lanugage will enable us to
depict complex processes in their totality, in decisive detail,
and in a form free of abstractly irrelevant specifics. Since our
view of complex abstract algorithms will be total and detailed
rather than fraémentary and vague, we will have a better chance
to consider the form and effect of variations in our algorithms
and the possible generalizations of them. Bringing the_abstract
kernel of a process out from behind the veil of abstract irrelevan-
cies that normally obscure it, we will make this kernel more
communicable and hence more capable of systematic rational discus-
sion than would otherwise be the case. The elimination of irrelevant
specifics from formally stated algorithms has still another
substantial benéfit. Specificity is a major source of incompati-
bility between algorithms, and abstractness will therefore enhance
compatibility. Consider, for example, the problem of piecing
together a compiler out of its custbmary principal components:

a parser, optimizer, code generator, etc. We find, typically for
a whole class of similar situations, that across each of the
interfaces between principal modules some collection, generally

ather small, of structured data items must be passed. From the

-29-

abstract point of view, these will be unproblemétical enough:
They may be trees, graphs, a few mappings defined thereupon,
and so forth.

If one module will naturally produce trees or graphs, and
another can conveniently accept such as an input, no serious
‘"problem of compatibility is to be expected at the abstract
level, and separately written modules can readily be fitted into
a totality. The situation immediately becomes different when
abstract data structures are mapped into concrete tébular form.
To do so is to define a host of pointer and indexing mechanisms,
supplementary variables, overflow conventions and flags, special
abbreviations relating to particular data subcases, field sizes,
punctuations, and so forth. These definitions, precisely because
from the abstract point of view they are largely arbitrary, will
never be cast in precisely the same way for two separate program
modules except by careful preplanning, and, of course, any
deviation from perfect agreement may require data restructurings
so complex and touchy as to be prohibitive. In this we have the
case that generally makes it impossible to design useful program
library components that will either accept complex data struc-
tures as input or provide such structures as output, unless, as
is the case with the SETL specification language, a language of
sufficient generality provides a fixed framework of conventions.
For this reason, intermodule data interfaces often become the
foci of major difficulties during the design of large programming
systems, wherein months are often consumed in negotiations
concerning the detailed layout of data structures to be passed
between ﬁrincipal modules. It is usually found in such situations
that all the technical groups involved have elaborated their
design -ideas not abstractly but in terms of certain implicit
assumptions concerning data layout, assumptions that, understand-
ably enough, they become loath to give up. Moreover, no powerful
algorithmic communication technique permitting one group to gainan
understanding of the processes that the others are going to apply
is available, so that the trade-off issues involved in the choice
of data layouts tend to remain obscure on both sides. Naturally,

it is then hard to come to intelligent technical compromises.

-30-

The systematic preelaboration of algorithmic strategy using a
owerful specification language should cast a welcome light on
this dark and perilous corner.

Given that the elimination of irrelevant specifics will
restrict the tendency toward .incompatibility of program modules
in a significant way, we may expect to be able to produce fairly
complex standard formal algorithms adaptable for use in a variety
of situations. Thus it should become possible to put larger items
into the cabinet of prefabricated programs than have hitherto |
filled it. In the present work effort will be devoted to doing
just this. ‘

Yet a third anticipated benefit that we expect the use of a
mathematicized specification language to provide is this. Our
method allows the abstract specification of an algorithmic process
to go forward to completion before any of the concrete table-and-
code design issues connected with it have to be faced. When our
language is implemented, it will even be possible to execute the
abstract programs, and to verify their correctness experimentally.
During this process a much smaller mass of program text will be
involved than is now the case; it will be much more feasiable than
it now is to experiment with significant variations in approach
during the development of an algorithm. Next, having a debugged
algorithm in hand, one will be able to survey it to get a detailed
picture of all the data structures that it involves, of all their
parts, and of all the processes that must effect these parts. It
should then be easier than it is now to come to sophisticated final
decisions concerning the table structures, data management strategies,
and code techniques to be used in a highly efficient version of the
same algorithm. In current practice, both classes of issues,
abstract design and concrete layout, must be faced at once, and
generally in a situation of confusion in which a programmer, already
forced to cope with all the complexity that he can juggle, may be

'unwilling even to contemplate promising optimizations if they

threaten to add to the mass of material that he must sustain. More-
over, in typical current situations it is quite hard to maintain

esign balance, with the consequence that certain parts of the system

-31-

may be overdesigned, while others, eQually or more ‘crucial,
may be sorely neglected and their insufficiency discovered only
when it has become impossible, or at least extremely expensive,
to do anything about it. The‘algorithmi¢~language that we
propose should, in short, allow the full complex of program design
issues to be approache in orderly stages and allow minor matters
to be classified as such, whereby design attention can be concen-
trated to ferret out highly effective solutions to key préblems.
Note also in this connection that it is only by providing a
formal language allowing one to describe the abstract structure
of algorithms without implying any commitment to some particular
concrete realization that a systematic formal attack on fhe
problem of concrete algorithmics becomes possible. If the initial
text of an algorithm is infected with some particular view concern-
ing certain aspects of the data structures to be used, it will not
be possible to 'declare away' these implicit assumptions, and one's
ability to move subsequently to an efficient realization of an
algorithm may be lost. Present practice however makes it very
hard to retain flexibility in regard to data strategy. In the
absence of languages allowing the structure of an algorithm to
be described abstractly, data structure design is often the first
step taken by a programmer. Presently, a sketch of fields and tables
is often the first thing written down as a programmer attempts to
turn the exterior specifications for a program into some early
idea concerning the program's internal workings. This step,
fraught with profound consequences for all that will subsequently
happen, is in current practice taken immediately, even before any
consistent algorithm is available, simply because at present some
amount of data structure design must be carried through if a
vocabulary for the detailed description of an algorithm is to be
established. An abstract programming language will as a fundamental
benefit not only make it possible to postpone discussion of
concrete algorithmic issues until the abstract part of an algorithm
design has been bfought under éontrol, but will also make it
possible to address the problem of concrete algorithmic design
“declaratively. |

-32-

Most of the benefits to which we have until now alluded come

rom the use of a suitably powerful specification language,
independently -of whether this language is implemented. When the
mathematicized programming language we pfoject is available for
running, however, additional advantages will accrue. A language
of this kind cannot but be a most appropriate tool for those
situations, especially charactersitic of university programming,
in which experimenﬁal algorithms are developed to be run a few
times and then improved or discarded after certain aspects of their
behavior are observed. A tool of this kind will also be useful
when an elaborate program needs to be built to run just once, or
when a complex program whose sole task is to prepare tables for
some other program must be produced, or when meta-compilers or
other large programs of infrequent use must be prepared, etc.
The mathematician desiring to experiment with combinatorial situa-
tions but unwilling to make a very heavy investment in programming
will find a language of the type orjected most welcome. The
computer scientist will find that it allows him to realize more
elaborate algorithms than would otherwise be in reach. Such
attractions have made APL increasingly popular; I consider that
the partly set-theoretic nature of that ingeniously devised array
language lies at the root of this phenomenon.

In the development of large .programming systems within an
industrial setting, a technique allowing the rapid and inexpensive
development of functioning, even if inefficient, versions of
complex programs must also be of decided advantage for several
reasons. Presently, large-program development suffers badly from
the fact that little or nothing begins to function visibly until
a huge whole has been brought far along. At this point, vast sums
may have been spent and time irrecoverably invested. It is then
generally the case that what is done is done and that a project
must either bull through along a fixed coutse, whatever its internal
or external deficiencies, or die. Simply by shortening the peri-
lously long feedback loops that characterize present development
techniques, an executable specification language would prove of

reat advantage.

-33-

It may also be remarked that during thée development of a
large system substantial expenses are occasioned by the fact that
in such projects it is often necessary to write masses of scaffold-
code against which developing systems components can be tested.
Intending that our mathematicized specification language should
obviate this, we have been at pains to specify an interface
linking the specification language to a conventional field-
manipulation languége of the kind that would normally be used
for systems programming. In tandem with such a "lower level"
language, our specification language can act as a test case
generator. '

The full development of this idea leads to what might be called
a two-stage development technique. The first of the two programming
stages consists of the development and debugging of a complete
systems algorithm, written in the abstract language, and the
annotation of this algorithm with all those remarks concerning
intended concrete techniques and data management Strategy
necessary to define the detailed program that is to be developed
during the second stage. This first programming stagé will also
involve measurement and user testing, wherein the abstract
algorithm serves as a kind of detailed simulator of the efficient
program that it foreshadows and wherein it may be modified as
necessary. An optimizer using the data strategy declarations
which we envisage might in many cases produce a running code quite
acceptable in efficiency, without any reprogramming being necessary.
If in a true 'production situation' a more highly efficient version
of the same code were required, a reprogramming phase would be
required. During the second stage of programming, all the parts
of an abstract code are progressively replaced with logically
equivaient but much more efficient passages of concrete code,
which are hammered out against the abstract algorithm.

All plans involving execution of abstract specification
language must eventually hope to demonstrate that, even though
the efficiency losses that genéralized and standard data repre-
sentations must occasion will be large, they need not be
catastrophic. Loss factors of 10, or even of 100, can be borne;
loss factors of 1000 (which we do not at all. anticipate) would be

disastrous. Technology has, after all,increased memory capacities

~34-~

by a factor of 100, and speeds by even larger factors, over the
.ast dozen years, and promises to continue making similarly
spectacular gains. Would it not for many purposes be clearly
worthwhile to go back a generation in machines if by doing so
we could increase by a large factor our ability to program?

As a final benefit, we expect the availability of a mathe-
maticized algorithm specification language to broaden the frontier
of contact between programming and mathematics. It should at any
rate serve to emphasize to the mathematician that programming need
not be a mass of petty detail only, that in fact it is concerned,
in a way only slightly unfamiliar, with some of the issues that
he is accustomed to confronting, that interesting inductive proofs
can in fact be regarded as recursive algorithms, and so forth.

While the mathematician will presumably find a mathematically
oriented language like that we propose more familiar, and hence
more accessible, than customary programming languages might be, the

programmer coming to it with a conventional background will find it

‘necessary to change certain of his central habits, and this may at

first be rather disconcerting. Conventionally, the mental process
of program elaboration that eventually results in a finished program
design or program begins not only with half-formulated procedure
kernels but as much as anything else with some idea of the data
structures that are to support the procedures to be employed. Often,
enough the first part of a total design that appears on paper is

an initial elaboration of these data structures, their fields, and
the separate significances of these fields. This data depiction

is conventionally used as an anvil against which all the detailed
processes that eventually will form part of a complete package are
shaped. From the present point of view, all this -- ingrained habit
of the most skillful programmers though it is -- is defective,

since it indiscrimintately confounds the abstract essentials of

a process to be described with a host of matters of quite different
character. The procedure we suggest is different. Bypassing very
much of this customary matter, or at the very least making it a
postscript to rather than the start of our specification process,

e deal not with tables, fields, and pointers, but directly with

-35-

those logical associations, correspondences, and sets that
conventional tabular data structures ultimately and indirectly
represent. The sudden loss of burden that so radical a simplifi-
cation implies may at first be somewhat disorienting, and the
new medium may at first seem too rarefied to breathe. Neverthe-
less, the necessary new habits of thought are in fact readily
acquired and, once mastered, can lead to a substantial improvement
in one's ability to design eminently practical aigorithms. But
the necessary design steps will be taken in quite a different order.
Before coming to the end of this preface a few last generalities
may appropriately be put to paper. What are programming languages?
We would like to suggest the following outlines of an answer to
this question, evidently fateful for any effort at language design.
Programming lanuages are notational systems devised to facilitate
the description of abstract objects whose basic elements are
sets, mappings, and processes. Associted with these objects
will be a well‘defined rule for evaluating them; perhaps, since
the objects may contain processes as subparts, it would be better
to say, for interpreting them. From this point of view, procedural
programming languages of the ordinary serial kind may be regarded
as a mechanism for the description of a set of basic transformation |
blocks, with each of which is associated a family of possible
successors. Each block must also be furnished with a "terminating
conditional transfer," which can be used during interpretation of
the program to select one potential successor block as the actual
"point of transfer." Object describing languages will depart
strongly from this familiar kind of location counter control,
however. In simulation languages, for example, the basic principle
of conﬁrol is quite different: The subprocesses 6f a simulation
naturally form an unordered set, each of which is furnished with
an invocation condition. The simulation interpreter executes, in
any order, all processes whose invocation condition is satisfied
as long as any remain to be executed; when none remain, an underlying
time parameter is ad&anced by the interpreter, and the next cycle

of simulation begins.

-36-

If we bear in mind this broad range of possibilities, we can
sharpen our response to the question posed above as follows: The
"front" or "syntactic" part of a language system must provide
methods by means of which very general abstract objects (graph-like
rather than tree-like, i.e., admitting remote rather than purely
local connections) can be described conveniently. This "front end"
should be variable enough so that the descriptive notation to be
used can be tailored to the requirements of any particular field,
permitting the objects of most common concern in this field to be
described in a succinct and heuristically comfortable manner.
Powerful mechanisms for describing the diagnostic or verification
tests to be applied to text during its syntactic analysis should
also form part of this language-system front end. The "back" or
interpreter part of a language system should incorporate abstract
structures that are general enough so that all the structured
objects that may be of concern in a particular situation can
convéniently be mapped upon these structures. Now, the'use of
general set theory should certainly satisfy this latter requiremént,
as long as the actual use of theorem-proving methods is not at
issue. Set theory could only fail to be adequate if some other
entities than sets were directly.accessible to mathematical
intuition and could therefore be used as a fundamental starting
point independent of set theory, which is not the case. Thus, if
a suitably flexible syntactic front end can be attached to the set
theoretic language with which we shall be working, we will have a
system covering a good part of all that is likely to be found along
that road which completely bypasses considerations of efficiency.
This will in fact be attempted. Of course, this will still leave
room for semi-general languages which compromise artfully with
full generality in order to reach higher efficiencies than would

otherwise be attainable.

-37-

Item 5. INTRODUCTORY DISCUSSION OF SETL.

In the present work we will propose a new programming language,
designated as SETL, whose essential features are taken from the
mathematical theory of sets. SETL will have a precisely defined
formal syntax as well as a semantic interpretation to be described
in detail; thus it will permit one to write programs for compila-
tion and execution. It may be remarked in favor of SETL that the
mathematical experience of the past half-century, and especially
that gathered by mathematical logicians pursuing foundational
studies, reveals the theory of sets to incorporate a very powerful
language in terms of which the whole structure of mathematics can
rapidly be built up from elementary foundations. By applying SETL
to the specification of a number of fairly complex algorithms taken
from various parts of compiler theory, we shall see that it inherits
these same advantages from the general set theory upon which it is
modeled. It may also be noted that, perhaps partly because of its
classical familiarity, the mathematical set-notion provides a
comfortable framework for thought, that is, one requiring the
imposition of relatively few artificial constructions upon the
basic skeleton of an analysis. We shall see that SETL inherits
this advantage also, so that it will allow us to describe algorithms
precisely but with relatively few of those superimposed conventions
which make programs artificial, lengthy, and hard to read.

Having general finite sets as its fundamental objects, SETL
will be a language of very high level. Generally speaking, we
regard the level of a language as being high to the extent that
it succeeds in getting away from the requirement of strict locality
of operation which adheres to an elementary automaton. That is,

a high level language is one which incorporates complex structured
data objects and global operations upon them. Such a language can
free its user from the onerous task, artificial from the abstract
structural point of view, of specifying the detailed internal

tables which are to répresent £he structured objects of his

concern and of reducing to purely local functions the global trans-
formations which affect these objects. The progfammer is thereby

freed to write of abstract problem-related entities and theéir

-38-

interactions in a familiar and analytically natural manner.

As we have noted, a price must be paid for these very great
advantages. A high level language, which reduces to a minimum
the amoﬁnt which a programmer must write to specify an algorithm
in executable form, is apt to become committed to the invariable
use of certain standard tabular forms for the representation of
the entities with which it is concerned, and to the use of
certain standard procedures for their manipulation. It will
generally use these tables and procedures even in cases in which
the nature of a particular process to be programmed allows the
use of much more efficient data representations and manipulations.
Thus, the use of languages of very high level will lead in many
cases to the generation of very inefficient programs. To the
extent to which we are unable to capture the optimizing inventive-
ness of a skilled programmer by an optimization algorithm, this
difficulty will persist quite generally. Set theory, which in
principle regards a function like cos and the set of all pairs
X, cos(x) which it generates as being equivalent, certainly
tends to the use of dictions implying highly inefficient
algorithms, and whereas we will find ways to avoid the worst

.0of these in SETL, and will discuss various ways in which SETL

programs can be optimized, it will still be true that SETL will
pay a substantial price in efficiency for its logical power.’
Nevertheless, it is our feeling that this substantial objection
is not catastrophic, i.e., that languages of the type of SETL can
be quite uesful in a variety of significant situations. SETL will,
in the first place, be useful as a specification language, i.e.;
as a language in which algorithmic processes can be formally and
precisely defined by a text whose syntactic correctness and
completeness may be verified computationally. The value in the
definition of highly complex objects of the use of formal text
has been emphasized by researchers at the IBM Vienna Laboratory
(cf. Lucas, Lauer, and Stigleitner [1]), who have ‘developed a
logical metalanguage called ULD incorporating various powerful
set theoretic features and have applied it to give a formal

:finition of the PL/l1 programming language; we will make various

-39~

comgériéqﬁsfbetween SETL and the Vienna ULD definition language
below. Itfmay be remarked that the use of formal text for the
definitioﬁ'of algorithms is also a step toward the verification
of algo&ithm correctness and equivalence by formal proof methods.
Unfortunately, such a step does not bring us very far toward
thiélrather distant goal, as algorithms of the sophistication

There are other uses than formal definition to which a powerful
but rather inefficient programming language like SETL may be put.
In certain situations, fairly complex algorithms must be programmed
_in- order to run just once; this is the case, for example, whenever
a new languages is being "bootstrapped" into existence. In other
cases, as for example in .experimenting with complex algorithms,
in measuring the performance of such algorithms, or in the simula-

tion of complex systems, it may be appropriate to program elaborate

-40-

procedures to be executed just a few times. In such cases,
lgorithm inefficiency may be of minor importance.

'Still another significant advantage of the availability of a
language of very great expressive power can come from the fact that
it makes a formal data strategy declaration language possibie. In
such an approach, algorithms to be progressively improved in effi-
ciency would first be written out in SETL, no data strategy
declarations initially being supplied. Once the verified algorithm
were available, one would begin to improve its efficiency. Examin-
ing the algorithm, and noting the sets which played an important
role in it as well as the operations to which these sets were
subject, one would elaborate a specialized data description which
could lead to an efficient program for the same algorithm. Note in
this connection that sets of certain kinds appearing frequently in
programming situations permit various specially efficient repre-
sentations. Thus, for example, a subset B of an explicitly
represented set A can be represented by a collection of one-bit
flags logically attached to the elements of A, and either housed
with these elemenfs or segregated into a bit table; a set of
ordered pairs may be represented by a two-dimensional array,
possibly of bits; an interval of inegers may be represented
implicitly by a numerical range; etc. Many such representations
are known, and constitute much of the normal stuff of programming.
To extend such a catalog of techniques, we may note that sets
can be represented by arrays, either sorted or unsorted; by lists
structured using pointers; by entries in hash tables; or by data
structures combining all of these representational methods, as for
example structures in which a first few set elements are repre-
sented in éne way while the remaining elements of the same set
are represented in another. Sets of ordered pairs may be
represented by attaching all those second components B which occur
with a given first component A as a list; alternatively, all the
elements of this list may follow A in a packed array, permitting
the representation of a set of ordered pairs in a highly compressed
form. Special bit-table . techniques are available for the repre-

:ntation of functions defined on thin subsets of a known set, etc.

-4]1-

Special systems of grouping, advantageous when some part of the
total representation of a set is to be stored on an external
storage device, are also known. Later in the present manuscript,

a data strategy description language, DDL, whose semantics gives
systematic embodiment to the observations made above, will be
proposed. The usé of this declaratory language will be illustrated
by giving annotated forms of various algorithms.

Since one has generally lacked convenient means for the formal
description of abstract algorithms, the varied techniques described
in the above paragraph, which may collectively be said to consti-
tute the concrete part of the theory of élgorithms, have more often
than not been discovered in intimate connection with that rather
different material which we prefer to think of as abstract
algorithmics. SETL will allow us to deviate from this tradition,
and to separate, into two distinct stages, the problem of design-
ing and precisely describing the abstract structure of an algorithm
on the one hand, and the different problem of mapping this
algorithm efficiently onto a given machine by choice of data-
structures and procedures coded in a language of lower level
on the other. Such separation will hopefully allow us to be more
accurate in our treatment of both problems than we could norﬁally
be if, as is now generally the case, we were constrained to treat
them together. It may in particular be noted that a given abstract
algorithm can have many plausible concrete images, some of which
might be missed if both the abstract and concrete form of an
algorithm have to be designed together. We may also hope that the
availability of a tool like SETL will enable the accumulation in
useful form of "prefabricated" abstract programs. Because abstract

programs are free of much of the specific detail which associates

itself with algorithms in more concrete form, prefabricated abstract

algorithms of this kind might serve as permanently useful blue-
prints for the development of efficient concrete programs. At
any rate, we can regard the development and debugging of an
abstract algorithm, ahd its annotation using a formal data
strategy declaration language, as completing the first stage of

a two-stage programming process. In an industrial setting, this

-42-

might mark the termination of an initial design phase and the

i1ssage of responsibility from a design group to a group of final
--iplementors who were to develop a high efficiency production
version of the same code. |

The utility of SETL during the elaboration of this efficient

final program can be enhanced by linking SETL.explicitly to a more
conventional programming language of lower level, which in this
introductory discussion we shall designate as the lower language
or LL. LL can be any small "systems programming" oriented language,
that is, any language oriented toward the definition of structured
tables and their efficient manipulation. In'the total language
configurétion envisaged here SETL and LL are both incorporated
in a manner allowing them to be intermixed. In particular, once
an efficient tabular representation for some structured set S
occurring in a SETL program has been decided upon, it will be
easy, using an appropriate mixture of SETL and LL phases, to
describe procedures both for convertihg S to a tabular representa-
tion T and for converting a table having the structure T back to
a set structured as S. Such conversion being possible, one may
then progressively replace sections of SETL code by expanded
versions of the same processes written in LL, converting between
tabular and set-theoretic representations for all necessary
entities at the points of transition between SETL and LL code.
Holding to such a procedure will aid in the orderly elaboration
of a final program, and will also provide some assurance that the
program as finally developed corresponds to the SETL specifica-
tion as initially set down. As final LL code is developed, initial
SETL statements will progressively be relegated to the status of
comments. During this process, those portions of an original SETL
code still being executed will serve as "scaffolding" for the
developing LL code, providing input data sets and convenient
output and checkpoint facilities for testing. Note, however,
that as long as a program remains "hybrid", that is, contains
both SETL and LL, it will be inefficient, as the costs of passage
of the SETL-LL interface that we shall describe are high.

~-43-

Item 6. SOME CENTRAL TECHNICAL ISSUES IN PROGRAMMING LANGUAGE DESIGN.

SETL, as it will be presented in most of what follows, will
appear as a full-fledged "user language". That is, we will assign
it a specific and fairly elaborate syntax, intended for direct use
rather than as a base requiring a good deal of extension before use:
Here we may usefully distinguish betweén "host" and "user" languages.
A host language is a language providing a full set of sSemantic
facilities, but with a syntax deliberately kept sSimple. Such
languages are intended not for direct use, but rather as a basis
and target for language extension. By keeping their syntax simple
and modilar, one confines the mass of irregularities which an
attempted extension must digest. In designing a user language,
on the other hand, one incorporates a fairly elaborate collection
of syntactic facilities, hoping that these will be directly useful
in a wide range of applications. SETL as currently specified is
a user language; it is however worth trying to envisage the sort
of host language which could underlie it, as this will clarify
various basic semantic issues arising in programming language
design.

At the most basic level, a procedural programming language
merely provides a framework which allows the storage and retrieval
of some family of data objects and the sequenced application to '
these objects of some sufficiently general set of primitive
operations. Concerning this, the following remarks can be made.

1. The semantic framework of a language should allow an arbitrary
combination of primitives to be disguised as a primitive and to be
invoked in the same way as a primitive. This is the essential
point of the system of "calling conventions" which is always part
of the semantic core of a programming language. One will wish not
only to provide subroutines capable of manipulating and modifying
their arguments, but also to provide from the start for the
recursive use of subroutines, as recursion is a technique of
established power related .directly to a language's basic inter-

routine linkage conventions.

-44~

2. Computer hardware charactéristically looks at computations

arough a "'peephole'. In each cycle of its action hardware can
manipulate only those several hundred bits which are contained
in some limited set of active registers. Moreover, internal
limitations on available data-flow paths will slightly (though
not strongly) constrain the transformations possible on a single
cycle. To the extent that its primitives directiy reflect hard-
ware constraints, a programming language is of low level; to the
extent that it provides compound data objects upon which highly

'global' primitives act, a language is of high level.

3. If compound data'objects are to be freely usable in a program-
ming language, and if processes creating such objects are to be
usable in the same way as hardware primitives would be, then at
the implementation level the language must incorporate some auto-
matically acting space allocation scheme. In this sense, we regard
the type of "garbage collector" first developed in connection with
the LISP language as an invention fundamental for programming.

4. The semantic extensibility of a language will depend to a
large extent on the ease with which different abstract compound
objects of varied structure can be represented in terms of the
specific semantic objects which a language provides. SETL aims
to gain advantage from the fact that the objects of most fields
of mathematical discourse can be represented rather easily using
sets and mappings.

5. The primitive operations most advantageously incorporated into
a language are those which combine smoothly into broadly applicable
families of transformations, especially if they are simple,
heuristically comfoftableAactions which are nevertheless
challenging to program. Some at least of the set-theoretic
operations provided by SETL have thesé advantages; note in parti-
cular that efficient implementation of set theoretic operations
will probably imply the use of hashing techniques, and that the
heufistically‘innocent notion of set equality is implemented by
a fairly complex recursive process.

6. A programming language built upon a family of primitives can

» optimized if enough information concerning the inputs and effect

-45-

of each primitive is made available to a sufficiently powerful
optimizer. Optimization will normally require extensive processing
of program text, and one's attitude toward optimization will
therefore have important impact on a language design. In general,
a decision to optimize extensively will imply a relatively static
approach to certain design issues; if optimization, especially
global optimization, is abandoned, a considerably more dynamic,
incremental language can be provided. This observation bears upon
the question of whether some appropriate intermediate-text form
of its own code is to be a data type available within a language.
If this is done, then highly flexible forms of dynamic compilation
become available. 1In the opposite case, compilation (with the
optimization it implies) is a more sérious step, and in the place
of truly dynamic compilation a language system will probably
provide a facility for input text editing plus total recompilation.
Dynamic compilation is certainly more than a luxury; on the other
hand reasonably flexible and quite useful systems can exist without
it. Of course, it is possible to provide both modes of operation,
one for the earliest stages of program development, the other
to allow more substantial runs of more fully developed programs.
7. An optimizer will normally require substantial information
concerning all the primitives which it can encounter. This informa-
tion will be used in complex ways during the analyses which consti-
tute the optimization process. For this reason, it will not be easy
to allow extension of the semantic primitives of a language which
is to be elaborately optimized. On the other hand, extensibility
of primitives of a high level language is quite desirable, as this
will allow levels of efficiency to be reached which can'probably
not be attained in any other way. Note, for example, that SETL
provides no SNOBOL-like string-to-pattern matching primitive, a
primitive which would be highly desirable if SETL or an extension
of it were to be used for extensive string-processing. Similarly,
it might be highly desirable to provide, let us say, a set of
matrix manipulatibn pfimitives in an extension of SETL which was
to be used to support large scientific calculations. To keep open

-46-

the possibility of adding such primitives is certainly not a goal
hich it is easy to accommodate if, as in SETL , careful optimiza-
tion is to be undertaken. Nevertheless, it may be hoped that
careful organization of an optimizer will lend a rational structure
to the information concerning primitives which an optimizer must
use. To the extent that the hope is borne out, it may be possible
to allow new primitives to be installed within an optimized high
level language. This will of course require that certain interface
conventions be observed carefully, and that information of signi-
ficance to the optimizer be supplied in prescribed form whenever

a new primitive is established.

8. The use of high level dictions should, at least to a certain
extent, make a language more optimizable. It is probably easier
to supply an optimizer with information concerning important
special cases of high level operations than to enable it to detect
"gestalts' once these have been expanded into detailed code
sequences. Abpropriate combination of high level procedural code
with declaratory hints to an optimizer may very possibly make
possible the production of rather efficient object code from
concise and straightforward source text. For this to succeed,
however, we will have to learn to express essential aspects of
a programmer's overall optimization strategy in a suitably devised
formal declaratory style.

9. A facility for the description and control of processes proceed-
ing'in parallel is vital for languages intended for certain important
areas of application. Such a facility can be provided either in a
broad form suitable for use in connection with true multiprocessor-
multitasking environments, or in a narrower form sufficient to
allow response to semi-autonomous external activities generating
'input data files', 'clock signals', and 'interrupts'. At: least
the latter facility is necessary for a language which is to be used
to describe operating systems. While SETL does not now include any
features of the type just described, it is certainly interesting
to attempt to extend SETL to provide such features. Errors and error
recovery, as well as memory hierarchy management, raise additional

ignificant operating-system releated programming issues with which

a language intended for the comprehensive description of such

-47-

systems must come to grips. _

10. The provision of a structure which can supply good run-time
diagnostics is an issue which ought to be faced during the basic
semantic design of a language. Diagnostics of this sort will be
issued when the routines interpreting the primitives df a
language detect malformed arguments or other illegal circumstances.
In such cases, 'trace-back' data allowing the situation surrounding
an error to be described in user-interpretable terms must be
available. One will wish to be able to report on

(a) the chain of subroutine calls made up to the error event;

(b) the source-code statement, and the particular operation in it
being executed at the time of the error event;

(c) the values of all variables immediately prior to the error
event, and the identity of those variables discovered to be
illegal in format.

The importance of providing all this information in an 'external'
form tying it to the source text with which a user is directly
concerned, rather than in a difficult-to-interpret internal form,
deserves to be stressed. Note that many of the necessary 'external-
to-internal' connections (such as the association of external names
with variables) can be set up at compile time by an adequately
conceived translator. Nevertheless, the diagnostic 'hooks and eyes'
needed at the basic execution level deserve careful design.

The issues discussed above are strongly semantic in flavor, in
that they arise during the design of the base-level interpreter
routines and target-code conventions which directly allow the
operations of a language to be carried out. Beyond these issues
arise'otﬁers, still fundamental, but of a more'nearly syntactic
character.

We may regard these latter issues as belonging to the design
of those processes which take one from some internal parse-tree
form of a host language to the target code which is directly
interpreted. Here, the following main points may be noted.

l. In designing a full host lénguage system, one will have to
decide whether the system is to include a farily complete 'front

end', or whether only host language mechanisms will be provided.

-48-

If the former path is taken, one will strive to invent 'syntax
gtension' tools allowing the external form of a language to be
varied within wide limits. If only host language mechanisms are
provided within the core system, one will intend to allow any
one of a wide variety of parsers to be used to define external
language syntax. The first course can provide quite a range of
users with languages reasonably well tailored to their require-
ments, which can be made available without any very great effort
on their part. Several arguments can be given in favor of the
latter course. Parsing is the best understood, the most manage-
able, of all the elements of a language system. Diagnostic
generation is an important part of parsing, and a specially
designed parser can generally give much more adequate diagnostics
than are available via a less flexible syntax extension scheme.
In particular, the use of a syntax éxtension scheme may make it
difficult to avoid t e generation of diagnostics at the host
language level, which however may involve the user in dictions
and circumstances that he would prefer to know nothing of. A pre-
defined syntax extension scheme may not readily allow the use of
source text forms requiring elaborate, unexpected pretransforma-
tions, as for example forms in which initially segregated fragments
of code must be merged to produce required host language forms.
Especially if this merging involves elaborate consistency cheécks,
or is guided by specialized declarations peculiar to a given user
language, attempts to use a pre-defined extension scheme lead to
difficulties.

2. Even a host language will generally provide more than the
minimally necessary operations, argument, and transfer patterns
required to sustain interpretation (a language providing only
this much would in effect be an assembly language for an abstract
machine). Indeed, since some basic eleménts of syntactic 'icing'
are so easily provided, and so apt to be useful in connection with
almost any ultimate external syntax, one will generally wish to
provide at least this much syntax as part of a host language. The
list of features which one will probably prefer to include is

airly short. Expressions with embedded function calls are a

~49-

syntactic form used in almost every programming language. They
derive their special utility from the fact that the output of one
operation is quite likely to be an input to the very next opera-
tion performed; when this is true, use of expression syntax allows
one to elide the 'temporary variable' names which would otherwise
have to be used, yielding condensed dictional forms. The 'on-the-
fly' assignment (within an expression) pioneered by APL can be
regarded as éeneralizing this advantage; it exploits the fact
that one will often use the value of a subexpression twice in
rapid succession, often within the confines of a single compound
expression. Certain dictions related to the control of program
flow have equally general appearance, and deserve equally to be
provided even by a host language. The <¢f ... then ... form
popularized by ALGOL exploits the fact that binary tree-like
branching is the commonest form of 'forward' conditional transfer.
By providing this diction at the host language ievel, one eliminates
the need to generate many of the explicit transfer labels which
would otherwise be necessary. The commonest form of control
structure involving backward branching is the 'while' loop,
which is another form which it is desirable to include even in
a host language. One will wish a collection of statements to be
usable in any position in which a single statement can be used}
for this reason, it is desirable for a host language to include
some statement grouping scheme. Finally, one will wish to be able
to use any code passage returning some single data object as part
of an expression; a facility allowing this is also appropriate
for a host language. 4

3. Name brotection, embodied in a suitably powerful and generai
namescoping scheme, will appropriately be included in the host
language level of an overall language system. We regard a name-
scoping system as a set of conventions which assign a unique
'resolved name' or 'semantic item' x to each 'source name' y
appearing in a mass of text. The particular x to be assigned to
each occufrence of y depends on the location of x within what will
ordinarily be a nested, tree-like family of scopes.

The purpose of a namescoping system is of course to balance

the conflicting pressures toward globality and protection of names.

-50-

Inrestrictedly global use of names is unacceptable, since it

reates a situation of 'name crowding' in which names once used
become, in effect, reserved words for other program sections.
Hard-to-diagnose 'name overlap' bugs will abound in such situations.
'Globalization' of any subcategory of names can recreate this
problem; for example, in large families of subroutines it may
become difficult to avoid conflicts between subroutine names.
In sufficiently large program packages, it will be desirable to
give even major scope names a degree of protection. '

On the other hand, a system in which names tend very strongly
to be local unless explicitly declared global can tend to force
one to incorporate large amounts of repetitive declaratory boiler-
plate into almost every protected bottom-level namescope or
subroutine. Pafticularly in a language like SETL, which aims at
the compressed and natural statement of algorithms, this burden
would be irritating.

What one therefore requires is a system capable of dividing
a potentially very large collection of programs into a rationally
organized system of 'sublibraries', between which coherent cross-
referencing is possible in a manner not requiring clumsy or
elaborate locutions.

The design of such a system is by no means trivial, especially
since the problems which namescoping addresses emerge full-blown
only in the development of very large systems of programs. Note
also that a namescoping scheme to be used in connection with an
extensible host language ought to be general enoﬁgh to support a
variety of user-level namescoping conventions. The stereotyped
subsidiary text necessary to get such a variety of surface effects
will of course be supplied by the specialized 'front ends' defining
the different user languages supported by a given host language.
However, before any of these issues can be faced with confidence,
more experience is required.

Having said what we can concerning the basic semantic and semi-
semantic issues arising in language design, we now turn to a
discussion of some important syntactic issues. Any language syntax

1ll 'fill' a given space of syntactic possibilities to a given

-51-

level of completeness. Of course, one will never wish to assign
a meaning to every possible string of tokens; to do so would
completely destroy all possibility of detecting error during
translation. On the other hand, it can be advantageous to allow
‘a language to fill the syntactic space'available to it rather
completely; say, for purposes of discussion, to the 50% level.
This will tend to make many very compact dictions available;

a possibility especially attractive if an interactive keyboard
languuge is being designed. To attain this level of syntactic
packing, one will assign meanings to operator-operand combinations
not ordinarily used, and reduce the number and length of keywords
appearing in a language. In particular, monadic significance
will be assigned to ordinarily dyadic operators, a semantic
interpretation will be assigned to sequences of variable names
following in succession with no intervening operators, and elision
of keywords willbe allowed whenever possible. A precedence
structure favoring the use of infix operators over parentheses
may also be found desirable. All this leads to a very compact
languagé, in which helpful syntactic diagnostics can nevertheless
be generated. Syntactic packing to the degree indicated may on
the othér hand lead to source text forms which, lacking helpful
redundancy, become somewhat difficult to read. For this reason,
one may prefer in designing a language intended for extensive use
in cooperative programming efforts to make use of a higher degree
of redundancy. In such case, the syntactic structure chosen
ought to promote good programming habits, allowing and even
‘inducing its user to group passages of text in a manner which
makes clear the logic of the process which this text describes.
Moreover, as a return for the redundant modes of expression
imposed upon him, the user can gain the use of a subtler and
more complete set of compile-time consistency checks.

It is desirable to include a fairly powerful macro-preprocessor
in the front end of a language system. This will allow the parti-
cular syntax proVided by languége to be "perturbed" in ways a
user is bound to find convenient. In particular, local abbrevia-

tions can be introduced, minor special dictions set up, etc.

-52-~

Macros with parameters, nested and conditional macro-calls,

l\acro iteration, and a certain amount of compile time calculation
power are all desirable. More elaborate built-in string trans-
formation schemes, which involve the parsing of an. input string
into a tree form which is then transformed into an output string,
can be used to give a higher degree of syntactic variability to

a language. Of course, the more far-reaching a transformational
scheme of this sort, the more delicate is its correct use apt

to become.

In the ordinary course of a syntactic design, the most
desirable syntactic constructions will be used at ‘once; if they
are not reusable, less than optimal dictional forms will have to
be employed subsequently. Note, for example, that depending on
context one might want a*b to denote the product of numbers, the
dot-product of vectors, the product of matrices of of group
elements, the intersection or cartesian product of sets, as well
as any one of a great number of vaguely 'product like'
constructions occurring in other application. areas. We see the
solution of the dilemma implicit here as lying in the use of a
mechanism important in natural language usage. Namely, the inter-
pretation of syntax must depend on context; specifically, the
manner in which-an operator applies to an object (or collection
of objects) should depend on the object's nature. Thus we find
it desirable for a linguistic system to incorporate a formal
mechanism allowing the definition of indefinitely many different
'object kinds', which can be used to control the manner in which
statements of a fixed external appearance are interpreted. Such
an approach has in fact been tried in a number of languages,
sometimes on a dynamic (run-time) basis, sometimes on a static
(compile-time) basis, occasionally in a manner having both
dynamic and static features. In a later sect}on, a static
system of object kinds will be proposed for SETL. A static rather
than a more flexible dynamic approach may well be adequate, and
does not imply'any loss of efficiency. The system proposed will

probably also be useful in debugging.

-53-

Item 7. SETL IMPLEMENTATION AND OPTIMIZATION. A FIRST LOOK AT SETL
COMPILATION: TARGET CODE STYLE.
(Revision of SETL Newsletter 53: H. S. Warren Jr.)

The following pages discuss various questions of target code
style basic to the compilation of SETL. In such a discussion we
must of course intend some lower level language (which might
possibly be the machine language of a particular computer) as
the target language of compilation. In the present version of
the SETL compiler, the target language adopted is an NYU-developed
"systems programming” language intended for the writing of produc-
tion compilers, operating systems, etc., and called LITTLE.

LITTLE is roughly a subset of FORTRAN, at about the level of
BASIC, augmented by field extractors. A main property of LITTLE
is that programs coded in it are highly portable. Portability
is achieved by allowing only two data types: fixed length bit
strings, and floating point numbers of fixed (but machine dependent)
length and form. Fixed length bit strings are treated as unsigned
numbers by tﬂe LITTLE arithmetic operatoré.

LITTLE is designed to be highly optimizable in a global sense.
It includes no pointer or label variables and no recursion mechanism.
It allows only single subscripts on array references. A macro
processor of simple string replacement type is provided; macros
may contain parameters. Field extraétors are provided. For
example, X = .F.3,2,A extracts the 2-bit subfield which begins with
the third bit of the quantity A. The field extractor may also be

used in a "sinister" context. For example,
..F.3,2,A =0

turns off the bits in a two-bit subfield. The macro-processor
provided as part of LITTLE allows us to refer to subfields by name.

Thus we may write the above field-operations as
X = TWOBITS A and TWOBITS A = 0

respectively.

~54-

Dynamic Storage

LY
The SETL implementation employs a compacting garbage collector.

Available storage is divided into two areas, as depicted on the
following page. A run time stack is maintained at one end, an
allocatable "heap" at the other end. The stack is used in the
usual way to support procedure calls and returns. The compiler
maps every variable in a program into a stack location of the form
(base + offset), with offset a constant. The stack holds root words
describing each variable's value (these root words are described
below) . '

The heap is used to fulfill requests for storage. Sets, long
character strings, etc., are all stored within the heap. Requests
for heap storage are satisfied in a simple linear fashion. If
the normal response to a request for either heap or stack space
would cause the stack and heap to overlap, the garbage collector
is called.

The garbage collector traces through the stack and all loca-
tions in the heap, marking all heap locations containing accessible
information, and then compresses the heap by moving all unreclaim-
able blocks to the low index end. Pointers are adjusted between
the marking and compressing phases.

The garbage collector is relatively straightforward, in that
a separate table is used to store all "mark" bits, and a fixed
size area is used for an auxiliary stack that aids in tracing
through data structures.

All data processed by the garbage collector must have the

These format are slanted toward SETL
application, but are useful for other purposes as well. The garbage
collector makes no use of detailed sﬁructural information concerning
SETL data types. This makes the garbage collector less sensitive
to SETL changes and increases its potential for applications having
nothing to do with SETL.

All words containing pointers of interest to the garbage collec-
tor must follow the basic format shown in the chart below; pointers
occur within such words in designated number and in fixed position.
ny pointer may be zero, indicating that it doesn't currenfly point

to anything.

-55-

DYNAMIC STORAGE

Allocated | 3
stack-like, . : _
freed by a . F HEAP
compacting ‘

garbage collector.

Allocated/freed
on subroutine . STACK
call/return.

~-56-

GARBAGE COLLECTOR

WORD FORMATS

STACK WORD

P

LA

Pointer. 3

L

“T

Pointer 2

A

T

Pointer 1

L—Nurnber of pointers in word (0 to 3) -

ONE-WORD BLOCK

M

Pointer 3

1
Pointer 2

_ "Pointer 1

TWO-WORD BLOCK

—
Pointer 3

Point_er 2

Pointer 1

1

Pointer 3

Pointer 2

L

Pointer 1

STANDARD BLOCK

0

Ref.

Block Size

AHeader Size

Pointer Size}

Ly}
| o

Header Area

3)

¢

XN

(49

Data in this area must follow-the format 1

Poi

of a

nter Area

stack word

LA S

\{

Trailer Area

£

-5

7-

These types of heap blocks are provided in one-word blocks,
two-word blocks, and long blocks of arbitrary size. The type of
a block is indicated by its first two bits. The one- and two-word
blocks can only contain words of the standard garbage-collector
format described above. These small blocks are used for the
dense encoding of 'pairs' and other elementary list-nodes.

A 'long block' begins with a header word, which contains
information of use to the garbage collector. The remainder of
the block is divided into a header area, a pointer area, and a
trailer area, each of arbitrary size (including zero). All
pointers in the block must be formatted in the standard manner
described above and included in the pointer area; all words in
this area have the standard garbage collector format. The header
and trailer areas are not examined by the garbage collector, and
may therefore be used for the storage of floating point numbers,

packed character strings, etc.

SETL Data Encoding

The encoding of SETL daté objects is depicted on the’
chart. Each object is represented by a "root word" that contains
two basic fields: type and value. The value is contained in the
root word if it will fit; otherwise the value is stored in the
heap, and the root word contains a pointer to the value array.

Many items therefore exist in "short" and "long" varieties.

Note SETL allows integers to be arbitrarily large; thus there
exist both short and long integers.

"Special pairs" (shown on page 53) do not constitute a SETL
data type. They are used in connection with the inclusion of
tuples in sets, in a manner described below.

Tuples are provided with a "growth area" node equal to about
25 percent of the tuple's length when space for a tuple is allocated.
This is provided so as to allow tuples to grow and shrink at the
right-hand ends, an event of frequent occurrence in SETL algorithms.

The null set and null tuple, thch play special roles in many

SETL run-time library routines, are given unique type codes.

-58-

pmcjones
Highlight
"53" should be "60"

SETL DATA ENCODING

ROOT WORDS HEAP BLOCKS
45 17 17 17 27 17 17 17
Basic Formats i| ,PTR; PTR, PTR; ‘| R | Block| Hdr Ptr
] - ~ J
.LN\imber of pointers (0-3) Sizes
standard block,

0
1
2

one word block,
two word block.

Short Integer :5 oy value ‘ 0
Long Integer '1(1'1 \N ¥ 0 'R{ n+tl | n 0
- value
7 sign, MSW first 7
T (n words) T
Real TEINNNE Irf 2 | 1 | o
value (floating point)
Short Boolean String § 4in value 0
Long Boolean String RIEIN \s) ©- n+2 | n+l 0
1 value, right adjusted |
T (n words)
Short Character String :5 6 i1 :?E;Iu‘ﬁe_ﬁL : 0
Long Character String é 7 \\\% Vo) »| R| nt2 | n+l 0

\\\\\\\\ # chars

3 value, left adjusted /
(n words)

3

Blank Atom (newat) 5 8 value - 0
,abel, Subr., Function .ES \\Y 4| 0

t-10, 12, or 14

-59-

Undefined ()

Special Pair

Null Tuple

Tuple

Null Set

Set (Hashed)

SETL D

ata Encoding

(Continued).

4016 0
BN 0 -2 value(l).
| value(2) (a set)
HENNNE oe+—{|R| 1 | 0 0
AIENNNE —o JR Jntma] o | =
value(l)
¥ =
Qalue(n)
§ growth space A
i (m words)
NN ——=|R| 2 1
'hash
2NN } e {r{s+t2| 1 [s
' L| load | hash #memr
L = LOgZ S [

Undefined if
not present

S = size of hash_
table

-60-

member R »
member _ f q

7 %
. member 4
1 member B

e

i'nember ! :
‘ 0

Undefined Atom

The implementation of sets is based on a hashing scheme. Each
2t is represented by a hash-table structure that contains the

set's members. To put an object into a set, a hash code for the
object is first calculated. The hash code is used to index the
hash table. Set members occupying -the same slot of the set's hash
table are chained together (each object.has a pointer field for
this purpose). As long as the lists are short, this scheme allows
a reasonably fast implementation of the membership test, even for
large sets.. Besides membership testing, the operations with
(adding a member to a set), and less (deleting a member from a set)
are fundamental set operations. Various other operations may be
expressed in terms of these. Set equality testing, for example,
reduces to a series of membership tests.

The hash table used to represent a set "breathes" as the number
of members in the set increases and decreases. Each time a new
member (i.e. a member distinct from those already in a set) is
added to a set, the current number of members is incremented.

The resulting number of members is then compared to the size of
the hash table. If the ratio '

(number of members) / (hash table size)

exceeds a certain constant, then the hash table's size is doubled.
Similar steps are performed when a member is deleted from a set.

The density limits controlling hash-table halving and doubling
are set so as to prevent small fluctuations in a set's membership
from causing re-sizing of the hash table. Doubling of a hash
table is an expensive operation. Space must be reallocated, and
the members of the "old" set re-hashed to obtain one more bit of
information defining the slot the member should occupy in the new
hash table. Halving is also expensive, though somewhat less so.

Salient details of the hashing scheme employed in the present
SETL implementation are as follows. Long integers, bit strings,
and character strings are reduced to word-length quantities by
forming an exclusive or of all their words. The word-length
quantities which result are then hashed'in much the same way as
“"re inherently short SETL quantities: by combining with an

-61-

object-type depenaent quantity, and then by dividing by an
appropriate constant, to obtain a remainder which is the hash.

The hash code of a tuple is taken to be the hash code of
its first component, for reasons that will become clear in the
next section. The hash code of a set is the exclusive or of
the hash codes of all its members.

With the exception of sets, hash codes are computed on demand,
and no attempt is made to save them. The hash code of a set is
calculated as the set is built (even if the set is never made a
member of another set). This is done so that aléorithms deéling
with sets of sets can be executed withou£ dismal consequences
(our implementation strives to avoid cramping the SETL programmer's
style). Each time an element is added to or deleted from a set,
the element's hash code (which has of course been calculated) is
combined with the set's hash code by an exclusive or operation.

Maintaining precalculated hash codes for sets has the side
benefit of allowing these codes to be used in a preliminary
comparison during set-equality tests. Sets which are not equal
will generally have different hash codes, so that set inequality

is recognized rapidly.

Tuples in Sets

Though expressible in terms of the membership test, with, and
less operations, functional evaluation plays ® important a role
'in SETL algorithms that we treat it as a primitive. _

SETL makes three types of set-related functional evaluation
operators available:

f (x)
£ix}
f[s]

The most fundamental of these is f{x}, which invokes.a search
over f for all n-tuples that begin with x (n > 2), and which
yields as result the set of all tails of these n-tuples. More

. precisely, in SETL:
f{x} = if #y eq 2 then y(2) else tL y, vy € £ |

type v eq tupl and #y ge 2 and hd y eq x!}

-62-

The operation f(x) has a similar definition but includes a

ngle valuedness check:
f(x) = if #f{x} eq 1 then 3f{x} else Q .
The operation f[s] is adequately defined in terms of f{x}:
£{s] = [+: x € 8] f{x}

The fundamental problem in implementing these operations is to
provide some method for rapidly locating, within a set, all n-tuples
(n > 2) that begin with a specified component.

Note, as a slight complication, the fact that functional appli-
cations with several parameters are allowed. The fundamental
definition ‘

f{x,y} = (£{x}) {y}

specifies the semantics of two-parameter functional applications,
and similarly for f{x,y,z}, etc. Given a set f containing triples,
we may treat £ as a function of either one or two variables. That
is, both of the expressions f{x} and f{x,y} can be evaluated. A
similar remark applies to sets containing quadruples, etc.

Our present implementation supports a reésonably efficient
realization of all these functional application operations, at least
if the mappings f with which we deal do not contain any very long
tuples. '

Salient details of this implementation appear in the example
shown on the following page, which depicts a set containing six

triples and illustrates how it is stored. For the set shown,
f{a} = {<p,U>,<Q,V>,<R,W>}, and
£f{a,p} = {U} .

The set's root word points to a primary hash table in which are
stored two objects that are encoded as "special pairs" (data type
17 of a previous figure). One special pair has as first component
the object A, and as second component the set of all tails of
n-tuples that begin with A. This is denoted by SA in the figure.

SA has the same layout as any other set.

-63~

TUPLES IN SETS

REPRESENTATION OF

{<AIPIU>I <AIQIV>I <AIRIW>I

<B,P,X>, <B,Q,Y>, <B,R,Z>}

Root word

T

HASH (P) :
HASH (Q) :

HASH(R) :

N
HASH (A) : <A,S,> \
HASH(B) : <B'SB>'
SA
N
N
SB
’\\ A
HASH(P) : <P ,U>
HASH (Q) : <Q,V>
<P, X> HASH (R) : <R,W>
<Q,Y>
<R, Z>

-64-

To evaluate f{A}, the hash code of A is calculated and used
} an index into the primary hash table. An overflow list

starting at that point is then searched for either a 2-tuple or

a special pair beginning with A. If a special pair beginning

with A is found, it represents an entire set of items belonging

to £{A}, in an already appropriate form. To this set we add the

second components of any 2-tuples starting with A which are found.
To evaluate f{A,P}, we first hash A, and then locate a special

pair <A,SA> as before. Then P is hashed, and the secondary hash

table SA is searched for 2-tuples or special pairs beginning with P.
This search process is farily fast but its logic is complicated.

The complications will not be dwelt on here, except to observe

that if f is

f = {<1,2,3,4>,<1,2,<3,5>>,<1,<2,3,6>>,<1,<2,<3,7>>>} ,

then
£{1,2,3} is {4,5,6,7} .

Notice that the structure shown in the last preceding chart
has objects A and B (or pointers to them) stored only once whereas
each of these actually appears three times in an element of the set.
Thus our representation affords some storage economy, in lucky cases
at least. On the other hand, P, Q, and R are each stored twice.

The above described method of storing tuples in sets is quite
poor if one is dealing with a set of tuples that is not used as
a function. To take an extreme example, a set containing a single

100-tuple is represented using 99 small hash tables.

Reference Counts

The SETL implementation does not use reference.counts to aid or
eliminate the garbage collector, but rather in an attempt to avoid
unnecessary copy operations. Before discussing implementation
details, however, we shall make some remarks stressing the "value
oriented" character of SETL.

In the SETL assignment a = b, the object b is (conceptually)

~rnpied, and a (conceptually) fresh copy of it becomes the current

lue of a. This 'logical copying' takes place whether b is 'simple'’

or 'compound' in implementation terms, i.e., whether b is an
atom, tuple, or a set. ‘

Similarly, when an object is put into a tuple or a set, as in
a(3) = b, or s = s with b, it is (conceptually) a copy of b
that becomes a member of s or a component of .a. Subsequent
changes to b do not alter structures or variables into which
a former value of b was previously incorporated or assigned.

A crude but logically correct implementation of SETL would
always generate copies of data aggregates when they enter into
an assignment or are put into other aggregates (PL/1 does this;
for example the array assignment A = B expands into a DO loop).

SETL encourages, or at least does not discourage, what might
be called a "high level coding sytle" in which one frequently
assigns large aggregates to variables, creates maps of aggregates
to aggregates, etc., without regard for efficiency questions.

To simply generate copies in all these cases would be disastrous
both for execution time and for storage requirements.

The issué appearing here may be called the "copy problem".

We plan to minimize copying using a strategy with both compile
time and run time implications. This optimization is probably
the most important optimization for SETL.

Consider the assignment

s s with x;

where s is a set and x is a "long" item. In the most efficient
implementation of this we "destroy" the copy of s available
immediately before the assignment, by putting a reference to x's
value (i.e., the root word of X) directly into the hash table
representing s. It is often safe to destroy s in this case; i.e.
to avoid creating a copy of s either in performing the with
operation or in making the assignment.

Consider also the aséignment
k =1+ 1;
where i 1is a long integer. In the most efficient implementation
of this operation, we destroy the copy of i available immediately

before the assignment, by adding 1 directly to it, and then makincg

vk simply point to the result.

-66-—

To achieve this type of optimization, we will use run time

1ngic associating a reference count field with most objects in
ile heap. In addition, compile-time live-dead analysis of
variables will be used.

A "live" occurrence of a variable is an occurrence at which
there exists a path from the occurrence to a use (i.e., "right-
side" context) of the variable. An occurrence of a variable
that is not live is "dead"; i.e., all paths from such an occurrence
lead either to assignemnts or to program'terminatioh. . .

The reference count associated with an object, which is labeled
"R" in a preceding figure, indicates the number of. variables or
aggregates that point to the object. A value of zero signifies
that the space occupied by the object may be collected, but the
present garbage collector does not make use of that fact.
(There are two heap items, the one word block and the two word
block, that do not have reference count fields. Hence the
garbage collector must émploy a "bit table" to determine what
space is available).

Copy minimization is based on the following rules.

1. Always move only root words on assignment and when putting
objects into‘data aggregates.

2. If a variable is dead and its reference count is one, then
the existing copy of it may be updated, even in a manner

which will modify it irrevocably.

These rules defer copying until it "must" be done. A concrete

example is depicted below.

Figure. Example showing use of reference counts.
Original After After
a = awith x X = x with 1
b = b with x
1
X: 1 X: 2

In this example we show three sets x, a, and b; and proceed to

make x a member of both a and b. To evaluate "a with x", the

compiler generates a call to a set "augmentation" routine, which
irrevocably modifies the old value of a. This is permissible since
this is dead (the value of a is immediately changed by the assign-
ment a = aq with x), and since a's reference counter is one. The
set x is not copied; instead its reference counter is incremented.
Hence in executing the statement a = a with x no copying of

items other than root words is done.

The statement b = b with x is executed similarly.

Next the program modifies x by adding'the integer "1" to it.
The compiler will generate a call to the "augment" routine, as
before. However, the augment routine will test the set's refer-
ence céunter before adding the element "1" to it. Since this
reference count is greater than one (it is three), the augment
routine Will first copy x and then proceed to put "1" into the
new copy. '

This illustrates the compile time and run time activities
which eliminate much unnecessary copying in our proposed imple-
mentation. ' ‘

Based on our experience to date with an approximate subset
implementation (SETLB) of SETL, we may make a somewhat surprising
observation. The SETLB implementation, which is based upon an
extended Lisp. (BALM) system, does not follow SETL in regard to all
details of the semantics of copying. For example, assignments
always move only root words and -the with routine usually destroys
the set being augmented (an exception is made of the null set --
adding a member to it does not destroy the one and only copy of the
null set!). Thus the SETLB coder must in principle take care to
insert calls to the copy routine in his source program whenever
necessary.

Surprisingly, this burden is not very large. Our experience
to date shows that in the majority of algorithms it doesn't matter

whether a copy is made or not.

-6 8-

Item 8, TECHNICAL PERSPECTIVES.

Our initial experience shows that, as hoped, the SETL system
allows us to program complex processes with surprising ease.

SETL programs are much shorter than conventional programs realiz-
ing the same function; still more, the number of bugs per line of
code is sharply decreased from what common experience at the
FORTRAN or PL/1 level suggests, and rather straightforward
diagnostics connect most bugs closely to their sources. This

means that a good part of the greatest obstacle to headway in
programming, namely debug time, is in large part overcome by our
methods. It now seems clear that a faster running and smaller
SETL system, well engineered from the human factors point of view,
would allow complex algorithms to be programmed and debugged with
remarkable rapidity. It has also become clear that interactive use
(which when harnessed to conventional languages does not always
yield the dégree of advantage which its enthusiasts claim) will
undoubtedly be of great benefit when used in connection with a
language in which bug symptoms are often quite close to their
causes, and in which three-fourths of all bugs can be spotted in
a few minutes of inspection.

As part of our own work a substantial number of algorithms,
drawn from such areas as optimization, parsing, and theorem-
proving, have been written and debugged in the language we call
SETLA. The SETLA Users Manual (Item 1l1) describes this language
and lists a few debugged algorithms. It is of course difficult
to quantify the relative difficulty of programming the same
problem in different languages, but SETLA users, comparing
SETLA and FORTRAN, report ratios such as 1/10.

Our experience to date'as usérs of’the'presently available
prelimintary version of SETL (a bulky and very slow system)
convinces us that the labor of programming can be reduced at

least to 1/5 of current levels or better by prbviding a polished

SETL environment fast enough to eliminate turnaround delays.

Holding this basic View, our overall aim is to demonstrate what
we think can in time become new widely accepted programming
technique: the writing of programs in a very powerful language
having the abstract flavor of SETL, followed by its optimization
by a combination of automatic and programmer-assisted procedures.
We aim to demonstrate this technique, first as a technology for
program design, and subsequently as a technology of program
implementation.

We have realized from the start. of our work that programming
by the use of very high lgvel, mathematicized dictions will at
first imply a substantial loss of efficiency. (See below for
estimates.) We have hoped that by gaining a deeper understanding
of the optimization problems which arise in connection with
languages of high level, and by applying our new dictional tools
to the specification and design of the required optimizers, a good
part of this loss can be made up. Our two years of work have in
fact clarified the problems which must be faced in this connection.
These problems now seem quite soluble, though by no means easy.

A significant step in this direction is the development of the
Data Structure Elaboration Language discussed below. However,
success in our immediate objective of attempting to demonstrate

a system must of course rest on the levels of efficiency which

we are able to achieve in the relatively short run. Here our work
is far enough along that we are able to predict the following
levels of performance with a good degree of confidence.

(Note that here and below we refer to FORTRAN simply to be able

to name a typical low-level language of good efficiency.)
Predicted efficiency of SETL system presently under construction:

Spe d, as fraction of FORTRAN speed 3%
Space required, as multiple of FORTRAN array size 6/1

These efficiency levels obviously imply severe limitations
on the prpgramming load supportable on presently available hardware.
Nevertheless, they will allow our new programming techniques to be
demonstrated on a scale substantial enough to be convincing. To
get a feel for what is implied, we consider two types of job: fir

a 'module debug' job, in which a fragmentary group of subroutines

-70-

(equivalent in logical function to a few hundred FORTRAN statements)
"3 being tested against a very small sample data set; secondly a

system integrate' job in which many routines (constituting, for
example, an optimizing compiler) are being tested together. The
first type of job we define as requiring 0.4 sec. (6600 time,
exclusive of compile and I/O time) if executed in FORTRAN; the
second type of job we assume will require 2 min. if executed in
FORTRAN. Runs of the first type will use 12 seconds (of 6600 time)
in our new SETL system. Runs of the second type will require 1 hour.

We define an ideal debugging environment as an interactive
system capable of providing a programmer with 1 run every 5 minutes
through a 4-hour debug session. This is 48 runs/day; on the 6600,
these runs would consume about 10 minutes/day of processor time.
Six programmers steadily at work in a 'module debug' mode (probably
equivalent to a group of 18 with access to the system) will therefore
consume 1 hour/day. 'System integrate' debugging will of course
impose much more substantial burdens on available computational
resources. Approximately 18 runs/shift are probably ideal for
this type of work; the 6600 is capable of providing only 1/2 this
much. On a dedicated 6600, two projects operating in 'system
integrate' mode (one day shift, one night shift) would probably
coexist acceptably.
Faster machines would proportionally increase the sustainable

load; the following figures are suggestive.

Supportable Supportable
'"Module Debug'’ 'System Integrate'’
Population Progjects
CDC 6600 (3 megacycles) 18
CDC 7600 (12 megacycles) 72
Hypothetical 100-megacycle computer 600 50

The last alternative describes an active national algorithms
laboratory; the second a much more modest level of activity, but
still one that should amply demonstrate the specification technology
we are in process of developing. A 7600 system would probably
provide a level of service which could be rented to organizations

tempting to develop large and difficult systems; even a dedicated
--00 system is too small to permit more than a minimum demonstration

of our techniques at the 'system integrate' level.

-7]1~

It‘is worth noting that the vigorous development of new higher-.
speed hardware is the most straightforward, if also the most ,
expensive, way of getting into a position in which the availability
of new programming techniques can be clearly demonstrated. There
is at the present time nothing particularly difficult about building
a 100 megacycle machine; however, the capable manufacturers lack
the will to do so. :

The technical picture sketched above only becomes complete if
we add to iﬁ a discusson of the amounts of memory required to support
the envisaged debugging and integration activity. '

The bulk of compiled SETL will consist of calling sequences.
Examination of typical code of this kind reveals the following
rules of thumb. Each 'active token' in SETL source must compile
into at least 4 bytés of code at the machine level. We count as
active tokens each variable name and operator symbol appearing in
the source; it is reasonable to count '(' as an active symbol, but
to regard the matching ')' as a possible mark required for syntactic
purposes only. Four bytes are about minimal, sincek2 bytes or ‘
more will normally be required for an operand or code sequence
address, 1 byte additional for opcode information, and at least
1 byte additional for miscellaneous overhead connected with
machine-level housekeeping. Tokens average out to about 3 charac-
ters, and 15-20 tokens make the average SETL card. Thus we must
compile about 80 bytes/card, and in fact will probably wind up
compiling 160 bytes/card. By the same rough reckoning, FORTRAN
compiles as 3 bytes/token, and about 16 bytes/card. Since 10
FORTRAN statements have roughly the logical function of one SETL
1ine,_codé sizes in SETL programming should run at roughly par
with code sizes of programs of equivalent functions written in
FORTRAN, except that a substantial initial block of code, namely
the 'run time library' realizing the SETL operations, forms part
of the SETL memory requirements. These considerations lead to
the following rough formula for the anticipated size of SETL runs,
in which we write FCODE for FORTRAN code size, FDAT for FORTRAN

data sizes (in bytes).

SETLSIZ = 240,000 + FCODE + 6 * FDAT .

-72~

This establishes 300,000 bytes, or approximately 120K (octal 6600

ichine words), as the minimum size of a run in the next SETL
system. Software paging should reduce core requirements somewhat,
possibly making minimum runs in less than 100K possible.

It is also worth considering the space which would be required
for a large 'integration' run. Assume, for example, a program
4,000 SETL cards long, probably equivalént in logical function to
a 40,000 card FORTRAN program (e.g., the whole of an optimizing
compiler). The FORTRAN program is taken to require 320,000
(decimal) bytes of data space. Applying the above formula we
estimate a SETL size of 2,800,000 bytes, or 350,000 (decimal)

6600 machine words. Jobs of this type could therefore actually
be run on CDC 7606 computers furnished with large amounts of
bulk core.

The figures just given indicate that one more step of hardware
development is all that is necessary for the methods we propose
to become quite practical, at least as techniques for the specifi-
cation and rapid prototyping of complex systems. For an entirely
convincing demonstration to be made using present equipment, we
require some technique which increases efficiency considerably
without reimposing an over-heavy burden of programming. The
preliminary theoretical studies which we have carried out indicate
that it ought to be possible to meet demand by developing a
number of optimization techniques, including in particular a
Data Structure Elaboration Language (DSEL, explained below).

We estimate that the use of this optimization technigque should
approximately double programming effort (as compared to the use

of 'pure SETL') but should improve efficiency to the extent shown
in the following figures.’ | -

Predicted efficiency of SETL with use of DSEL

Speed, as a fraction of FORTRAN speed . 20%
Space required, as multiple of FORTRAN array size 2/1

These estimates point up a particularly exciting technical possi-
bility. One-fifth of the speed of FORTRAN is a lvel of performance

1ite acceptable even now for a wide range of commercial applications.

-73-

It will be méde still more acceptable by the hardware developments
currently under way. We therefore consider that a perfected
SETL/DSEL combination will constitute a 'new software technology',
usable broadly in the commercial marketplace, which could more
than cut in half the labor generally required for applications
programming. A

However, full development of the optimization methods which can
culminate in the DSEL requires the solution of conceptual and design
problems which we have not yet fully unraveled, and will also
reguire a substantial programming effort. The availability of a
SETL cum DSEL system therefore lies some years in the future.
As a stopgap we therefore need some more readily accessible technique
for bringing critical programs to a usable 1level of efficiency.
Something of what we desire can very probably be achieved by allow-
ing a 'mixed style' in which the bulk of a program is written in
SETL, but certain portions vital for efficiency (in the sense
either of run-time or of data size) are rewritten directly in the
LITTLE implementation language. Since programs generally spend more
than 90% of their time . executing less than 10% of their code, this
could bring us to 20% of FORTRAN speed and within a factor of 3 of
FORTRAN data sizes, still with a 40% reduction in programming effort
as compared to conventional technique. In comparison, we expect the
perfection of.the DSEL, a much more difficult task, to attain the
same speed, to reduce data space requirements to not more than twice
FORTRAN sizes, and to allow a 60% reduction in'programming labor.
Moreover, a DSEL system would in many cases eliminate most of the
240,000 byte SETL run-time library code from the final compiled
form of SETL programs, though the SETL/DSEL compiler that accomplished
this would undoubtedly be substantially larger than a simple SETL
compiler. |

Data Structure Elaboration Language (DSEL)

An important issue which we will eventually have to face is
connected with our notion of a data structure elaboration language:
There is an inevitable conflict between optimization and interactive=
ness. High-quality optimization requires that .extensive global

analysis should be applied to a program, and that the information

-74-

gained by this analysis should be used to transform the program

ktensively and globally. Such a process leads one via a complex
sequence of decisions to a tightly integrated optimized code.
However, for debugging, easy modifiability and quick incremental
patching are most desirable; to this end, the more loosely bound
a system, the better. This conflict of approaches may at a later
stage in our work force us to develop two closely related but
quite distinct SETL systems, one for debugging, the other incor-
porating all the optimization techniques which we are able to
discover., '

A similar tension exists between two possible approaches to
program optimization. Optimization is ideally fully automatic;
automatic optimization has the obvious advantage of imposing
no optimization-related labor on the user of a programming language.
We have already begun to use our improved programming tools to '
explore fully automatic optimization techniques in as penetrating
a way as we can. However, we are presently of the view that the
SETL level of abstraction may leave open too wide a choice of
combinations of data structures for fully automatic optimization
to reach successfully from this level of description to the choice
of truly optimal data structures. On the one hand, this indicates
the success of part of our original SETL plan, namely, to allow a
programmer to postpone the choice of data structures without fore-
closing any important structural possibilities. Our success however
leaves open so total a range of possibilities as to imply that
the fully automatic optimization of SETL programs into efficient
code is probably a very difficult problem. On the basis of these
reflections we have decided not to employ ©only fully automatic’ but
also programmer-assisted optimization techniques in connection
with SETL. |

‘The data structure elaboration language will stand at the center
of our approach to programmer assisted optimization. This language
is essentially a language of declarations; inclusion of appropriate
DSEL statements in a running SETL algorithm -will not affect its
results but will improve its efficiency substantially. The informa-

.on specified by DSEL statements is essentially that inherent in

the initial 'data structure design' which is an important initial

-75- .

consideration for programmers using conventional techniques. However.
the DSEL allows this design to be described formally; conventional.
this essential information plays only an informal role. 1In a con-
ventional approach, the programmer holds in his mind both a data
structure design and a set of algorithms, and compiles these

manually into a detailed code. In the approach toward which we are
working, a formal data structure design and a debugged algorithm
will be submitted to a compiler which will then produce all necessary
code.

It is important in contemplating what a data structure elaboration
language can accomplish to have a clear understanding of the general
nature of the transformations which a programmer conventionally
applies to an algorithmic plan in order to arrive at a detailed
data structure design. We see the following as basic to this process:
those objects which are to be used as 'indices', i.e., which are
elements of the domain of one or more mappings, are issued 'serial
numbers' (the serial number of an object is generally the position
within some hash table or other array at which the 'actual object'
is stored). The values of mappings defined for such objects are
then retrieved by direct indexing using the serial numbers of
objects, rather than by the considerably less efficient repeated
hashing which SETL ordinarily requires. Moreover a programmer
will normally enhance the efficiency.of'a program by exploiting
such information concerning the abstract objects appearing in it
as the fact that all values of a function may lie in a very small
range, etc. The DSEL we project will allow both patterns of indexing
and information of this latter sort to be declared, and, provided
we are abie to master the optimization-related problems which it
raises, should make possible the very significant increases in the
efficiency of SETL which have been indicated above.:

Concerning our approach to the choice of semantic facilities
and detailed syntax for the SETL language, the following deserves
to be noted. By deliberate choice we are restricting the present
version of SETL to a subset of the full collection of facilities

which our design studies have shown to be desirable. This subset

language, essentially our present SETLB, is sufficiently powerful

to furnish a clear demonstration of the new programming methods

-76—-

toward which we are working. In addition, brought to an acceptable

>sign point of speed and size, it furnishes us with the tool we
need toAdevelop a'second, fuller, version of SETL, and also to
attack the optimization problems outlined in the preceding
paragraphs.

As a byproduct of our experimentation with programming technique
in a Qide range of application areas, we expect to produce a fairly
comprehensive library of algorithms, written in SETL and actually
debugged. We expect this library to be broadly useful. The
algorithms which it is to contain will represent many of the
processes of central interest in graduate computer science instruc-
tion, such as compilers, optimizers, processes for grammar analysis
and transformation, table compression, sorting algorithms, algorithms
in the artificial intelligence area, and the like. It is our
intent to use this library not only as a basic text for study by
students wishing to learn how important processes are programmed,
but also as a mechanism allowing them to experiment with a much
larger family of processes than would otherwise be accessible to
them. Moreover, these algorithms will be of use as prototypes to
groups undertaking major software developments, ourselves included.

We may also note that even that light use of our present system
which we have till now been able to make convinces us that our
'multiphase' programming technique, with its orderly progression
from executable algorithm specification language to efficient
lower level code will lead to the writing of better programs than
ordinarily are produced by present technique. To write good final
code, one must really begin with a penetrating contemplation of
the algorithmic approaches suitable to a given problem, choose one
.to'be implemented, bring it to logical completion as a debugged
abstract program, and then; proceeding carefully at each stage,
make the following steps:

i. Review the text of the abstract program initially written,
searching for simplifications of method, more natural and more
modular descriptions of the same function, and improvements in
function desirable for generality or from a human-factors viewpoint.

>vise and re—debug‘thé abstract program, to bring it to a high

standard in all these regards.

-77-

ii. Consider, in as many variants as necessary, data structures
into which the abstract program resulting from (i) can be mapped
in a manner implying concrete efficiency; make whatever software
measurements are necessary for the relative advantages of each
particular data structure to become clear. Choose that particular
design which appears from such study to be optimal; record it,
using a formal or semiformal language like the SETL DSEL to do so.

iii. Using an appropriate implementation language, code the
concrete aléorithm specified by (i) and (ii), in this process paying
particular attention to the realization of those 'innermost'
processes critical for efficiency. '

The realities of present day programming make it rare indeed for
all the steps of the deliberate approach outlined above to be
accomplished accurately. Our new techniques should make it much
easier to reach this degree of accuracy, and should in this sense
lead to an overall improvement in the quality of programming. The
SETL algorithm library which we have begun to accumulate will be
.an important first stage in this process, since it will come to
consist of carefully thought out, debugged abstract programs on

which concrete implementations can be built.

-78-

Item 9. A PRECIS OF THE SETL LANGUAGE.

In the present section, we summarize the principal basic
features of the SETL language, as they have been defined in the
preceding pages. It is hoped that this precis can serve as a

useful brief reference.

Basic Objects: Sets and atoms;,sets'may have atoms or sets as

members. Atoms may be

Integers . Examples: .0, 2, =3

Real Examples: 9., 0.9, 0.9E-5

Boolean strings Examples: 1b, 0b, 77b, 00b777
Character strings Examples: 'aeiou', 'spaces- S
Label (of statement) V Examples: label}, <label:>

Blank (created by function newat). Q is special 'undefined' atom.
Subroutine. Function.
The operator type x returns the type of the object x.

Basic operations for atoms:

Integers: arithmetic: +, =, %, /, // (remainder)
comparison: eq, ne, &t, gt, ge, 2e
other: max, min, abs

Examples: 5//2 is 1; 3 max -1 is 3; abs -2 is 2.
Reals: Above arithmetic operations (with exception of //)
plus exponential, log, and trigonometric functions.

Booleans: logical: .and (or a), or, exor, implies

(or imp), not (or n)
logical constants:t (or true, or 1b);
f (or false, or 0b).
Character strings: conversion: dec, oct
Examples: dec 'l2' is 12; oct 'l2' is 10.
Strings (character or boolean):
"+ (catenation), * (repetition), a(i:j), a(i:) (extraction),
(size), nulb, nulc (empty strings).
Examples: 'a' + 'b' is 'ab'; 2 * 1b4 is 11001100b;
2 * 'ab' is 'abab', ‘'abc'(1:2) is 'ab', 'abc'(2:2) is 'bc',

'abe'(2) is 'b', % 'abec' is 3, # nulc is 0.

~-79-

General: Any two atoms may be compared using eq or ne;

atom a tests if a is an atom.

Basic operations for sets: .

€ (membership test); n& (empty set); o (arbitrary element);
(number of elements); eg, ne (equality tests);
incs (inclusion test); with, less (addition and deletion of eldfent) ;

lesf (ordered pair deletion); pow(a) (set of all subsets of a);

npow(k,a) (set of all subsets of a having exactly k elements).
+ (set union), * (intersection), // (symmetric difference).
Examples: a € {a,b} is t, a e nf is £, o n& is @, ‘

@ {a,b}l is either a or b, #{a,b} is 2, # n& is 0,
{b} with a is {a,b}, {a,b} less a is {b},
. ta,b} less c is {a,b}, {a,b} incs {a} is t.
pow({a,b}) is {ng,{a},{b},{a,b}}.

npow(2,{a,b,c}) is {{a,b},{a,c},{b,c}}.

Tuples
Ordered tuples are treated as SETL objects of different type
than sets -- e.g. tuples may have some components undefined.
Operations on tuples: '
Tuple former: If x,y,...,Z are n SETL objects then
t = <x,y¥,-..,2> is the n-tuple with the indicated components.
#t is the number of components of t
t(k) is the k-th component of t
t(i:j) is the tuple whose components, for 1<k<j, are t(i+k-1)
hd t is t(1) ' ~
t2 t is t(2:) ,
+ is the concatenation operator for tuples
Examples: hd <a,b> is a. t& <a,b> is which is not the same
object as b. If t = <a,b> and T = <a,c> then
T=+t+ 1= <a,b,a,c> T(3:2) = <a,c>
Tuple components may be modified by writing
t(j) = x;
An additional component may be concatenated to t by writing
‘ et +Al) = X;

Set-Definition: by enumeration: {a,b,...,c} . Set-former:

{e(xl,...,xn), X €€y XZGeZ(Xl)’f"’xncen(xl";"xn—l)

I C(xl,...,xn)}.

-~80-

The range restrictions x e al(y) can have the alternate
numerical form
4 min(y) < x < max(y)

when a(y) is an interval of integers.
If t is a tuple, the form x(n) € t can be used, see below,
iteration headers, for additional detail.
Optional forms include ‘

{(x e a| c(x)} equivalent to {x, x € a | c(x)}; " and

{e(x), x e a} equivalent to {ef(x), x e a | t} .

Functional application (of a set of ordered pairs, or a programmed,

value-returning function):

f{a} is {if #p gt 2 then t& p else p(2), p € £ | if type p ne tupl
then f else (#p) ge 2 and (hd p) eq al}, i.e.
is the set of all x such that <a,x> € £ .
f(a) is: if # f{a} eq 1 then 2f{al} else Q,
i.e., is the unique element of f{a}, or is undefined atom.
flal is the union over x € a of the sets f{x}, i.e., the image
of a under f£.

More generally:

f(a,b) is g(b) and f{a,b} is g{b}, where g is f{a};
fla,b] is the union over x € a and y € b of f{x,y} .

If £ is a value-returning function, then
f{a,b}l = {f(a,b)}, flal] = {f(x), x e a}, etc.
Constructions like f{a,([b],c}, etc. are also provided.

Compound operator:

[op: x € sle(x) 1is e(xl) op e(xz) op ... op e(xn) ,
where s is'{xl,...,xn}.

This construction is also provided in the general form

[92: X; € ey, X, € e2(xl),...,xn € en(x1’°"’xn-l)
| Clxyrennix dlelx) ,

where the range restrictions may also have the alternate

_Anumerical'form, or the form appropriate for tuples.

-81-

Exampies: [max; x € {1,3,2}]1(x+1) is 4,
| [+: x e {1,3,2}](x+1) is 9,
n
[+: x(n) e alx is SETL formof | a
' i=1
[op: x € ntle(x) is Q@ .

Quantified boolean expressions:-

jx e a | C(x) ¥x e a | C(x)
general form is '

3% éagl, X, € a,(x)), Vx5 € az(x;,%,),... | CXgrenvrX)
where the rénge restrictions may also have the alternatelnumerical
form, or the form appropriate for tuples. ‘

Evaluation of

Ix e a | Cx)
sets x to first value found such that C(x) eg t.
If no such value, x becomes Q.

The alternate forms:
min € 3x < max, max > 3jx > min , max > 3xX > min, x(n) € t, etc.
of range restrictions may be used to control order of search.

Conditional expressions:

if bool, then expny else if bool2 then expn, ... else'expnn .

1

a orm b abbreviates if a ne Q2 then a else b

a andd b abbreviates if n a then f else b

Statements: are punctuated with semicolons.

Assignment and multiple assignment statements:

expn; flexpl = expn; is the same .as

a
f ={p e f | (hd p) ne exp} + {<exp,x>, x € expn};

expn; is the same as f{exp} = {expn};

f (exp)
f(a,b) = expn; ff{a,bl = expn; etc. also are provided.

<a,b> = expn; is the same as a = expn(l); b = expn(2);

<a,b,...,c> = expn; <a,<b,c>,...,d> = expn; etc. are also provided.
<f(a) ,g{b}> ' '

Generalized forms: :

<f(a), g{b,c},..., h(d)> = expn; .
<f(a),<g{b;c},h(df>,...,k(e)>-= expn; etc. also aré‘provided.

expn; is the same as f(a) = expn(l); g{b} = expn(2); .

-82-

Use of general expressions on left-hand side of assignment

tatements (sinister calls).
e(xl,..r,xn) = y; must be no-op if executed immediately after
y = e(xl,...,xn); and vice-versa. The use
°p Op' X = ¥;.

of a product operator on the left-hand side of an assignment

expands as

t = op'x;
op t =y
Top'x = t;

with gimilar rules for multiparameter compounding. These rules
allow user-defined functions to be used quite generally on the
left-hand side of assignment statements. The 'left hand' signi-
ficance of a function is often deducible from its standard right-
hand side form, but may be varied by using specially designated
code blocks which are executed only if the function is called
from right-hand or left-hand position respectively. These

have the respective forms:

(load) block; (execution only if function called

- from right-hand side of assignment)

(store x) block; (execution only if function f called

‘is from f(param ,...,paramn) = x;).

1

Commonly used operators having special side effects:

expn is x has same value .as expn and assigns this value to x
X in s; same as s = s with x; '
x from s; same as X = 3s7 S = s less Xx;
X out s; same as s=s'l_e_s_sx; '

Use of code blocks within expressions.

If block is a section of text which could be the body of a-
function definition, then [; block] is a valid expression which
both defines and calls this function. Such code block expressions

an be used freely within other expressiohs.

-83-

Control statements

go to label;
if condl then blockl else if,cond2 then blockz...else blockn;
if condl then blockl else ... else if condn then blockn;

Iteration headers
(while cond) block;
(while cond doing blocka) block;

is equivalent to (while cond) block blocka;
(in € a;, X, € a2(xl),...,xn,e an(xl,...,xn_l)

I C(xl,...,xn)) block;

in this last form, the range restriction may have such

alternate numerical forms as
min < x < max , max > x > min , min < x < max , - etc.,

which control the jteration order.
If t is a tuple, bit string, or character string, then the

operator of form (¥x(n) € t) block; is available. This is an

abbreviation for
(1 < ¥n < #t-| t(n) ne 2)x = t(n); block;

Iterators of this form may also be used in set formers,

compound operators, gquantifiers, etc.

Icerator Scopes

The scope of an iteration or of an else or then block may be
indicated either with a semicolon, with parentheses, or in one

of the following forms:

end V; end while; end else; end if; etc.;

or: end Yx; end while x} end if x; = etc.

Loop control

quit; quit ¥x; quit while; quit while x;
and
continue; continue ¥x; continue while; continue while x;

The quit statement terminates an iteration; the continue statement

begins the next cycle of an iteration.

aa ry

Subroutines and functions (are always recursive)

To call subroutine:

sub(paraml,...,paramn);
sub(a]; is equivalent to (¥x € a) sub (x);;

Generalized forms:

sub(paraml,[paramz,param3],...,paramk)
are also provided.

To define subroutines and functions:

subroutine:
define sub(a,b,c); text end sub;
return; -- used for subroutine return
function: .
definef fun(a,b,c¢); text end fun;
return val; -- used for function return
infix and prefix forms: |
define a infsub b; text end infsub;
definef a infin b; text end infin;
define prefsub a; text end prefsub;
definef prefun a; text end prefun;

Namescopes

' Scope declarations divide a SETL teXt into a nested collection
of scopes. écope names are known in immediately aajacent,
jcontaining, and contained scopes. Other than this, names are local
to the scope in which they occur, unless propagated by include'or
global statements. |

Declaration forms
scope name; ... ; end name;
scopes with specified numerical level
scope n name; «.++, end name;
global declaration ‘
global name;, ..., name,;
with specified numerical level
global n ‘name;,..., name;
nclude statement.
include liétl, ceey list i

-85~

Example:

include bigscopel (scopel x,scope2(-z),scope3(x,y,ulv])) , bigscope2* !
'*' gsignifies all elements known in scope, '-' signifies exclusion
of those elements listed, [] modifies the 'alias' under which an

element is known in scope in which included. Subroutines and
functions are scopes of level 0. Macros (see below) are trans-
mitted between scopes in much the same way as variable names.
The declaration

owns routnamel(xl,...,xnl)(routnamez(yl,.{.,ynz), .o

states that the variables xj are stacked when routname ; is entered
recursively, the variables yj are stacked when rOutname2 is entered

recursively, etc.

Macro blocks

To define a block: macro mac(a,b); text endm mac;
To use: mac(c,d) ;

Initialization

initially block; (block executed only first time -process entered)

Input-Output

Unformatted character string:

A SETL file is a pair <st,n>, where st is a character string
and n an integer indexing one of its characters.

er is end record character; input, output are standard I/O media;

the function record(s); -- reads a file <st,n> from position n
till er character or string-end is encountered in the character

string st.

Standard format I/O

An interval file f in SETL is a pair <st,n> consisting of a

character string st and an index n to one of the characters of st.

f read name,,...,name ; using standard format reads from file
<st,n>, starting at position n

f print expni,...,expn ; using standard form transfers external
representation of objects to file s = <st,n>, starting at

position n as above.

The set {s;,...,s } is represented as {ry,...,r }, where ry
is the external representation of sj' Similarly, the tuple
<sl,...,sn> is represen;gd as <Ijse..,I >.

-86-

An external file st in SETL is character string catalogued
with the operating system supporting SETL under some
identifyiﬁg name catname (which is itself a string).
The statement

X = open catname;

makes the string s¢ into the value of x. The call
close (st,catname)

makes the SETL string st into the contents of the external file

named by the string catname.

-87-

Item 10. CORRESPONDENCES BETWEEN SETL AND SETLA.

SETLA, the presently implemented SETL subset, differs in a
number of regards from the 'official' SETL described in Item 9
of the present work. We now give a few remarks, which we hope
will help clarify the correspondence between the SETL and SETLA
languages. The text of the SETLA Users Manual then follows as

the final item of . the present manuscript.

Item (in SETL Precis) Comment

character strings SETLA users the # sign for gquotation
. marks

Boolean operators Neither exclusive or nor implies are

included as SETLA operators
atom In SETLA, the TYPE function is used

instead of this predicate.

set functions ' In SETLA, arbitrary element (ARB.)
is the first element of a set, in
an implementation defined order.

it is not random.

guantified boolean See p. 97 and also p. 126 of SETLA
expressions Users Manual.
code-blocks within Supported in SETLA, but with slightly

variant syntax. Cf. the formal
grammar, pp. 121-124 in the SETLA

Users Manual.

assignment statements See p. 97 and p. 108 of SETLA
' Users Manual for extent of
implementation.
control statements Review the formal grammar pp. 121-124

of SETLA Users Manual to see
extent of implementation.
Conditional statements and condition

expressions are included.

-88-

loop control

name scopes

include and local

declarations

macros

initialization

compile function

input-output

quit and continue are not
implemented in SETLA.

In SETLA, name scopes are external
(global) unless declared local.
MoreoVer, they are handled dynami-
cally rather than statically.

Not implemented in SETLA. See
BEGIN and LOCAL statements, p. 98
of SETLA Users Manual.

See p. 109 of SETLA Users Manual.

To use, in SETLA, write: mac(C,D);

To define in SETLA write

-+*mac(A,B) = text**

Not implemented in SETLA.

Not explicitly implemented in SETLA,
but available through BALM
'incremental compile; feature.

See p. 126, 127 for input-output

in SETLA.

-89-

Item 11.

SETL

SETLA USERS MANUAL

NEWSLETTER NR, 70

$$3335%¢<
FEFFFPTEXS

%3 $

$%
$3585888¢
FFEEFERF4E
%%
$ %%

§53838%¢

$555E5552%

$EFEFIFESY
$P555%58%3
$%

$%

$53589
$$3387

L

$%
$EEFETTEIS
FFEFTERESD

$EF5IESTET
STTETISERS

$%

%9

%g

£3

%8

39

Tg

(3

SETLA USERS MANUAL

VERSION 1,0-JAN,1975

-90-

AUG,01,1974

JeSCHWARTZ

'S, BROWN

£, SCHONRERG
$% $35F5TTT
$% T$FEEFFEERS
$% $3 Y
$% 5% %%
$% 3¢ $%
$5 353535593
$% $335TFEHES
$% %3 $$
$95355293% .59 $%
$E235555%% <% %%

TABLE QF CONTENTS

®, INTRODUCTION

1, LEXICAL CONVENT]IONS, MACROPROCESSOR
#)SETLA FUNCTIONS, COMSTANTS, AND NPEFATORS

2, STATEMENT LABELS, ITRRATOR SCCPES,
ITERATION SCOPE END MARKERS

4,ADDITIONAL MISCELLAMNEOUS SYNTACTIC INFORMATION,

OPFRATOR PRECEDENCE ,
CONE BLOCKS WITHIN EXPRESSICHMS

5y,NAME SCOPING, CALLIMNG CONVENTIONS
¢, PROGRAM STRUCTURE,
9,USE OF THE SYSTEM

" SETLA CONTRQL CARD FARANMETEFS
DERUGGING FEATURES

& FORMAL GRAMMAR

‘6 ¢BALMSETL HIGHLIGHTS FOR SETLA USERS
INPUT=OUTPUT
BONLEAN OPERATORS
MISCELLANEOUS BALMSETL FUNCYIONS
RALMSEYL RESERVED WCRDS

10,SOME SAMPLE PROGRAMS,

-9]1-

PAGE

92

93
94

103

105

107
110
111
113
115

119

123
125

126

127
128
129

0. IhYRCUUCTION

SETLA 1S AN IMPLEMENTED VERSION OF A SUESET OF SET(, A
SET~TFEORETIC LANGUAGE DEVELOPED AT NYU BY JACK SCHWARTZ, A
UFTAILED DESCRIPTION OF SETL CAN BE FOUND]N =ON PROGRAMMING =
VCLS, | AND 11, SETLA IS FOR THE MGST PART A COMPATIBLE SURSET
OF SETL (TO A MUCW GREATER EXTENT THAN ITS PREDECESSOR, SETLB),
HCWEVER, BALM STILL PLAYS AN IMPORTANT ROLE IN THE STRUGTURE OF
SETLA, AND THIS IS REFLECTED IN SOME OF ITS FEATURES WHICH DO NOT
PROFERLY RELONG T STANDARD SETL, NOTE IN PARTIGULAR THAT :

NAME SCOPING AND THE SPECTAL CONVENTIONS WHICH APPLY 10

ymees woeocoes

BEGIN aLorKs AND STATEMENT LABELS ARE THE SAME IN SETLA,

T oo LA K N ¥ ¥) CRE A R X X X ¥ N) L A N

BALMSETL, AND, INNEED, IN BALM, THE SFTLA PRECEDENCE RULES
AND PRQCEDURE LINKAGE MECHANISMS ARE HQWEVER THOSE f0F SeTL ,
RATFER THAN THOSE OF BALM OR RALMSETL,

“EALMSETL~ ABOVF REFERS TO A SERIES OF BALM PROCEDURES WHICH
IMPLEVENT SETL PRIMITIVES AS BALM EXTENS]ONS, THE STRUCTURE,
AND [NDEED THE EXISTENCE OF BALMSETL OUGHT To BE INVISIELE TO
THE SETLA USER, AND WILL BE FOR THE MNST PART,SEE HOWEVER SEC,
3» S AND 8 FOR UNAVOIDABLE INSTANCES OF BALMSETL visIsIL!ITy,

THIE MANUAL 1S NOT INTENDED TO PROVIDE A DESCRIPTION OF

SETL FER SE, THE READER 1S ASSUMED TO RE FAMILJAR WITW THE
FIRST TWO ITEMS Inm «ON PROGRAMMING= , VOL 11,

SETLA SUPPORTS A FEW EXTRA STATEMENTS, NOT BELONGINE TO
STANDARD SETL, THESE PROVIDE VARIOUS BALMeLIKE FEATURES =« IN
PARTJCYLAR, INCREMENTAL EXECUTION AND BALM BEGINeEND RLOCKS,
"THESE STATEMENTS wILL BE EXPLAINED IN DETAIL BELOW,

-92-

1 LEXIC‘L CONVENYIOMS. MACROPROCESSOR

THE LEX]CAL CONVENTIOMNS OF SETLA ARF FSSENTIALLY THCSE

SEY FERTH IN «0ON PROGRAMMIMNG~ VOLI], WITH SOME SLIGHT
CFANGES THAT CAN QFE GLEANED FROM THE FOLLOWING SECTION, NOTE IN
PARTJCYLAR THAT 3

A. »UNDER[LINED® NAMES OF STANDARD SETL ARE REPRESENTED RY THE
CORRESPONDING PERIOD=TEPMINATED NAMES IN SETLA,

B. SEY BRACKETS ARE ¢ AND 2

C. THE MEMBERSHIP OPERATOR IS hEPRFSE&TED PY o '

THE SETLA PREPRNCESSOR INCORPORAYES THE LITTLE
MACROFROCESSOR, AND THEREFQRE SUPPCRTS MACRNS LIKE THOSE
CF LI¥TLE, CF, THE GUIDE TO THE LITTLE LANGUAGE FOR DETAILS,
MACKQS WITH PARAMETERS ARE DECLAFED IN THE FORM 1
«¢ MACRONAME(ARGL,ARG2,,,,ARGK) = MACROBODY ws
MACRUS WITH NO ARGUMENTS ARE DECLARED IN THE FQRM 1

#¢ MACRONAME = MACROBODNY we -

FCR EXAMPLE 3

¢ HDHDTL = WD, WD, TL, w»
*#¢ SUMM(Xs Y, Z) =2 (X « ¥ * Z) w»

THESE MACRQS CAN RE INVOKED AT ANY POINY IN THE PROGRAM BY
WRITING 3§ A
MACRONAME(SUBL, SUB2,,,.,SUBK)
OR SIMRLY:
MACRONAME
JN THE CASE OF A MACRO WITHOUT ARGUMENTS, 'FOR EXAMPLE,

V(1) = HDHDTL SUMM(tA, TL,.,B, C) }
WILL EXPAND INTO THE FOLLOWING STATEMENT 3
V(1) = HD,HD TL,(A » TL,B + C)

=93~

2.SETLA FUNCTIONS, CONSTANTS AND OPERATORS

LE RN N XN R N IR SN LR R R N R R RSN

MEAN NG SETLA ‘REMARKS
TYPE FYNCTION TYPE,
ATOM FREDICATE ATOM,
TYPESI

INTEGER INT,

REAL REAL ,

BLANK BLANK,

SET SET,

TUPLE TuPL,

CHARSTRING STR,

LABE| LAB,

BECOLEAN _B1Ts,

SUBROQUTINE SUBR,
CCNSTANTS
ONLLLSET NL

NLLL9STRING NULC,

NLLL=TUPLE NULT,

TRUE T.

FALEE Fo

UNDEF INED oM,

GEMPAR]SON AND BONLEAN OPERATORS

9---Q=_-,--- - oogwesw oo e

EGYALS EO,

NCT EQUAL NE,

LESE THAN LT,

LESS=EQUAL LE,

GFEA[ER GT,

GREATER<-EQUAL GE,

INGLUDES INCS, SET-THEQRET]C INCLUSICN,

JMPLES IMP, APPLIES TO BOOLEANS AND
BIT«STRINGS,

AND A, AND, . . !

Ok 0.,0R,

NCT N,»NOT,

. FCR BIT-STRINGS OF ARBITRARY LENGTE, THE FOLLOWING FUNCTIONS

94

2.5ETLA FUNCTIONS, nONSTANTS AND OPERATORS

ARE PRQVIDED

 AND ' LAND(X,Y)
OF LOR(X,Y)
EXGLYSIVE QR XOR(X,Y)
CCMFLEMENT LNOT(X)

ARJTHMETIC OPERATNRS

?‘Q-Qéﬂ'-. casePonges

PLYE .

S MINLS -
TIMES »
DIvIyE /
RESTUUE /7
EXPONENTIATION EXP,
MAXIMUM MAX,
MINIMUM MIN,

AESCLUTE VALUE ABS,

SETLA SUPPORTS ARRITRARY PRECISION INTEGER ARITHMETIC, I,E,.

ThE AR[THMETIC OPFRATORS CAN BE APPLIED TO INTEGERS OF APRBITRARY
S1Z&,

CHARACTER STRING OPERATIONS

,-...?Q.- - o ey e ® e eeococwmew

DECIMAL CNVY DEC,

CATENATE . CATENATE AND REPEAT ARE

REPEAT v ALSO PROVIDED FOR R]TeSTRINGS,

SLBSTRING CtliJ) EXTRACT J ITEMS, STARTING WITH I=TH
'SUBSTRING AND LENGTH ALSO

LENGTH ‘oo APPLY TC BIT=STRINGS AND TUPLES,

THE EXTERNAL REPRESENTATION OF ANY ATOM X IS RETURP\En
BY THE FUNCTION STRINGOF(X).

TUPLE QPERATIONS 1

TLPLE FORMeR <X1, 4000 XN>

WEATL HD,
TalL TLe o
CCMPUNENT T
LENGTH .
GATENATION : .

-95-

2,SETLA FUNCTIONS, CONSTANTS AND OPERATORS

SET QFERATIONS

- - PeP T -

MEMEERSHIP XA
NLMFER +
WIiTh WITH,
LESS ’ LESS,
LESF LESF,
DIMINISH X 0UT,S
"ALGMENT
DIMINISH=F X OUTF,S
UNJEN *
INTERSECTION *
DIFFEERENCE -

© SYM,BIFF, /7
ARB, ELEMENT ARB,S

SET UF GIVEN .
ELEMENTS SEX1) 00 XN2

NCTE [JSCREPANCY RETWEEN SETLA AND. SETL.
IN SETs SETS BY ENUMERATION TAKE THE FORM
SX14 4,0 XN2

PCHERSET POW(S)
ALL NvELEMENT NPOW(N,S)
CYBSETS

GENERAL SET=FORMER: -
E(X),X*AeC(X)>

E(X),)X2A2

EEN), 1<N<K> 4

ECXaNY,X2A, 1<=N<uMe C(X,N) .2

A A A A

—
T
m

- SIMPLE SET«FORMER EXPRESSION 1
€ X .X*A?C(X) 2
CAN BE. ABBREVIATEN AS 3

‘& XMAeC(X) 2

-96—-

2,5ETLA FUNCTIONS, FONSTANTS AND OPEFATORS

FUNCTIUNAL APPLICATION

AFPL |CATION FOx)

MLLY [VALUED Fex2
APPLICATION

KANGE Fix)

THE CORRESPONDING FORMS EXIST FOR FUNCTIONS ¢F SEVEPAL

VAR]ABLES ‘
FOXL)p, 40 XN)
FEX1p, 00 XN2
FEXLh,0sXN)

. =97~

2,SETLA FUNCTIONS, CONSTANTS AND OPEFATORS

| TERAY |ON STATEMENTS !

(vXe3) BLOCK 3
(vXs3*C(X))RLOCKS
(vM<aK<=N)RLOCK}
(vMesBK<=N ¢C(K))YBLOCK}

ALL MEANINGFUL COMBINATIONS OF COMPARISON OPERATORS CaN EE
USEL 1Q SPECIFY aN ARITHMETIC RANGF, FCR EXAMPLE,

(vMeK<z=N)BLOCK;
AS WELL AS
(vM»=K>=N)RLOCK

NCTE LJSCREPANCY RETWEEN SETLA AND SETL!
IN SEYLA, THE ITERATJON SYMBOL APPEARS IN FRONT OF THE RANGF
SFECIFJER, AND NOT IMMEDIATFELY PRECEENING THE ITERATION VARTABLE,

SETLA AND SETL ALSO PROVIDE COMPCUND ITERATORS
(vX89sMIX)czY<zN(X)*C(X,Y))BLOCK} ETC,

WHJLEw | TERATORS,

(WwHILE G)BLOCK:
(WHI1LE G DOING RLOCK1)BLOCK2:

~CONTINUE« AND ~QUITe STATEMENTS CAN BE USED , BOTH WITHIN ~FORALL®
AND ohHWILE- [TERATION LOOPS, THEIR ACTION HOWEVER, IS LIMITED TO
THE LCOP THAT CONTAINS THEM} JUMPS OUT OF SEVERAL L.OOPS AT ONCE

ARE NCT ALLOWED, FITHER KEYWORD MAY BE FNLLOWED BY UP T0O 4 TOKENS
CCRRESPONDING TO THE LOOP QOPENER, IN ACCORDANCE TC THE USUAL SETL
RULES, SEE SEC,3 ON JTERATOR SCOPES FOR DETAILS,

-98-

2+5ETLA FUNCTIONS, CONSTANTS AND OPEFATORS

GUANTIFIED BOOLEAN EXPRESSIONS:

PTOCTANT T o o Pene® Voeemomwe e

SXe80C(X) EXISTENTIAL QUANTIFIER
Vs K <zNeC(X)

ON EX!T FROM AN EXISTENTIAL SEARCH=-LOOP, THE GUANTIFIED Va-
RIAELE IS ASSIGNRD TO THE FIRSY ORJECT IN THE SPECIFIED RANGE
WHJCH SATISFIES CONDITION ¢, IF NO SUCH 0OBJECT IS FOUND, THE
GULANTIFIED VARIABIE HAS VALUE OM,

vX+8¢C(X) UNIVERSAL QUANTIFIER
‘wVEBK<SN*C(X) "

CCMFQLND FORMS FOR BOTH QUANTIFIERS ARE SUPPORTED

SX98) YaF(X) ¢+ £(X,Y) _
vX%8, YaG(X)y UY)<=Z<zW(X,Y) t C(X,Y,2)

FCR CCMPOUND EXPRESSJONS THAT USE EOTH QUANTIFIERS, THE.
SECCNE QUANTIFIER SHOULD APPEAR AS PARY OF THE FXPRESS!ON
FCLLOWING THE ® SUCH THATe QYMROL. FOR EXAMPLE 8

wXe€, ZYaF(X) * C(X,Y) MUST EE WFITTEN A4S 1
vXe& ¢ (SYaF(X) *t CU(X,Y)) TO WHICH IT IS CLEARLY EGUIVALENT,

CCNC T [ONAL EXPREQS!ONS

q-.---,---- oo SSeoeogwoeoew

X=]F YeS THEN 1 ELSE 23

NOTE: TO AvVOID AMBIGUITIES, THIS CONSTRUCY SKOULD
BE PATENTHESIZED WHENEVER T IS PARY OF a4 MORE
COMPLICATEn EXPRESSION, E,G, 3
Xz (1F Y»S THEN A ELSE B) ¢ C 3

NCTE 'THAT THE e«E|_SE~ CLAUSE 1S REQUIRED,

-99-

2.5ETLA FUNCTIONS, ONSTANTS AND OPERATORS

CCMFOLND OPERATORS!

[*#3X2+S) F(X)

Iwix+S ¢ (X)) F(X)

[®11<N<zM, Y+S(N)2CIN, X)IF(X,N)
(MIN,$XoY)IF(X) 1ETC,

SINISYER FORMSH

"?"‘.é.-.- LA XX

EXPRESSION
EXPRESSIONS
EXPRESSION}

NAME
Py NAME
TLe NAME

NAME(PARAMY,,, s PARAMK)
NAMESPARAMY,,, »PARAMK2 = EXPRESSICN;
NAMELPARAMY, ., ,PARAMK] = EXPRESSION;

TRESE SINISTER FORMS ARE EVALUATED FRCM RIGHMT TO LEFT, 1,E,

THE =EXPRESSION- [S EVALUATED FIRST, THEN THE INDICES, AND
FINALLY THE OBJECT BEING ASSIGNED T0, THIS DEPARTURE FRCM THE
STANDARD LEFT=TO=RIGHT EVALUATION ALLOWS THE CONSTRUCT]ON OF
EXPRESSIONS WHERE EVALUATION OF RHF R,H,S, OF THE ASSIGNMENT
(THANKS TO A RECURSIVE CALL ,SAY) MAY ACTUALLY MOCIFY THE OBJECT
BEJNG ASSIGNED INTO,

EXPRESSICN;

Hnn

NAME(PARAM1,,,sPARAMK) = OM,;
MAME(NLIN2) =EXPRESSION;

NCTE 1 THIS LAST CONSTRUCT 1S NOT A GENERAL SUBSTRING
REPLACEMENT FUNATION, IT REQUIRES THE LENGTH OF THE REe
PLACEMENT SUBSTRING TO BE EQUAL T0 N2,

GENERALIZED SINISTER ASSIGNMENTS, CF THE FORM 3

<F(A)yUf1), HD,¥> = TUP }
HEy TlLy HD, X = Y 5

ARE NCT CURRENTLY SUPPORTED,

-100-

2,SETLA FUNCTIONS, nONSTANTS AND OPEFRATORS

FUNCTION, SURROUTINE, AND OPERATOR [EFINITICH}

PEFINE SUB(PARAM1,,,,PARAMK);

TEF INEF
LEF INE
LEF [NEF
FEFINE

PEFINEF

LEFINE
PEF INEF
FETURN;

FNC(PARAML,,,,PARAMK)}
MON, PARAM]
MON, PARAM}
P1 ~alIN, P2;

PL RIN, P2;.
NOARROP,)

NOARROP, 1}

RETURNCEXPRESSION)

INPLT =OUTPUTH

FRINT, EXPN1)..sEXPNK}
READ, NAME1,,.2NAMEK}
WHITE,FILEND, NAME1,,,.NAMEK}

MONADIC FORMS

BINARY FORMS

FORMS WITKH NO ARGUMENTS

.«RETURN FRCM SUBROUTINF
-=«RETURN VALUEF FRoW FUNCTION

SEE SEG.+8A FOR DETAILS OF CURRENT [~0 IMPLEMENTATION,

-101-

2.5ETLA FUNCTIONS, CONSTANTS AND OPERATORS

MISCELLANEOUS SYSTEM FUNCTIONS,

NEWAT, RETURNS A NEW IDENTIFIER, OR BLANK ATOM,
AT EACH INVOCATION, -

FANDOM(X) IF X IS AN INTEGER, THIS FUNCTICN RETURNS
A PSEUDO-FANDPOM INTEGEF IN TWE RANGE
(L.%x) o IF IT 1S A STRING ,A TUPLE OR A
SET, A RANDOM ELEMENT 1S PRETURNED,

. Gt

PISCELLANEOUS ADDITIONAL STATEMENT FORMS:

EXPN IS, S ' -ON THE FLY» ASSIGNMENT § HAS THE
SAME VALUE AS EXPN, AND ASSIGNS THIS
VALUE T¢ S,

b IN, S 1 FQUIVALENT TO S = S WITH,A 3

A OUT,S I EQUIVALENT T0 S = S LESS,A 3

A FROM,S 3 ' EQUIVALENT T03

Az ARB,S 3 A OUT,S 3

FINISH} *REQUIRED TERMINATOR FOR COMPLETE SETL PROGRAM

NUOP} =NO QPERATION

FETNS «RETURN FROM A CODE BLOCK (SEE SEC.4),

: EQUIVALENT TO THE BALM/BALMSETL

RETURNC) G
LOCAL NAMEA,NAMER,,,,.
*»NECLARES LOCAL VARIABLES WITKIN &
SUBRQUTINE CR FUNCT]ION, 1F USED,
SHOULD FOLLCW IMMEDIATELY ON
SUBROUTINE/FUNCTION DEFINITION HFADER,

£l =STARTS A BALM/BALMSETL DO GRCUP,

THE ELEMENTYARY UNIT OF EXECUT]ON,
SHOULD BE TERMINATED BY
CUMPUTE 3

-102-

3o

LAEELSs SCOPES

3.STAYEMENT LABELS, ITERATOR SCOPES,

TrTes e e Yo awPowas Prepeswenr e=veoas

4 LABEL IS A NAME FOLLOWED BY A

ITERATION SCCPFE END=MARKS?

TP e ecouw SEaScaweEw

CCLON, A STATEMENT

MAY RE PREFIXED BRY ANY NUMBER OF LAERELS, E.G,
LABEL: X=3Y3 ‘
LABEL1: LABEL2: VY=Yel)

IMPCRYANT ¢
NOTE THAT IN SETLA ¢ AS IN SETLB) LABELS ARE RECCGNIZED
EY THE BALM SYSTEM ONLY IF THEY ARE =NOT~ WITHIN THE SCOPE
CF A ~FORALL- OR «WHILF~ ITERATOR, THIS MEANS THERE
MUST BE NO UNCLOSED SCOPES BETWEEN THE DEFINITION OF A LABEL
AND THE PROCEDURE NEFINITION STATEMENT, FOR EXAMPLE,

DEFINE SuBA(X)3
IF X EGy 1 THEN
PRINT, F#CASEL#}
LLAB1}{ PRINT, #THIS LABEL OK#%;
RETURN}

END;

'S OK, SINCE THE DEFINITION OF =LAB="IS IN NO SCOPE, HOWEVER,

GO TN LAB11:3

DEFINE SuBA(X)}

(v 1<z NTIMES «<¢=5)

IF X EQ, 1 THEN GO TO LAB13;
PRINT, ZCASEl1Z%)

LAB1?! PRINT, #THIS LABEL OK#3
END v 1< NTIMES}

RETURN}

END3

WjLL NOT WORK. SINCE THE LABEL IS DEFINED WITHIN A FORALL LOOP

-103-

3. LAEELS, SCOPES

JTERATQR SCOPES!

5 SCOPE 1S OPENED BY}
1, A #FORALLZ ITERATOR
2, A #WHII.EZ ITERATOR)
3, A SUBRAUTINE QR FUNCTION DEFINITION ,

EACH SUCH SCnPE MUST GE CLOSEL BY A CORRESPONDING
END=ELEMENT, WHICH MUST HAVE ONE OF THE FOLLOWING
FORMS!

A, AN EXTRA SEMICOLCN

B, ZEND 32

€., £ZEND#, FOLLOWED PY UP TO 4 TOKENS OTHER
THAN SEMICOLON, FCLLOWED BY & SEMICCLON,

EXAMPLESS
(vX=2S5) x=X33
(vX=+S) X=X3END wX} ‘
(WHILE Xx=+S DOING X=aX+#13) Y=X3 END MWHILE X»S;
DEV!NF A Opo B, et et END A Op',

[F A SCOPE 1S ENDED IN THE FORM C, DESCRIBED ABOVE, THE
EXISTENCE OF A SCOPE OPENER MATCHING THE SCOPE ENDER
w{LL BE VERIFIED, AND ANY UNCLOSED SCOPES FOLLOWING
YHE LAST-OPENED MATCHING OPENER WILL RE CLOSED. WITH
APPROPRJATE ERROR MEFSSAGES BEING GIVEN,

NCTEL THAT THE MANNER IN WHICH A SUBROUTINE 0OR
FUNCTION IS RNDED DJFFERS SLIGHTLY FROM
YHE CONVENTION APPLIEGABLE TO GTHER SCOPES,
SINCF NEITHER #DEFINE# NOR #DEFINEF# SHOULD
APPEAR AMONG THE FOUR OPTIONAL TOKENS FOLLOWING
2ENDZ, THE FOLLOWING ARE VALIL 3

DEFINEF FN<X’ ’ [N END,

DEFINEF FN(X) } ,eeesas END FN(
DEFINE SUB(X,Y) } .4eee9s END SUB ;
DEFINE SUB(X,Y) § wsevees END SUB(X,Y }
DEFINE X 0OP,Y b oseeneny END X OP. H

-104-

4.

SYNTACTIC INFORMATION

4. ADCITIONAL MISCELLANEQUS SYNTACTIC INFORMATIONY

> ceelowvaw L N I N cooveeope® ecowdS e aPees

CPERATOR'PREFEDENCE » FUNCTIONAL APPLICATION,

PR S rene oveecameree e weaTweoocse oeveSeTe®eny

cons BLOCKS WITHIN EXPRESS]ONS:

9-.- oo SeTeo®TP SsamcSSanw LE B X R J

CFERAYOR PRECEDENCE RULRES IN SETLA ARE' THE SAME A€ _
IN SETL, THE USER SHOULD CONSULT # ON PROGRAMMINGZ ,VOL !1
FOR CBTAILS,
GALY TWO OPFRAYOR PRECEDENCE LEVELS ARE USED IN SETLAY
5 yVARIOUS RONLEAN=VALUED COMPARISON OPERATERS,TO WIT

&Q'ONEI'GTolGEOILTlILE-I*'INCS.‘IMP.
WHICH RIND MORE STRONGLY THAN OTHER OPERATARS

€, OTHER OPERATORS ASSOCIATE YO THE LEFT
SETLE USERS PLEASE NOTE : THESE PRECEDENCE RULES
ARE THE ONES INTENDED FOR SETL., AN[NOT THE ONES PREVIOUSLY
iN EFFECT IN SETLR,

MCNADYIC OPERATORS HAVE MIMIMAL SCCPE, THUS
wA+R MEANS (=A)+B, Ng X A Y MEA'S (N‘X) A, Y
NOTES ¢S FQ, 0 MEANS +(S FQ, 0)
SINGE B0OLEAN~VALUED QPERATORS BIND -
MOSTY STRONGLY,
SIMILARLY, THE EXPRESSION A*B GT, C#D
waL gk PARSED AS A+(E CT,C)eD

USERS §HOULD KEEP THESE PRECEDENCE RULES IN MIND, AS THEY
DIFFER SOMEWHAT FROM THOSE OF OTHER PRCGRAMMING LANGUAGES,
WFEN IN DOUBT, PARENTHESIZ2L,

THE FCLLOWING EXAMPLES WILL ILLUSTRATE THE PRECEDENCE RULES
FESCRIBED AROVE! .

A=B#C MEANS (AeB)e(C

-wAeB HEANS (=~A)eB
EXASEF(X)A,Y MEANS (SX-<SeF (X)) A.Y
(+3X*S}a(X)eZ MEANS (letX+S1G(X))2
X AY NF, W MEANS X Ay(Y NE, W)

-105-

4,

SYNTAGTIC INFORMATION

X NE,Y A,W MEANS (X NE,Y) A, W

€0€1025,€2,3>,<3,4>2 (2)

IS o LEGITIMATE #MAF APPLIED TO PARAMETER?
EXPRESSTION, AND HAS THE VALUE 3, SIMILARLY,

€1¢1,2>,<1,3>,<2,4>,<3,5>2 («<11,3>])

IS LEG]ITIMATE, AND HAS THE VALUE
€12,3,52

WARNING 3 IN SETLa, THE OPERATOR =1S,» IS TREATED AS
ANY OTHER INFIX OPERATOR, AND DOES NOT FOLLOW THE PREe
CEDENCE .RULES SPECIFIED FoR IT IN C,P, VOL II,P,20,

CCDE ELOCKS WITHIN EXPRESSIONS:

ceT®Se AOPTooe eCTNoegy, PRGOSO pDOEew-

‘hTLA LIKE SFTLo ALLOWQ A BLOCK OF CODE TO BE USED AS
PART CF AN EXPRESSION, BOTH FOR THF VALUE 17 RETURNS AND FOR
THE SIQE=EFFECTS WHICH ITS EVALUATION MAY .CAUSE, A BLOCK OF
CCDE LSED IN THIS WAY BEGINS WITH THE SYMBOLS [t aND
ENDE WITH THE SYMROL), SUTH A BLOCK SHNULD CONTAIN AT LEAST
ONE SYTATEMENT OF THE FORM

RETN EX}

WHERE eEX- DENQTES ANY EXPRESSION, ONE OF THESE SYTATEMENTS
SHOULL BE THE LAST STATEMENT EXECUTED WITHIN ITS BLOCK, THE
VALLE OF =gXe THEN DEFINES THE VALUE OF THE ENTIRE RLOCK

EXAVMPLE! ‘
ASA#(1X=03 (WHILE F(X) LT, 2) Xs=XeF(X)}3 RETN X33

-106-

5,

NAME SCOPING, PRNCEDURE L INKAGE,

.-g‘--qgg-------- LK R A

SETLA IS AN EXTENS]ON OF BALM, HENCE THE NAMESCOPING RULES
ARE YHOSE OF BALM,
TRE SETL ZEXTERNAIL. # STATEMENT IS KOT CURRENTLY SUPPORTEL,

THE FOLLOWING BASIC FACTS ABOUT FALM NAMESCOPING RULES
SFOULLE BE NOTED :

"4 GLOBAL VARTABLE 1S NOT DECLAREPD EXPLICITLY,
JT IS ANOWN AT THE OUTERMOST PROGRAM LFVEL AND INSIDE ALL
ELCCKS IN WHICH THE SAME MAME HAS NOT RPEEN DECLAREN
AS A LUCAL VARIABLE,

A LOCAL VARIABLE IS DECLARED WITHIN A PROCEDURF BLOCK BY
ENTERING ITS NAME IN A L1ST IMMEDJATELY

FCLLOK[NG THE KFYWORD =LOCALe=, A LOCAL VARIABLE 1S KNOWN [N
THE PRUCEDURE IN WHICH IT 1S DECLARED AND IN ALL PROCEDURES
WHICk ARE CALLED FROM THAT PROCEDLRE AND WHICH
QC AQY CONTAIN a NECLARATION OF A LOCAL VARIABLE WITH THE
SAME NAME,
THE STATEMENY '
LOCAL NAMEA,NAMEB,,.., !
MUST BPPEAR AS THF FIRST STATEMENT WITHIN THE SUBROUTINE
BCDY, SUCH A STATEMENT CAUSES THE VARIABLES IN THE NAME={IST
w»xcH IT CONTAINS TO BE LOCAL 7O THE SURROUTINE/ZFUNCTION
WITEIN WHICH 1T APPEARS)THMESE VARIABLES WILL, IN PARTICULAR,
BE STAGKED/UNSTACKED ON SUBROUTINE ENTRY/RETURN,
THE SLBROUTINE DEFINITION
DEFINF F(X)1,,.B0DY,, sEND}
}S TRANSLATED INTO THE PARSE~TREE FOR THE BALM EXPRESSION
Fs PROC(X),BEGIN(),..,TRANSLATION OF BODY,,; (YEND END,.
§F A LUCAL SYATEMENT APPEARS, AS IN
DEFINE F(X)JLOCAL A,B 3,.,;3END}
THE PARSE«TREE PRADUCED CORRESPONDS Y0 1

PEPROC(X)sBEGINCA,B)),,,TRANSLATION OF BODY,,,¢)END END,

-107-

5, NAME SCOPING, PROCEDURE LINKAGE,

CALLING CONVENTIONS OF SETLA ARE THOSE OF SETL,

THEY GUIFFER FROM THOSE OF BALM ANT SETLB, SETLA L INKAGE
MECFAN]SMS PROVIDF CALL BY VALUE W]ITH DELAYED ARGUMENT RETURN,
EXECUY[ON OF A PROCEDURE CALL ENTAILS THE FOLLOWING 3
1.= QN ENTRY T0 A PROCEDURE, THE CALLING PARAMETERS ARE

CCPIED INTO A LACAL BLOCK RESERVED FOR THE PRNCEDURE=S

FCR¥AL ARGUMENTS, AND AN IDENTIFIER FOR EACH CaLLING

PARAMETER IS CREATED AND SAVED, THIS IDENTIFIER REFERFNCES

THE ENVIRONMENT IN WHICH EACH CALLING PARAMETER RESIDES,

IT WiLL TAKE ONE TWE FOLLOWING FORMS 3

A.® A SYMBOL TARLE ENTRY (FOR GLOBAL VARIABLES,)

Bo» A POINTER INTO THE ENVIRONMENT BLOCK OF THE CALLUING PROCEDURE
(FOR LOCAL VARIABLES OR FORMAL ARGUMENTS OF THE CALLING
RROCEDURE),

C.= UNDEFINED, ¢ FOR EXPRESSIONS),

2. UFQN RETURN FROM THE PROCEDURE, THE CURRENT VALUES of

"THE FORMAL ARGUMENTS ARE COPIED EACK INTO THEIR ENVIRONMENTS,

BEFCRE RETURNING CONTROL TO THE CALLING -PROCEDURE,

THE USER MAY REFER TO SETL NEWSLETTER 60 FOR FURTHER DETAILS,

IT FELLOWS THAT FUNCTIONS AND SUBROUTINES CAN KAVE SIDE~=
EFFECYS ON GLOBAL VARIABLFS AS WELL AS ON THEIR CALLING PARAMETERS,
FCR EXAMPLE

CEFINE EFFECT(X,Y,Z,T,U) 3
X =03

Y = NLy 3

2(1) & 5 3

T8 7 WITH, U 3

j 2*y

}

20

01
€142,3> 3
NLy 3
#ABCDEZ ;

EFFEcy‘AOBoCoDOE) H
PRINTCA,B,CoD,E) 1

WILL FRODUCE THE FOLLOWING OUTPUT

m
o

A

8 onn R

0 NL, <5,2,3>» <zAnrCDE#2 #ABCDEAECT - #

. NCTE HOWEVER, THAT ARGUMENT RETURN ONLY TAKES PLACEfFOR
ATQMIC ARGUMENTS, AND NOT FOR GENERAL FXPRESSIONS THWAT MAY
BE VALUE=RECEIVING,FOR EXAMPLE, IF EXECUTION OF PROCENURE
SUB(XsY) MODIFIES ITYS ARGUMENTS, THEN THE :CALL

SUB(Z,S(V)) _
WILL MUDIFY Z, BUT NOT THE VALUE OF S(Vv), EVEN IF S IS A SET

-108-

5, MAME SCOPING, PRACEDURE L INKAGE,

(VAFPING) FOR WWIGH THE ASSIGNMENT 1
S(V) = W 3}
IS VEANINGFUL,

-109-

T

FRCGRAM STRUCTURE.

A SETLA PROGRAM CONSISTS OF PROCEDURE DEFINITIONS AND EXECUTA
BLE CCYE, BRACKFETFD IN #BLOCKS# BY =D0O~ AND .=COMPUTE= STATEMENTS,
A DC=CUMPUTE RBLOCK MAY CONTAIN SEVERAIL PROCEDURE DEFINITIONS,AS
WELL AS EXECUTABRLF CODE, SUCCESSIVF DO-COMPUTE RLOCKS ARE COMPILED
SEGUENGIALLY, IF a BLOCK CONTAINS EXECUTABLE CODE, IT IS EXECU-
TED [MMEDIATELY AFTER 17S COMPILATION, AS A CONSEQUFNCE, FUNCTIONS
TFAT BHE INVOKED RY AN EXECUTABLE CODE FRAGMENT MUST APPEAR WITHIN
EARLJER. DO-COMPUTF BLOCKS THAN THEIR INVOCATION,

SIMFLEST PROGRAM ORGANIZATION WILL HAVE THE MAIN PROGRAM IN THE
LAST [U~COMPUTE BLOCK, SEGREGATED FROM ALL PROCEDLRE DFFINITIONS,

THFE U0O-COMPUTE RLOCKS PROVIDE NO NAME [SCLATION , AND SERVE NO
CTHER PURPOSE THAN THIS SEGMENTATICN AND REPEATED COMPILER INVOCA=
JICNy ¥Q AVQOID MEMNRY OVERFLOWS, 17 1S FECOMMENDED TWAT nC-COMPUTE
BLOCKS CONTAIN NO MORE THAM 200 LINES CF COPE,

-110-

e S

7. LSE CF THE SYSTEM

X EX EX XY KRR -.--;

| THE SYSTEM CONSiSTS OF THREE PHASES 3 ,

| 1, A FRONTeEND WHIQH PARSES THE SETLA SOURCE, PRODUGES AN
JNTERMEDIATE TEXT FOR THE NEXT PHASE AND OUTPUTS SOURCE AND
SYNTAETIC DIAGNNSTICS(IF ANY),

2. AN EXTENDED BALM COMPILFER, CONSISTING OF TWO EXTENSICNS
TC THE BALM SYSTEM 1t
Ay A SERIES OF TREF-WALKING ROUTINES WHICH TRANSFORM THE INTER~
MELCIATE TEXT PRONUCED IN PHASE 1 INTO VALID BALM PARSE~TREES,
By A SEHIES OF BALM PROCFDURES(CORRESPONDING TO TWE BALMSETL OF
PRECEFUING IMPLEMENTATIONS) WHICH MODIFY THE BALM CODE GENERATOR
AND EXTEND THE MBALM MACHINE TO IMPLEMENT SETL SEMANTICS,

3. AN INTERPRETER FOR THE EXTENDED BALM SYSTEM ANC THE CCPDE IV
PROCUCES, TNGEYHER W]TH A RUN=TIMF LIRRARY (SRTL) WHICH IM=-
PLEMENTS THE SETL PRIMITIVES, THE INTERPRETER AND L 1BRARY ARE
DESIGAED YO WORK {N A DYNAMIC STORAGE AREA OF FIXED S!ZE, FOR
CCNVEN[ENCE, THREF DIFFERENT FILES ARE PROVIDED, WITH INCREASING
STORAGE S!ZFs,

TRE MEUQULES JUST NESCRIBED RESIDE IN THE FCLLOWING FILES
3. FRENT=END t SETLA, A
2. EALMSETL AND TREEWALKING ROUTINES 1 SAVSETL,
d. INYERPRETER ANN SRTL ¢ THREE FILES WITH THE
FOLLOWING DYNAMIC STORAGF AREAS

FlLE DYNAMIC RFL FOR
STYORAGF EXECUTION
-aen Poeanwean mecevpwow
SET|AL . 27000 207000 (CCTAL)
SETRA2 32000 221000
SETLAJZ 48000 265000

TFE FOLLOWING CONTROL CARD SEQUENCE 1S REGUIRED TO RUN A
SETLA PROGRAM USING CIMS KRONOS 2,1 1

JOHUNAME , TX XX, YOUR NAME
CRARGE(TO0,SOMEONE)
AYTACH(SETLA,L.GO=SETLAL, TAPE8=5AVSETL LTLLIB/ZUNSSEBTL)
RFL(150000)
SETLA,
RF,€207000)
Lea,
E-0=R.
YCUR SETLA SOURCE DECK,
E«O==F

CNE ‘€F THE OTHER SRTL FILES CAN REPLACE SETLAL , IF CARE IS

7,

LSE CF THE SYSTEM

TAKEN AT THE SAME TIME TO REPLACE THE RFL CARD THAT PRECEEDS LGO
WITF YHE ONE INDIGATED IN THE TABLE ARCVE,

LhGREMENTALlfY.

THE chREMENTALyrv OF BALM IS PR[SERVED IN THE SETLA SYSTEM,

TFE SYATE OF THE PROCESSOR (HEAP, STACK, SYMBOL TARLE AND POINTERS)
CAN BE SAVED AT aANY POINY DURING EXECUTION, BY USING THE PROCE-
CURE =SAVESETL~, EXECUTION OF TH1S PRCCEDURE, INVOKED pY

TRE STATEMENT QRAVESETL 3 CREATES A PRIVATE SAVEF]LF
WHICH CAN BE USED TO RESUME EXECUTION AT SCME LATER TiIME, THIS
SAVEFILE WILL CONTAIN THE PALMSETL SYSTEM, PLUS ALL PROCEDURES
CCMFILED BY THE USER, THESE SAVEFILES ARE USABLE GN ANY CNE OF
ThE SETLA FILES, SO THAT IT 1S POSSIBLE TO CREATE A SERIES OF
PROCEEURES USING A SMALL HEAP, AND EXECUTE THEM USING A LARGER
ONE, WHEN COMPILING LARGE PROGRAMS, THIS APPROACH WILL PROVIDE
FASTER TURN=AROUND TIME (WH]ICH GIVEN THE SIZE OF THWE SYSTEM, IS
NCT AN ACADEMIC CONSIDERATION,)

VSER SAVEFILES ARE WRITTEN ONTOQ TAPE9, WKICH IS RESERVED ,
FCR TRAT PURPOSE ALONE, (SFE SECTICN ON INPUT=OUTPUT); TC MAKE A
SAVEFILE PERMANENT UNDER THE NAME .«NEWSAVE= , INSERT THE FOLLOWING
CARL EEFORE THE LGO, CARD 1

DEF INE(TAPE9=NENSAVE) ‘

'TC RESUME EXECUTION FROM THAT SAVEFILE, PODIFY THE ATTACH CARD
TE FEMD

AYTACH(=== TAPEB=NEWSAVE, ===)

TAPEY |S RESERVED FOR THAT PURPOSE AND SHOULD NOT BE USED FOR OTHER
|=0 OFERATIQONS,

-112-

7, USE €F THE SYSTEM

10
[P o)
(-4
2 —
1 O
1 O
tr
[N]
' >
$ 0
[e
[B o}
1 >
¥ 20
. >
B 4
M
1 -9
rm
[T »)
\ B)]

THE SETLA FRONT ENpD PROVIDES SEVERAL CPTIONS WHICH THE USER
MAY SELECT BY SUPPLYING A LIST OF THE NECFSSARY KEYWORDS
ON THE CONTROL CARD FOR SET|.A, THE KEYWCRDS AND THEIR
INTERFRETATION ARE AS FOLLOWS

=XRF=,THE CROSS~REFERENCE OPTINN, IF THIS OPTION 1S SE_LECTED THEN
THE OLTFUT FILE WILL INCLUDE A COMPLETE CROSS REFERENCE MAP FOR ALL
NAMES N THE SETLA INPUT PROGRAM,

=SL=,CCDE LIST OPTION, IF THIS OPTION IS SELECTED TWEN THE SETL
SCYRCF PROGRAM IS LISYED OM THE OUTPUT FILE, THE DRFAULT
SETTING IS =QONe, ' :

-HELF= REQUEST DEBUGGING AIDS, DEFAULT IS OFF, IF CERUGGING
A1DS ARF REQUESTED, THEN THE FRONTe END WILL INSERTY
CALLS TC TRACF ROUTINES IN THF BALM SYSTEM AT KEY PCINTS
OF Tkt LSERS SOURCE CODR, DETAILS OF THE USE OF VHESF
FEATURES ARE CONTAINED IN THE SECTION ON ~DERLGGING A1DS-

-SN= REQLESTS STATEMENT=BY~STATEMENT "TRACE,THIS DERUGGING AlID
CAN BE ACTIVATEN WITHOUT THE FULL -=HELP= FEATURE (WWICH PRO~
VIDES SEVERAL ADDITIONAL TRACING PROCELURES), DEFAULT IS OFF,

-ABT~ ABCRT ON LEXICaL ERRORS,DEFAULT IS -ON=-,IF LEXICAL ERRORS
ARE DETECTED IN TWE SOURCE, EXECUTION WILL BE TERMINATED,
IF THIS OPTION IS DISABLED,BALMSET|, COMPILATION AND EXECUTION
wILL FROCEED AS FaAR AS POSSI!BLE,

-113-

7. USE EF THE SYSTEM

THESE CFTIONS ARE SPECIFIED BY PROVIDING A LIST OF

NECESSARY KEYWORDS aND VALUES,ENCLOSED IN PARENTHESES, ON THE

CONTRCL, CARD WHICH INITIATES EXECUTION OF THE SETLA FRONT-END,

A KEYWQRU IS ASSIGNFED A VALUE BY FOLLOWING THE KEYWCRP

WITF AN EQUALS SIGN (=) AND THE VALUE, THE VALUE MUST BE

A NCN=NEGATIVE INTERER, ONFE NF THE WCRDS =ON=, =YESe OR =T=
(Wk]CH CORRESPOND YO VALUE OF 1), OF ONE OF THE WORDS «QFF-
=NC= QF =F= (WHICH CORRESPOND TO VALUE GF 0). '

ALL OF THE FOLLOWINA CONTROL CARDS ARE EGQUIVALENTS

SETLA, (HELP)
SETLA, (HELP,SL=1)

SETLA. ‘HELszESpSL;ABT=ON)

HERE ARE SOME EXAMPIES OF PARAMETER LISTS!

SETLA, .
LIST INPUT,Nn TRACING,ABORT IF LEXICAL ERRORS FOUND

SETLA, (ABT=0,HELP)
LIST INPUT, FNABLE TRACING FEATURES, EXECUTE EVEN IF
LEXICAL ERRQRS PRESENT, ’

SETLA, (SN=1,SL=0)
AU INPUT LISTING, ENAGLE STATEMENT-BY=STATEMENT TYRACE,

-114-

7.

USE €F THE SYSTEM

LEBUGGING FEATURES OF SETLA

P S ocvavTowPToangn T re weeoeew L I I - - -?..--_!—-.-

TFE SETLA TRANSLATOR PROVIDES SEVERAL USEFUL DEBUGGING
FEATURES, - AT THE USERS REQUEST, THE TRANSLATOR WILL
JNSERT IN THE BALM CODE CALLS TO SYSTEM TRACE ROUTINES
WITFIN THE BALMSETL SYSTEM, AT EXECUTION TIME
THE VALUES OF GLORAL VARIABLES (SW]ITCHWES) MAY BE SEY BY THE
USER YU CONTROL THE GENERATION OF TEBUG OQUTPUT RY THESE
TRACE ROUYINES, THE TRACE FEATURES CURRENTLY AVAILABLE
PROVILE FOR THE TRACING OF PROGRAM ENTRY AND RETURN TO
SUBFRCGRAMS, TRACE OF ASSIGNMENTS STATEMENTS, ANC
STATEVENT=BYeSTATFEMENT EXECUTION TRACE,

AS AN EXAMPLE OF HOW THE TRACE PACKAGE WORKS CONSIPER THE
SETLA SEQUENCE FOR THE LAST FEW LINES IN PROCEDURE ePe

s9¢ A=103 RETURN (A)3 END P3
TH1S TRANSLATES INTO THE EQUIVALENT OF THE BALM SEQUENCE

A = 10, RETURN A, END P}

IF ENTRY/EX]T TRACING 1S REQUESTE[TWEN THE
CCDE GENERATED IS

A210,

" ATEXVALzA,
BTEXITV(32.=P,ATEXVAL),
RETURN (ATEXVAL),

|F STCHRES TO =A~ ARE BEING TRACED, THEN THE CODE (S

A310,

‘TSETV<205po =A, A),
ATEXVAL=A,
ATEXITV(3s=P,ATEXVAL),
FETURN (ATEXVAL),

IF THE QUTPUT IS ONLY YO !NCLUDEVTHE TRACES OF ASSIGMENTS AND

ENTRY®EX]T STATEMFNTS, THE OUTPUT WILL BE AS FOLLOWS

-115-

7.

LSE CF THE SYSTEM

e~wg® AT LINE 2 IN P A IS 10
wewe* RETURN FRAOM 3 IN P WITH VALUE 10

JFIN ADDITION, TWE STATEMENT-BY-STATEMENT TRACE 1S ACTIVATED,

_ THE AEDITIONAL CALL

BTSN(2,=P)

}S INSERTED IN THE CODE, AMD THE FCLLOWING LINE WILL APPEAR IN
THFE OLTPUT :
veved [INE 2 IN P

THE EXAMPLE TLLUSTRATES THE THREE4LEVELS OF USER CONTROL
GF THF DEBUG OPTINNS

A, WFETHER TO GENERATE CALLS TO TRACE ROUTINES

By We][CH KINDS OF CALLS TQ GENERATE

Cy, EXECUTION TIMF CONTROL OVER QUTPUT RY CHANGING
VALUES OF GLABAL VARIARLES USED BY THE TRACE
FOUTINES,

WE NQW D]SCUSS EAcH OF THESE OPT]JONS IN MORE DETAIL.

ACTIVATING DEBUG PACKAGE IN SETLA TRANSLATOR

THE wHELP= OPTINN ON THE SETLA CCNTROL CARD ACTIVATES
ALL, TRACING PROCENURES 1 ENTRY/EXIT TRACE, ASSIGNMENT TRACE,
AND SYTATEMENT-BY-STATEMENT EXECUTION TRACE,

TH]S LAST TRACE CAN BE ENABLED INDEPENDENTLY BY TWE =»SN-
OFPTION ON THE SET{LA CONTROL CARD,

[F CNE OR BOTH NF THESE OPTIONS ARE PRESENT, THE APPROPRIATE

CALLS ARE INSERTEn IN THE CODE, HOWEVER, THE USER CAN CONTROL THE
EXECUT{ON OF THESF CALLS BY MEANS OF THE FOLLOWING GLORPAL FLAGS

ATEXTRC CONTROLS ENTRY/EXIT TRACING,
ATECTRC 3 CONTROLS ASSJGNMENT TRACING,
ATSATRC 3 CONTROLS STATEMENT=BY=STATEMENT TRACING,

THE DEFAULT SETTINGS ARE TRUE, TRUE, FALSE RESPECTIVELY.
[F THE TRACES HAVE BEEN ENABLED, BUT THE CORRESPONDING
FLAGS ARE OFF, THF CALLS TO TRACING ROUTINES ARE STILL FXECUTED,
BUT NC OUTPUT WIL{ BE PRODUCED,
WITHF THE DEFAULT SETTINGS SPECIFIED ABOVE, A SIMPLE]NVOCA-
TION CF ~HELP~ ON _THE SETLA CONTROL -CARD WJLL RESULT IN
TFE LISTING OF ENTRY/EX!T AND ASSIGNMENT TRACES;IN ORDER YO
OETAIN THE STATEMENT TRACE, THE USER CAN INSERT IN WIS PROe
GRAM THE STATEMENT 1

~-116-

7, LSE CF THE SYSTEM

ATSNTRC = T, }
SIMILAR ASSIGNMENTS TO THE OTHER TRACE FLAGS CaN BE USED
SELECTIVELY TO TRACE ONLY CERTAIN PORTIONS 0OF A PROGRAM,

NCTE THAT IF THE HELP OPTION IS SPECIFIEL, TRACIMNG CALLS ARF
INSERYED TRHOUGHOUT THE CODE, EVEN IF THE TRACING OUTPUT WILL
LATER BE TRIMMED mY JUDICIOQUS USE CF THE TRACE FLAG, THESE
TRACING CALLS EXPAND THE RFESULTING CODE NOTICEARLY, AND MaAY
REQUIRE FOR ITS COMPILATION AND EXECUTION A LARGER HEAP THAN
THE OR{GINAL UNTRACED PROGRAM ,

TC RESTRICT THE INSERTIOM OF ENTRY/EXIT AMD ASSIGNMENT

TRACES 4y THE =CHECK= STATEMENT HAS PEEN PROVIDED,IY IS DESCRIBED
IN THE FOLLOWING SECTION,

117

7. USE €F THE SYSTEM

SETLA STATEMENTS CONTROLLING DEBUG FEATURES

A SCHEGKZ STATEMENT HAS BEEN ADDED TO ‘THE SETLA LANGUAGE,
TR}S STATEMENT HAS THE FORM

<CHECK / NOCHECKX> < STORES 7/ ENTRY > }

WhERE #/# INDICATES THAT OHE OF THE OPTIONS IS ALLEWED,
IF YHE STATEMENT 3 '
CrECK ENTRY ; :
AFPPEARS IN THE USFRS SOURCE CODE, THEN SUBSEQUENT PROGEDURES
ARE CCMPILED W]TH ENTRY/EXIT CALLS INSERTET, AND THE (ORRES-
PCNL{NU FLAG, ATEXTRC ,]S SET ON, IF THE STATEMENT
NECHECK ENTRY 3
IS ENCOUNTERED |ATER ON, SUBSEQUENT PRCCEDURES ARE COMPILED
WITFOUT TRACING CALLS, ,
THE SAME APPLIES, PARI PASU, TO THE STATEMENTH
CkeCK STORESS .
AND FCLLOWING ASIGNMENT STATEMENTS,

FCR REFERENCE, WE LIST WERE THE 'TRACE ROUTINES CALLED. BY
TFE DEHUGGING AIDS PACKAGE 1

ATSN(LIMNE, SUB) = CALLED AT END OF EXECUTABLE STATEMENTS,
TH1S PROCENDURE SAVES ITS ARGS, ANT MAINTAINS A LIST OF THE
LAST 30 STATEMENTS EXECUTED, THIS LIST IS DISPLAYED
AFTER A USER CRASH,

ATENTRYtSUB) = CALLED WHEN ENTER ROUTINE
PRINTS ARGUMENY 1F =ATEXTRC» HAS VALUE ~TRUE=

ATEX]IT(LINE,SUB) « CALLED WHEN RETURN FROM RQUTINE
PRINYS ARGS If =ATEXTRCe.]S =TRUE=

ATSETVULINE,SUByNAME,VAR) » CALLED BEY SIMPLE ASSIGNMENT
PRINTS ARGUMENTS [F «ATEQTRC- IS --TRUE=-

ATSETLSN(LINE,SUB, NAMELIST, VARLIST)=CALLED FOR MULT1#ASSIGN

EC .<A)B,C> = S}
PRINYS ARGUMENTS IF eATEXTRC~» 1S TRUE

WHERE ‘wL [NE= 1S INTEGER GIVING STATEMENT NUMBER, AND »SlUBe
]S SUEPROGRAM NAME, =NAME=. 1S NAMECF VARIABLE (PRECEDED BY =),
=VAk» S VARIABLE NAME, =NAMELIST= IS LIST OF QUOTED NAMES, .
AN =VARLISTe 1S {IST OF VALUES,

-118-

FORMAL GRAMMAR

YHE FOLLOWING LL1 BACKUS GRAMMAR FOR SETLA MAY AID
JN THE UNDERSTANDING OF VARIQUS QF ITS SYNTACTIC DETAILS,
THE NCTATIONS USEN IN THE GRAMMAR ARE AS FOLLOWS:

<STYPE> =DENOTES A SYNTACTIC TYPE

s*LTYRE> «NENOTES A LEXICAL TYPE

LITERAL)ZLITERALZ =NENQYF LITERALS

<-CCMMENT> =NDENOTES A COMMENT

<STYPEe> *DENOTES INDEFINITELY MANY REPETITIONS
OF A SYNTACTIC TYPE

SSTYPE(M,N)> *DENOTES A LIMITED NUMRBFER OF REPETITIONS

OF A SYNTACTIC TYPE
MIMINIMUM NUMBER REQUIRER
N$MAXIMUM NUMBER ALLOWED
SUCCESSIVE ALTERNATIVE EXPANSICNS CF A SYNTACTIC TYPE ARE
INDICAYED RY SUCFSSIVE EQUALITY SIGNS, AS FCLLOWS!

<STYPE> (FIRST ALTERNATIVE EXPANSION}
(SECOND ALTERNATIVE EXPANSIOM)

(ETC.OETCI>

LEXICAL TYPESS
YHE FOLLOWING LEXICAL TYPES OCCUR IN ‘SETLA AND APPFAR IN
THE FCRMAL GRAMMAR GIVEN BELOW:
SeNAME> eA VARIABLE,SUBROUTINE,OR FUNCTION NAME, NOY
PERIOD=TERMINATED
EXAMPLESS X,Y,7Z0,2000,20A1

S*QPNAME> eTHE NAME OF A SYSTEM OR USER=DEFINED

~ QPERATOR, POSSIBLY PERIOD "TERMINATED
EXAMPLES? MAXs0 MIN,, //, MYMONA&DT, MYDYAD,
S*QNAME> «ONE OF A GROUP OF'PERIOD TERMINATED NAMES KNOWN

TO THE COMPILER AS THE NAME QF A SPECIAL
"QUANTITY OR GUANTIT*-RETUNth. N~PARAMETER
EXAMPLES? ..F.ONL.gNULC.nNULT'nNEWAT.
sv,CGCP> »ONE OF A SPECIAL GROUP OF QPERATOR NAMES KNOWN
‘ TO THE COMPILER AS LOGICAL OPERATORS OF
HIGH PRIQRIYY
EXAMPLESt GT,.,,EQ.)NF,2GE,» INCS,
S*CCNST> AN INTEGER'OR STRING CONSTANT
EXAMPLEST 17,960,%THE LONG GOODBYE#

-119-

8, FORMAL GRAMMAR

<PRCGRAM>
<BLCCx>
<LAEEL?>

SSTATEMENT>

=<STATEMENT> <STATEMENTw#>
=<STATEMENT> <STATEMENTw>

<aNAME>

<LABEL> <STATEMENT>
IF <EXPN> THEN <BLCCK> <ELSEIF+» ELSE <RLOCK>

_ } <ENDER>
=]F <EXPN> THEN <BLECCK> <ELSE]Fw> <ENDER>
=(v <]TERATOR>) <BLGCK> <ENDER>
=(WHILE <EXPN> DOING <RLOCK>) <BLOCK> <ENDER>
=(WHILE <EXPN>) <BLCCK> <ENDER>

=<eNAME> (<EXPN> <COMEXPN#>)}

= <*NAME> } :
2<aSUBROUTINE CALL IN INFIX FORMiI>
<EXPN» <«0PNAME> <EXPN> 3}
<*OPNAME> <EXPN> 3}
<*OPNAME> .}
<=CALL OF SUBROUTINE TO ALL ELEMENTS OF SET:>
<eNAME> [<EXPN> <COMEXPN#*>) 3
<*OPNAME> [<EXPN>]

= ASSERT <EXPN>;

= <*NAME> #e# <EXPN> }
2HD 4 # <#NAME> ¥s3# <EXPN> }
s £TL (% <w#NAME> #%s3% <EXPN> }

< INDEXED ASSIGNMENT '‘FORMS1>

CeNAME> (<EXPN> <COMEXPMNw#>) #zZ <EXPN> 3
s <#NAME> S<EXPN> <COMEXPNw>2 #m7 <EXPN>
~ <#NAME> [<EXPN> <COMEXPNw>] Zgz <EXPN> }
= ¢*NAME> (<EXPN> 3§ <EXPN>) = <EXPN> }

= <CHECKWORD> <CHECKOP>}

=GATO <EXPN>}

"3G0° TO <EXPN>}

=NOOP}

=CaMPUTE} ,

=DEFF INE <DEFORM> <B{,OCK> <ENDER>
=DFF INEF <DEFORM> <ELQOCK> <ENDER»
=LOCAL <NAMELIST> }

-120-

8, FORMAL GRAMMAR

SCEFQRM>

CELSEIF>

<ENLER>
$NQSENPS>
<ITERATOR>
<COM [TEREXPN>

SITEREXPN>

SCQMRPAREQP>

SCOMEXPN>

SNAVEL|ST>
SNAMECD

SCHECKHORD>

3

Hanaan

ZPRINTY,# <EXPN> <COMEXPN*> ;
#READ,# <NAMELIST> 3
2WRITEZ <MAMELIST>;

FINISH 3}
£<2t <NAMELIST> #># #=# <EXPN> }
RETURN 3
RETURN <EXPN> o
<» SPECIAL #RETURNg STATEMENT FAR USE IN
CONNECTION WITH CCDE RLOCKS:»
RETN <EXPN> }
Dn; :

<*NAME> (<NAMELIST>)
<*NAME> <*0PNAME> <«NAME>
<*NAME> :
<*OPNAME> <»NAME>
<*OPNAME>»

FLSE IF <EXPN> THEN <BLOCK»>
H

FND ¥

END <NOSEMS(1,5)> 3
<*NQSEM]>

<ITEREXPN> <COMITEREXPNw> ¢ <EXPN»

<] TEREXPN> <COMITEREXPNw>

» <]TEREXPN>

<*NAME> « <EXPN>

<EXPN> <COMPAREQP> :<«NAME> <COMPAREOR>

> #af
<
< #z ¢
+ <SEXPN>

<*NAME» <NAMEC»
', <*NAME»

CHECK

=121~

8, FORMAL GRAMMAR

© CCHECKQP>

SEXFN>

SELSEXPN>

SFACTCR>

SELEMENT>

SATCM>»

nn a8 128084

NOCHECK
STORES
TIME
ENTRY

<FACTOR> <e0OPNAME> <EXPN>
z <FACTOR> -
= |F <EXPN> THEN <EXPN> <ELSEXPNe> ELSE <EXPN>

ELSE IF <EXPN>

<*OPNAME> <FACTQOR>

= <]TEREXPHN> <COM]TEREXPN> ¢ <FACTOR>
v <ITEREXPN> <COMITEREXPN> ¢ <FACTOR>
{ <*OPNAME> t <ITERATCR>] <FACTCR»>
<ELEMENT> <« OGOP> <FACTOR>

<ELEMENT>
= <ATOM> (<EXPN> t <EXPN>)
2 <ATOM> (<EXPN> <COMEXPN#>)
= <ATOM> < <FXPN» <COMEXPN#*> 2
= <ATOM> [‘<EXPN> <COMFXPN*>)
= <ATOM>

<*NAME> (<EXPN> :<COMEXPNw>)
<*NAME> < <EXPN> :<COMEXPN#> 2
<*NAME> [<EXPN> <COMEXPN#>]
<*NAME> : _
<~CODE BLOCK TREATED AS EXPRESSICN»
{1 <BLOCK>) :
<*NAME> o <EXPN> ,<]TEREXPN> ¢ <EXPN> 2

<

< <o¢NAME> = <EXPN> ,<]TEREXPN> ' 2
¢ <EXPN> , <ITERATOR> 2

{ <EXPN>) ‘

(<*NPNAME>)

<12

<1 <EXPN> <COMEXFNe>» 2 ‘

<y <EXPN> <COMEXPNe> 2»¢#
<*QNAME>

<*CONST>»

ENN=OF nFORMAL ~GRAMMAR

-122-~

9, BALMSETL HIGHLIGHTS

PR AR L LA LA R R e)

Ay IMPQRTANT NQTES:

1.

)
WTIL
.1.

&

{7 IS FORBIDNEN TO MODIFY THE VALUE OF THE ITERATION
VARIABLE OR nF THE ITERATION FANGE WITHIN YHE BODY OF A
FURALL ITERATION,
THE FOLLOWING IS THUS ILLEGAL:?
" FORALL XY EL S REPEAT DO
o9 9 0
$=S LESS X

END

ERRORS MAY RESULT IF A RECURSIVE PROCEDURF CALLS ITSELF
FHOM WITHIN A LOOP OVER A SET, - FCR EXAMPLE,

DEFINEF REC(S)}

/«SUMS NESTED TUPLES OF INTEGERSw/

LOCAL x.VAL3

VAL30; ,

IF (TYPE, S) ,EQ. INT, THEN RETURN SJ;

(vX «> S) VAL=VAL#REC(X);

RETURN VAL

END; A
FAY CAUSE PRNBLEMS, []F CODE CF THIS SORT IS NECESSARY, THEN
THE USER MUST SUPPLY A TEMPORARY VARIABLE, SAY »XT-, IN
YHE |LOCAL BLOCK, AND EXPRESS THE SET ITERATICN AS A =WHILE~
LUOP' AS FOLLOWS.)

DEFINEF REC(S)}

/#SUMS NESTED TUPLES OF INTEGERSw/

LOCAL X,VAL, XT3 '

VAL=0; ‘

IF (TYPE, S) ,EQ, INT, THEN RETURN S};

XY & NILVECT) SINITIALISE FOR ITERATION

XsNEXTELT(S,XTY) $SET X

(WHILE X NE, OM, DOING X=NEXTELT(S,XT)})

VALEVAL+REC(X)}

END WHILE}

RETURN VAL

END}

‘'¥HE CODE ABROQVE, TWO BALMSET| RESERVED WORDS WAVE BEEN
12D
WNILVECT=» [S A SYSTEM CONSTANT WHICH SERVES AS A FLAG
TC INDICATE TWE BEGINNING OF AN ITERAT]ON, ,
'NEXTELTe IS A SYSTEM PROCEDURE WHICH ACTUALLY PERFORMS
THE [TERAT]ON,

-123-

9.

EALMSETL HIGHLIGHTS

THE APPEARANCE OF THESE KEYWORDS (WHICH SHOULD NCT BE USED FOR
ANY QFHER PURPOSE IN A SETLA PROGRAM). IS A BLATANT (UNESTHETIC)
PATCH, IT IS IMPOSED RY THE BASIC IMCOMPATIRILITIES BETWEEN
BALM AND SETL NAMESCOPING RULES,

THE Wk]LE LOOP CORRESPONDS TO THE CODE THAT WOULD RE GENERATED
IF » »FORALL~ LOOP WERE WRITTEN, HOWEVER, THE REQUIRED
TEMFORARY -XT= IS NO [ONGER GLOBAL, AND]S THUS RESTORED
GCRRECTLY IN THF EVENT OF RECURSIVE CALLS, A

3. CQFYING AND DIRECT MODIFICATION OF DATA OBJECTS IN SFTLA:

---'--:5--- -y e e LA N N A R

YHE USER SHOULD BEWARE OF ERRORS WHICH MAY BE CAUSELD BY

THE FELLOWING LOGICAL DISCREPANCY FETWEEN SETL ANR RALM, SETL
IS A COUNSISTENTLY ~VALUE ORIENTED- LANGUAGE, IN WHICH, AS A
MATTER OF LOGICAL PRINCIPLE, QPERATIONS WHICH MODIFY EXISTING
VARIAELE VALUES CREATE ENTIRELY. NEW DATA STRUCTURFS, AND
LEAVE ALL OTHER VARIABLE VALUES UNCHANGED, BALM ON THE OTHER
HANE IS -ADDRESS AND POINTER- ORIENTED IN ITS TREATMENT OF
CCMFOLND (THOUGH NOT OF SIMPLE) DATA OBJECTS, SO THAT WHEN
A CCMPUUND OBJECT A 1S MADE PARY OF ANOTHER SUCH fBJECT R,
THE VALUE OF B MAY SUBSEQUENTLY CHANGE WHEN A IS MODIFIFRL,
TC SYFPRESS SUCH FFFECTS, WHICH ARE NNT CONSONANYT WITH THE
PURE INTENT OF SETL, IT MAY BE NECFSSARY TQ INSERT OCCASIONAL
CALLS TO THE =CREATE INDEPENDENT NEW COPYs FUNCYINN COPY(X),

TFE CURRENT IMPLEMENTATION INSERTS AUTOMATIC COPIES IN MOST
SITLAY[ONS WHERE 4 COMPOSITE OBJECT IS BEING MODIFIED, OR RETRIE=
VED FFOM A LARGER OBJECT, FOR EXAMPLE ,IN THE ASSIGNMENT

Y = F(X) }

THE VALUE ASSIGNEN TO Y]S A COPY OF THE VALUE RETRIEVED BY
THE FUNCTIONAL APPLICATION, SO THAY SUESEQUENT MODIFICATIONS OF
Y WILL NOT HAVE S{DE=EFFECTS ON THE SET F, HOWEVER, THE SIMPLE
ASSIGAMENT Y = x 3 DOES NOT PRONUCE A COPY OF X, SO THAT MO-
DIFICATIONS TO ONF OF THE VARIABLES MIGHT PROPABATE TO THE OTHER,
EXPERYENCE WITH SETL SO FAR SEEMS 'TO INDICATE THAT ONU'Y RA-
RELY PUES THIS FORCE THE USER TO INSERT EXPLICIT COPIES IN HIS
PROGRAM, HOWEVER, IT MIGHT BE WISE TO KEEP THIS IRREGULARITY
IN YINU WHEN DEBUGGING,

-124-

9.

BALMSETL HIGHLIGWTS

6, LNPUT Ourpur

THE SYSTEM PROVIDES THE FILES TAPEL,TAPF2,,,,TAPE7 FOR
USEF 1=0 OPERATIONS, TAPEL AND TAPE2 ARE THE KRONCS (6R
SCUFE) INPUT AND nUTPUT FILES RESPECTIVELY,

~INFILE~ , WHICH CAN BE ASSOCIATED WITH ONE OF THE SYSTEM
FILES, AND WHICH SPECIFIES THE FILE FRCM WHICH DATA IS 7O
BE FEAU. INFILE IS EQUIVALENCED YO ~INPUT= RY DEFAULT]

TrE FORMAT OF THE 1/0 STATEMENTS IS AS FOLLOWS:

EXTERNAL FORM(SFE BELOW) OM FILE
OUTPUT, THE ITEMS ARE SEPARATED BY
ONE BLANK,

WR{TE,N, 01,02,,,,0N J SIMILAR YO PRINT, BUT DATA [S WRITTEN
ON FILE TAPEN, N MUSY BE INTEGER<S,

READ, 01:02%.440N .3 READS THE SETL EXTERNAL FORM CF N 0BJS
FROM FILE #INFILE#, AND STORFS THE
CORRESPQONDING VALUES IN THE VARIABLES
01,¢0,0N, TTEM :DELIMITER 1S A BLANK
OR A SLASH, IT IS RECOMMENDED THAY
THE SLASH BE USED TO MaRK THE END OF
COMPLICATED SETS OR TUPLEST .

~INFILE- CAN BF REDEFINED BY MEANS COF THE ~MAKFILEe
PROCEEYRE, THE STATEMENT 1
INFILE=MAKFILE(N,S12) }
WHERE N AND S1Z ARE INTEGERS, SPECIFIES.THAT THE NEXT READ

‘QPERAY]ON IS TO TAKE PLACE ON FILE TAPEN, WHERE DATA IS WRITTEN

-aS]Zw GHARACTERS PER RECORD, ON TAPE1 (THE STANDARD INPUT FILE)

THIS PARAMETER WAS A DEFAULY SETTING OF 80,
THE QUTPUT LINE SIZE CAN BE SPECIFIED BY THE SAME MECHAs=
NISVM, FOR EXAMPLE, THE STATEMENT 1
DUMMY= MAKFILE(2,72) }
WILL FQRCE THE OUTPUT ON TAPE2 TQ BE PRINTED IN 72 COLUMNS,
ThE DEFAULT SETTINGS FOR THIS ‘PARAMETER ARE AS FOLLONS.

-125-

9. EALMSETL HIGHLIGHTS

TAPE2 (STANDARD OUTPUT FILE) ¢ 30 CHARS/LIME
ALL OTHER FILES ; 80 CHARS/LINE,

EXTERNAL FORM OF nBJECTS (EXAMPLES) -

INTEGERS 1 23 -5 7186314159265
REALS 0,4 10,2E=6

BT STRINGS 118 77770 108535353
CHARACTER STRINGS #ARCDEFGH] JK# _

ELANK ATOMS : BLK123 NOT READABLE
LABELS LAB,45 NOT READABLE
FROCEDURES FUN, RANDOM NOT READABLE
LNDEFINED VALUE oM,

EMPTY SET NL

EMPTY TUPLE NULT,

SET €1 2 3 42

TYPLE <1 2 3 4

YRUE, FALSE . Te Fu

€, BOOLEAN OPFRATORS,

THE BOOLEAN EXPRESSION

IS EGLJVALENT

A AND, 8
TO ¢ AND EVALUATED AS)
(IF A THEN B ELSE F,)

-

1.E« IF A IS FALSE, THEN B WILL NOT BE EVALUATED,

SIMILARLY,
IS EQLJVALENT
NCTE YHAT THE

TRUE 1F [T 1S
DEFINED VALUE

T. IN THIS CASE,

THE BOOLEAN EXPRESSICN
To
(IF A THEN T. ELSE E)

ARGUMENT OF AN -I1Fs STATEMENT WILL BE TAKEN TO BE

NOT THE BOOLEAN F, ¢ OR 0B), THE INTEGER 0. THE UNe
OM,, THE NULL SET NL,s» WILL-ALL ACT AS THE ROOLEAN

-126-

9, EALMSETL HIGHLIGHTS

D, MISCELLANEQUS BALMSETL FUNCTIONS OF INTEREST

LAl A K B A I N N I I X IR R R R R N R

LEVEL

YMIS IS AN INTEGER VARIABLE (WHOSE INITIAL VALUE IS 10)

WHICH FIXES TYHE DEPTHW OF THE FROCEDURE CALL NESTING DISe
FLAYED WHEN A TERMINAL ERROR 1S DFTECTED, THIS DEPTH CAN

Bt CHANGED BY A REGULAR ASSIGNMENT .SUCH AS
LEVFL=203

CRASHMAX

YH1IS INTEGER VARIABLE SPECIFIES THE MAXIMUM NUMBER CF
CHASHES ALLOWED REFORE TERMINATION OF A PROGRAM, IT 1S
INITIALIZED YO 5, ‘

STRINGQF (0)

YHIS FUNCTION RETURNS A CHARACTER STRING WHICH 1S THE
EXTERNAL REPRESENTATION OF ATCMIC OBJECT O,

-127-

9, KALMSETL HIGHLIGHTS

E, RESERVEY WORDS

THE FCLLUWING IS AN ALPHABETICAL LIST CF THE RESERVED WORDS CF THE
BALMSETL SYSTEM, THESF IDENTIFIERS SHOULD NOT RE USED AS NAMES OF USER

CREATEL VARIARLES,

AUGMENT
BOF
BOFN
CODEQ
DIMINISK
DIMF
DIMFN
Do
ELSE
ELSE]F
END

EQ
EQUAL
FALSE
FOR
GARECCLI
GE
GENSET
GENTUF
GO
GOTC
GY

HD
HEALC
IF

IN
INCS
INGEX
INEG
INPUT
1S
LANE
LE
LESF
LESFN
LESS
LNQT
LT
MAKF]LE
MAX
MIN

NE

NEQUAL
NEWATY
NIL
NILQ
NILVECT
NL

NOT
NPOW
NULB
NULC
NULLSET
NULT.
ocT

OR

POW
PRINT
PROC
QUOTE
READ
RETURN
SAVESETL
SHIFTY
SOF
SOFN
SSOF
SSOFN

-TATL

TAIKATIV
THEN
TIME
TRUE
TYPE
VECTOR
WHILE
XOR

NEXTELY (SEE SEC,8A,)

-128-

10, SAMFLE PROGRAMS IN SETLA

--g--.gf,-“ LRI X XN

8,SQ0VME SAMPLE PROGRAMS
TRE REMAINDER OF THIS MANUAL CONTAINS SEVERAL PROGRAMS WRITTEN
[N SETLA, THE SQURCE FOR THESE PRGGRAMS I3 AVAILABLE ON THE
PERVANENT FILE «STESTPL=, WHICH IS AN UPDATE OLDPL,

/+ THESE PROGRAMS ARE PRESENTED TO ILLUSTRATE THE USE OF THE
SETLA LLANGUAGE, IN PARTICULAF, DIFFERENCES IN USAGE BETWEEN
SETL AND SETLUA ARE INDICATED,ONLY SKEYCHY INPRICATIONS
€F THE UNDERLYING STRATEGY USFD IN THESE ALGORITHMS IS GIVEN
IN THE TEXT WHICH FOLLOWS, FOR ADDITIONAL EXPLANATION
SEE THE SECTIONS OF THE # ON PROGRAMMING # CITED IN
CUNNECTION WITH TnF PROGRAMS CIVFN BELOW v/

-129-

10, SAMFLE PROGRAMS IN SETLA

FOQCKET=SORT SORTING ALGORITHM: (0P, VOU 11.,P,64)

/e T[S ROUTINE SORTS BY THE #DISTRIBUTION AND CELLECTICON#
ETHOD USED ON MECHAN]CAL CARL SORTERS =/

LOs

CEF [NEF POCKSORT(SEQ,P)Y;

/#SEC IS A SEQUENCE OF INTEGERS TC BE. SORTED,
F IS THE NUMRER OF POCKETS Y0 BE USED,*/

/* MULTI TRUE AS LONG AS MORE THAK ONE POCKET HAS CARDS

MYLT! = T,3 0= 1)

(WEILE MULYI DOING Q=QwPj)

/+ THE ITEMS ARE NnISTRIBUTED INTO FOCKETS BY KEYS o :
INCREASING AS THEIR RFSINUES MODULD P,Pw#2, Pwe3, FTC,.
AND THEN REGATHERED IN THE SEGUENTIAL ORDER OF THE

FUCKETS e/
$EQ= GATHER(P,DIST(SEQ, P.O)’l
ENE WHMILES

RETURN SEQ3
ENE FUCKSORTS

CEF INEF DIST(SEQ,P.Q);
/«DISTRIRUTES SEQ AMONG P POCKETS ACCORDING T0 RESIDUE
MODULO PeQ,
ALSO CALCULATING FLLAG =MULTIwe/
POCKET=NL,
(vi<eK<=4SEQ)
KEYs(SEQ(KY/N)//P3
FUCEKET(KEY,+ POCKETSKEY2 +1)= SEQ(K)}
END v}
MULTEE 2 1<sK<P*(POCKETSK2 NE, NLL,)}
RETURN POCKETS
ENE BISTs

CEFJNEF GATHER(P,POCKET)} A
/* GATHERS DISTRIBUTED ITEMS IN SEQUENCE :OF POCKETS v/

RETURN [+30<8K<P, 1<=J<= 4POCKETSK2) :<POCKET(KyJ)>)
ENE GATHER:
COMPLTE;

-130-

10, SAMRLE PROGRAMS IN SETLA .

FORD=-JOKNSON TOURNAMENT SORT (0,P, VOL 11, PAGF 66)
/% TR|S 1S THE FNRND=JOHNSON ZMININMUM COMPARISOM QOPT!NC
METHOD., SEE THE CITE]D REF, #*/

/* PLACE . */

bCy

LEFINEF PLACE(ELT,NELTS,BIGR)}

/* THIS AUXILTARY ROUTINE USES A BINARY SEARCH PRCDCEDURE
Y0 DETERMINE THE PROPER POSITION OF #ELTZ WITHIN THE
SEQUENCE #SEn# w/ :

LCCAL BOT,TOP,MID:

BCT=1}

TCP=NELTS

(WRILECTOP=-ROT) GT, 1)

M{D=(TOP+BOT)Y/2}
[F BIGR(SEQ(MID),ELT)THEN

TOP=M][D; :

/* ZBYIGRZ IS A RONLEAN=VALLED COMPARISCN FUNCT]ON */
ELSE BOT=MIN;}

END Wk jLE}

JF EIGR(SEQ(BOT),FLT) THEN RETURN EOT)
ELSE IF BIGR(SEQCTOP),ELT) THEN RETURN TOP}
ELSE RETURN TOP+1i;}

END PLACE}S

CCMFUYE;

¢+ | INSERTY w/

DC}
/e« 'YHIS AUXILIARY FUNCTIQN INSERTS 2ELT# AT A SPECIFIELC PLACE
WITHIN #SEQ# +/
DEFINE INSERT(ELT,PLACE)}
SEQ=(SEQ(13PLACE=1)+<ELT>)«SEQ(PLACE: (4SEQ=(PLACE=1))1)]}
RETLRN]
END INSERT;
CCMFUYES :
/e " FORDY v/

RCy

UFFINEF FORDJ(PAIR))

LCGAL JTEM1,]TEM2,XTRA, MAP ITEMSZ.OSEO JTOP,JBOT,NELTS,JsBIGR,

ITEMSS -

/% TE|S 1S THE RECURSIVE ¢TOURNAMENTY SORT# PROGEDURE ‘PROPER,
THE INPUT 1S ASSUMED 'TO HAVE 'THE FORM «<ITEMS, BIGR>», WHERE
#[TEMS# 1S SEQUENCE OF JTEMS ‘YO BE SORTED, AND #BIGR# IS THE
"YHE BOOLEAN~VALUED FUNCTION USED TO COMPARE TWO ITEMS «/

JTEVSEHD, PALR}

-131-

10, SAMFLE PROGRAMS IN SETLA

BIGRzbY, TL, PAIR}

/¢ |F THE SEQUENCE CONS]ISTS OF ONF OR TWO ITEMS,
ITS TREATMENT IS 0OBVINUS »/

IF(+]JYEMSIEQ, 1 THEN RETURH <ARB, [TEMS>;;

JFCIYEMSYIER, 2 THEN
TTEM1=1TEMS (1)}

FTEM2=1TEMS(2))
I[F EJGHCITEM2,1TEML) THEN RETURN <ITEM1i,ITEM2>}
ELSE RETURN <ITEM2,I1TEM1>;3;

END IF(sITEMS}

/* QTVHERWISE DIVIDE THE ITEMS INTC TWO~ELEMENT SFTS,
INTRODUCING A #DUMMY# EXTRA ITEM IF NECESSARY #/

XTRASNEWAT, ;

JTEVS28NULT .3

MAP=NL
IFCCEITEMS)//2INE, 0 THEN ITEMS((+ITEMS)+1)sXTRA}}

(WHILE ITEMS NE, NULT,)
1TEM1=1TEMS(2)3
FTEM2=1YEMS(1)3
N{S¢ITEMSe23
1 TEMS=1TEMS(3:N]);

/* MAP THE BIGGER OF THE TWO ITEMS IN EACH PAIR INTO THE SMALLER,
AND CREATE A HALF~WIDTH SEQUENCE CONSISTING CF THE RIGGER ITE
¢F EACH PAIR, =/

IF ITEM1 EQ, XTRA THEN X=F,}

ELSE

XEBIGR(ITEM2, ITEML) 3

IF X THEN <ITEM1,ITEM2,JK>=<TITEM2,1TEML>};
JTEMS2(4 ITEMS2¢1)=1TEM2}

MAP(ITEM2)=1TEM1}

END Wk [LE)

/* USE THE TOURNAMENT SORT RECURSIVELY TO .SORT THE
FALF=LENGTH SEQUENCE, w/

SEQ=FCRDJ(<ITEMNS2,BIGR>)}

/* NCW, USING BINARY SEARCH, INSERT THE REMAINING ELEMENTS OF THE
CRIGINAL SEQUENCE INTO THEIR PROPER POSITION, #/

OSEG = [+11<3N<=+SEQ)<MAP(SEQ(N)>;
(vl<aj<=(40SEQ)) ,
IF 0SEQ(¢(J) NE, XTRA THEN
NELYS=+SEQ}
INSERT(NSEQ(JY,PLACE(OSEQ(J),NELTS,BIGR)Y)3}J END v3

RETLRN SEO3

‘END FERDJ}

CCMPUTES

-132-

10, SAMFLE PROGRAMS IN SETLA .

A ALPHEIGR ' w/
/% WEHE IS AN ALPHABETIC COMPARISON ROUTINE THAT MAY BE USED IN
CUNNFECTION WITH THE AROVE, */

CEF JNEF ALPHBIGR (A, B)3
LOCAL N, CHARS, FHARPOS;
/% DEEINE COLLATING SEQUENCE FOR CHARACTERS '/
CHARS =% ,ABCDEFGHIJKLMNOPQRSTUVWXYZ#} .
CHARRPQS = € <CHARS(N), N>, 1 <= N <= 4CHARS 2 .
/% CCMPARE EITHER FIRST DISTINCT CHARACTERS, OR LENGTHS e/
IF 2 1 <= N <3 (4A) MIN, (4B) * A(N) NE, B(N)
THEN RETURN CHARPOS(CA(N)) GT, CHARPOS(B(N})}
ELLSE RETURN (+A) GT, (4B)5 END IF}
ENC ALPHRIGR3}
COMPLTE;

-133-

10, SAMFLE PROGRAMS IN SETLA

¥ISCELLANEOUS PERMUTATION ALGORITHMS

Los
+¢G = COMPUTE} Dnwe

/% MAKE SEQUENCE OF TUPLE, %/
DEFINEF MAKSEQ, TUP: RETURNp#11<=N<=sTUPIS1<N,TUPEN)>23 END MAKSEQ, S

/% CEMPUTES #HEADZ AS FUNCTION, */
CEFINEF WDD(X)3 RETURN WD,X3 END HDD}

/% CCMPOSES FUNCTIONS, #/ A .
CEFINEF F €y G RETURN £ <X)G(F(X))> , X HDD [F) 2 JEND F C,}

/* INVERTS A FUNCTIQN, #/ :
CEF [NEF INVy F1 RETURN € < HD,TL,X,HD,X>, X+F 23 END INV,

/¢ CYGLE FORM OF A PERMUTATION, #/
CEFINEF CYCFORM(F)} .
LOCAL S,CYCS, CYC,ELT,E 3
/e FCRM SEY OF ALL ELEMENTS PERMUTED, CHOOSE ONE OF THESE,
AND REPEATEDLY APPLY PERMUTATION, UNTIL FULL CYCLE IS
GENERATED, FELEMENTS OF CYCLE ARE REMOVED FROM SET, AND THE
"FROCESS CONTINUES UNTIL NO ELEMENTS ARE LEFT IN THE SET,#/
SskDC(F)) CYCS=NL,}
(Wk]LE S NE, NL,) '
ELT FROM,S 3 CYC = <ELT> ;
(WHILECFC(ELTYIS,E) » S DOING ELT = F(ELT) 1)
CYC(+CYC +1)= E} E OUT, S3 END WHILE)
€YC IN, CYCSH
END WHILE S}
RETYRN CYCS}
ENC EYCFORM}
G}

/% |NVERSE OF A PERMUTATION IN CYCLE FORM, =/

CEFINEF INVE, CYCS}

/* GIVEN A PERMUTATION IN CYCLE FCRM, ITS INVERSE IS
‘CBTAINED BY REVERSING EACH CYCLE, w/

RETYRN Sletgcs Nez 4CI<C((4C=N) + 1)>, C»CYCS2])

ENC JNVC, }

)

-134-

SAMPLE PROGRAMS IN SETLA

/% |NVERSE OF A PERMUTATION, +/

CEFINEF CYCINV ¢F); LOCAL S,ELT,NEXT 3
/% Th]}S ALGORITHM RESEMBLES THE PRECEEDING #CYCFORN# PRCCEDURE,
RQWEVER, CYCLES ARE NOT FORMEL EXPLICITLY, BUT RATHER ARE
LSED IMPLICITLY, THE INVERSE PERMUTATION BEING BUILT
LH BY MAPPINA EACH ELEMENT INTO 1TS PPEDECESSOR IN THE CYCLE
Y0 WHICH IT RELONGS,. w/
Sz HCUOI(F);
CWF]LE S NE,NL,)
ELT FROM. S: NEXT =F(FELTY;
(WHILE NEXT =+ S)
NEXT OuUT,Ss
<ELY0NEXT’PN.JK> =<NExYpF(NEXT)fELT);
FCELY)Y=FN3 C :
END WHILE NEXT 3
FONEXT)ZELT: /+CLOSING THE LOOFw/
ENC WHWILE S3 ,
RETURN F}
ENC eYCINV3
COMPLTE}

10, SAMFLE PROGRAMS IN SETLA

PERMUTATION GENERATOR _ (0,P, VOL I1!, PAGE 142)

/% ON SUCCESSIVE CALLS, THIS ROUTINE GENERATES SUCCESSIVF

FERMUTATIONS OF N ELEMENTS, IT RETURNS A PAJR OF THE FORM
sPERMUTATION, FLAG>, WHERE FLAG 1S #TRUE# UNLESS NO MORE
"FPERMUTATIONS CAN BE GENERATED,
IN WHICH CASE PERMUTATION=OM, */ _

/e [F CALED WITH MORE = F,, 1T RE=INITIALISES USING N, AND
RETURNS THE FIRST PERMUTATION ON N ELEMENTS, w/

DCy
DEF INEF PERM(N, MORE)}
LCCAL K» J, KKy FIND, LM, TJ, JK3

/% INITIALIZE IF NEW(MORE=F,) #/
IF Ny MORE THEN MARE=T,3TUPL=NULT, 3

tvl<z J<sN)TUPLE)=}

RETURN<STUPL,MORE>;

END IF3

/% IF TUPLE 1S MONOTONE DECREASING THERE ARE
NO MORE PERMUTAT]ONS, OTHERWISE FIND
LAST POINT OF INCREASE #/
IF Ny (EN> J >21¢eTUPLGJ)Y LT, TUPL(J*1)) THEN
VURE=F ,3JRETURN<OM, ,MORE>}
END IF3 ‘

/% NEXT FIND THE LAST TUPL(K) WHICH EXCEEDS

TUPL(J) AND SWAP #/
FINCRIN>3 K >JeTUPL(JY LT, TUPL(K)}
<Tyr WKy LM> 3 <TUPL(K), TUPL(J)>}
TUPL(K)3JKITUPL(JYSTJYS

/% REARRANGE ALL THE ELEMENTS AFTER TUPL(Jel)
INTO INCREASING ORDER ¢/
(“Y<Kea((N+Je1)/2))
KRS (NeK)eJel) .
<Tdy JK, LM> = <TUPL(KK), TUPL(K)>}
YUPL(KK)=JK3 TUPL(KY=TJ}

CEND v)

RETURNSTUPL , MORE>
END PERM;
CCMFYYES ’

-136-

10, SAMRLE PROGRAMS [N SETLA

¥UFFMAN CODE ALGORITHMS (0,P, voL It, PAGE 148)

/* TWE FOLLOWING ROUTINES TRANSFORM A TABLE OF CHARACTER
FREQUENCIES INTO A HUFFMAN #OPTIMAL# CODE YABLE, w+/

/e THE STRATEGY USED IS AS FOLLOWS, FIRST A BINARY TREE,
YU WHOSE TWIGS ALL THE CHARACTERS ARE ATTACHED, IS BUILT,
THE CODE OF EACH CHARACTER IS THEN THE ADDRESS OF 1TS TWIG
RELATIVE To TREE ROOT, FOR EXAMPLE, A CHARACTER REACHED BY
WALKING L=L-R-L=R=R=. FROM THF ROCT HAS THE CODE 0010110 +/

/% DECODING (SEE THE ROUTINE #CSEG# RELOW), IS ACCOMPLISHED BY

STARTING AT THE TREE TOP AND :USINE SUCCESSIVE RITS OF A STRIN

Y0 BE RECODED TO GOVERN LEFT AND RIGHT STEPS DOWM THE TREE
UNTIL A TWIG IS REACHED, THE CHARACTER AT TKIS TWIG IS THE
SEYMBOL DECODED w/

/« TeE BINARY TREE 1S BUILT AS FOLLOWSH

‘YHE TWO MINIMUM FREQUENCY CHARACTERS ARE FOUND AND MADE INTO

YHE IMMEDIATE DESCENDANTS OF A #CCMPOSITE CHARACTERZ,
CF FREQUENCY EQUAL TO THE SUM OF YHE TWO FREGUENGCIES, WHICH
RePLACES THEM, THIS CONTINUES UNTIL QNLY ONE CHARACTER
REMAINS, THIS CHARACTER 1S THE ROOT NODE OF TWE TREE
BYILY UP BY THE ITERATIVE PROCESS THAT HAS BEEN
CESCRIBED, +/

/% AUXILIARY ROUTINE TO CHOOSE MINIMUNM, w/
COs
CEF JNEF GETMIN, SET;
LOCAL KEEP,LEAST,X) ,
/¢« TAKE AN ARBITRARY ELEMENT OF SFTY AND GUESS IT Tn
‘RAVE MINIMUM FRENUENCY, «/
KEEP3ARB,SEY
LEASTAWFREQ(KEEP)
/%« NCW REPLACE THE #MINIMUM=TO=«DATEZ WITH ANY ELEMENT
PAVING LOWER FREQUENCY, */
(wx+8ET) '
1F WFREQ(X) LT, LEAST THEN
KEEP=X}
LEASTEWFREQ(X)}
END IF3
ENC w X3
/v REMOVE THE MINIMUM FREQUENCY ELEMENT FROM THE VWORKPILE
: USED BY THE MAIN #HUFTABLE# RCUTINE WHICH FOLLOWS, -¢/
KEEB QUT, WORK)
RETURN KEEP;
END GETMIN,)
COMPLTE)

-137-

10, SAMFLE PROGRAMS IN SETLA

/% ROUTINE Tn PRODUCE HUFFMAN TREE AND CODE TYARLE, ¢/
tQs

CEF [NeF WUFTABL (CHARS,FREQ); '

LOCAL WORK.SEQ.NFREQ.L.R;01.C2.N;CODE,SEO.TOP3

/o SYTART WITH COLLECTION OF ALL CHARACTERS, KNOWN FREQUENCIES,
AND TREE WITH NO NODES, «/

WORK=GMARS; WFREQ=FREA; L=NL, s R=NL,}

(WkILE (4WORK) GT, 1)

/e FERM NEW NODE WHOSE DESCENDANTS ARE THE TNO EXISTING
CHARACTERS OF MINIMUM FREQUENCY, WHICKH BECOME 1T7S
CESCENDANTS, #/

C1=GFTMIN, WORK}C2=GETMIN, WORK}
NANEWAT,JL(NY=C1JR(NY=C2)
WFREQ(N)sWFREQ(C1)«WFREQ(C2))
/% NEW NODE 1S ADDED TO LIST 0OF CHKARACTERS (THF TWO OLD
CHARACTERS HAVE BREEN REMOVED RY 2GETMINZzY, w/
N IN, WORK:
END WHILE}
COCESNL,JSEQ=ENULT,.S
/* CRARACTER CODES ARE FORMED BY ROUTINE #WALK#%,
WHICH NETERMINES ADDRESS OF EACH TWIG, w/

TOF2ARB,WORK 5 WALK(TOP)}

RETURN <CODE,L,R,TOP>;

ENC ‘»yYFTABL 3

COMPLTES

COs
CEFINE WALK(TOP)) /% RECURSIVE TREE=WALKER
WHICK BUILDS UP ADDRESS OF EACH TWIGw/
/¢ HLFTABLES EXTERNAL CODE,SEQ,L,R*/
/%« 1C BUILD UP ADDRESS, AND A #0# FOR EACH STEP T0 THE LEFT,
ND A #31# FOR EACH STEP TO THE RIGHT, */
IF L¢TOPY NE, OM, THEN
CEQSSEQe<)>) WALK(L(TOP));
SEUSSENe<1>; WALK(R(TOP))}
ELSE /*AT TWIGe/ CODE(TOR)=SEQ)
ENC YF3
/% BEFORE RECURSIVE RETURN, DELETE FINAL BIT OF NODE ADDRESS, ./
IF (43EQ) GY, 0 THEN
SEQO=SEQ(1145FEQ=1)35)
RETURNJ
ENC wALK}
COMPLTE)

/* HLFFMAN DECODE ROUTINE, %/

-138-

10, SAMELE PROGRAMS IN SETLA

LOs ,
CEF JNEF CSEQ(HUFTABS,SEQ)}
/e SEE PRECEEDINA COMMENT FOR EXPLANATION OF. DECFDF PROCESS, */
<K LgR,TOP, JK>=HUF TABS;
CYUTPL =NULC,; NONE=TOP; N=1;
(wkLE N LE,+SEQ DOING N=Nei})
IF L(NODEIEQ, OM, /#S0 THAT WE ARE AT TWIGw/
" THEN QUTPU =0UTPU + NODE 3
NODE=TOPIN=N=1}
ELSE IF SEQ(N) EQ, 0 THEN
NODE=L (NNDE)}
ELSE NODF=R(NODE);
END IF}
ENC WHILE Nj
RETYRN QUTPU eNOQNE}S
ENL CYEQ}
COVPLTE}

- -139-

10, SAMFLE PROGRAMS IN SETLA -

LINEAR TIME MEDIAN FINNING ALGORITHM

‘v KTHONE ' w/

Qs
LEF INEF KTHONE(KPARAM, SETPARAM)}

/% THE VALUE OF THIS FUNCTION IS THE KPARAMZTH NUMBRER, IN
ASCENDING ORNER, OF THE GIVEN SET #SETPARAMZ QF NUMBERS, IF
KPARAM IS 0OUT OF RANGE, THE RESULT IS UNDEFINEDR, w/

/» THIS 1S THE ALGORITHM DISCCVERED BY FLOYD, ET AL, IN LATE
19731, 1T RUNS IN LINEAR TIME, w/ ‘

LUCAL BIGPILE, CASE, 1, K, MELIAN, MIDPTS, SET, SMALPILE,

Us Vs Xi - . .
/% ZKTHONEBL# IS A GLOBAL VARIABLE (TD PREVENT STACKING ON
RECURSION), USER MUST INITIALIZE IT 7O NULL CHAR, STRING, ¥/

IF SETPARAM £Q, NL, THEN RETURN 0OM,;:

K = KPARAM; /* SAVE FARAMETERS (THIS ROUTINE «/
SET = SETPARAM} /* DOES NOT ALTER TEEM), */
KTHONEBL = KTHONEBL « # #5 /+ T0 INDENT WWREN PRINTING
NUMBER OF COMPARISONS, */
(WHILE (#SETY GE, 3) :
/v BUILD SET #MIDPTS¥, THE SEY OF MIDDLE VALUES FROM
®SET#, TAKING THE NUMBERS THKREE AT A TIME, w/
I = 23
MIDPTS & NI ,J-
-{vwX-SET)
1 2 (le1)//33 ;
IF] EQ, 0 THEN U ® X3}
IF | EQ, 1 THEN V = X3}
IF 1 EQ, 2 THEN _ .
/« PUT MEDIAN OF U, V, AND THE .CURRENT X [NTO SET
MIDPTS, REGUIRES 3 COMPARISONS (WORST CASE), /
IF X LT, V THEN CASE = 4; ELSE CASE =z 03}
IF U LT, X THEN CASE =3 :CASE ¢ 23}
IF VLT, U THEN CASE .3 3 :» CASE}}
/% NOW CASE MUST BE 1, :2, OR 3, #/
MIDPTS = MIDPTS WITH, (<U, V, X>)(CASE);
END IF | EQ, 23
END wX3 ‘

PRINT, KTHANEBL, (4SET/3)+3) /« PRINT NUMBER 8F .COMPARe
ISONS, INDENTED. #/

-140-

10, SAMELE PROGRAMS IN SETLA

/* AS MANY AS TWO MFEMBERS OF #SET# HAVE NOT BEEN CONSIDERED
FOR PLACEMENT IN #MINDPTS#, BUT THE ERROR IS NQT SUFFICIENT
TO PREVENT THIS ALGARITHM FROM WORKING IM LINEAR TIME,

NOTE THAT 4 MIDPTS GF, 1, BECAUSE +SET GE, 3, w/

/* NOW FINN THF (EXACT) MEDIAN CF #MIDPTS#, IN LINEAR TIME,
THIS ALGOR!THM CHOOSES ON THE LOW SINE IF 4MIDRYTS IS EVEN,e

MEDIAN = KYHONE((¢MIDPTS#1)/2, MIDPTS))

/* NOTE THAT #MEDIAM# 1S SOMEWHERE IN THE MIDDLE THIRD OF
ZSET#, */ /+ PRECISELYs, THE NUMBER OF MEMEERS OF #SET# THA
ARE LESS TWAN #MEDIANZ IS AT LEAST (N/3=1)/2 + (N/3+1)/2,
AND THE NUMBER OF MEMBERS THAT ARE GREATER 1S AT LEAST

N/6 + (N/3+2)/2, WHERE N = 4SET, +/

/* NOW DIVIDE #SETy INTO TWC PILES; MEMBERS 0OF #SMALPILE#
ARE LE, MENIAN, AND MEMBERS OF #BIGPILEZ ARE GT, MEDIAN, w/

SMALPILE = NL,3} BIGPILE = NL,3 /+ INITIALIZE, w/
(wX=SET) .
IF X LE, MEDIAN THEN SMALFILE = SMALPILE WITH, X3
ELSE BIGPILE = BIGPILE WITH, X1}
END vX3

"PRINT, KTHONEBL, #SET3 /¢ FRINT NUMBER OF COMPARISONS, +/
/+ SINCE 4SET GE, 3, AND WE HAVE THROWN THE MER]aN INTO
ZSMALPILE®, WE HAVE +SMALPILE GF, 2 AND #BIGPIUE GE, 1, NO
;TERATE TO FIND THE APPROPR]JATE MEMBER OF THF APPROPRIATE

ILE| v/ ’

IF K LE, +SMALPILE THEN SET = SMALPILE}S
ELSE SET = BIGPILE; K = K:= $SMALPILES;
END WHILES /¢ GO BACK WITH NEW SET AND POSSIBLY NEW.K, #/

KTHONEBL ® KTHONEBL(114KTHONERL#3)}

4% NOW 4SET 1S 1 OR 2 (]T CANZY BE ZERQ), K MAY BE QUT OF
RFANGE IF THE ORIGINAL CALL HAD KPARAM OUT OF RANGE, w#/

IF (4SET) EQ, 1 THEN

IF K EQ, 1 THEN RETURN ARB, SET}

ELSE RETURN OM,3 END IF K}

ELSE /* 4SET MUST BE 2, %/ -

IF K EQ, 1 THEN RETURN [MIN,t XoSET} X}

ELSE IF K EQ, 2 THEN RETURN [MAX.t X*SET] X}
_ ' "ELSE RETURN OM,3 END IF;
END KTHONE?S
CUMPUTE)

-141-

10,

SAMFLE PROGRAMS IN SETLA-

YIME CHECK ROUTINE (PRINTS CURRENT CP TIME)

/” TIMECHEK */

£Os

CEFINE TIMECHEK} :

/¢ WRITES A TIME CHECK MESSAGE ON FILE #O0UTPUT¥, USER SHOULD
INITIALIZE THE GLOBAL VARIABLE #TIMEPREVZ TO ZFRO, #/

LOCAL TIMENOW;
TIMENOW = TIME(Q); /+ INVOKE BALM TIME ROUTINE, w/
FRINT, #CP TIME (10THS SECS) := #, T]IMENQW,
#1 TIME SINCE LAST CHECK = #, TIMENOW=TIMEPREV;
YIMEPREY = TIMENOW}
RETURNS
END TIMECHEK)
CQMPUTE;

-142-

10y SAMFLE PROGRAMS IN SETLA

LEXJCAL SCAN SETUP ROUTINE (0,P, VOL {1, PAGE 108)

/* TEE PROGRAM WHICH FOLLOWS REPRESENTS A LEX]CAL SCAN
METACOMP]LER, WHICH ACCEPTS INPUT NATA DESCRIBING A FINITEe
ETATE AUTOMATON, AND A COLLECTION OF #SPECIAL ACTIONSZ
YU BE PERFORMED IN PARTICULAR LEXICAL SITUATIONS,

YHE INPUT 1S SYSTEMATICALLY CHECKED FCR CONSISTENCY, AND
TRANSFORMED INTO A STATE TRANSITION TABLE #TaABLEZ,

A CHARACTER-TYPE FUNCTION 2TYPEFZ,

AND AN AUXILTARY ROUTINE PACKAGE #PAKTEXTZ, w/ ,

/* THIS PROGRAM READS DATA FROM FILE #INFILE®, A SAMPLE SET
CF INPUT DATA IS SHOWM BELOW, (DISCOUMT THE COMMENTING
FHACKETS), %/

/% STYDY OF THE FORM OF THIS DATA wILL HELP TO UNDERSTAND THE
LQGIC OF THE PROGRAM WHICH FOLLOWS, w/

4% ZABCDEFGR!JKLMNOPQRSTUVWXYZ0123456789 #

/% <fAE #02 #BL#> *
#% Sc<thg <£ARCDEFGH]JUKILMNOPQRSTUVWXYZ#>> »
/e <207 <201234567892>> <#BL¢ <z #>>2 | "
/% S<ENXTE <<#2G02 ZNAMEz> <#GC# 2ZNUM#> #SKIPx>> *
/% <ENAMEZ <#CONT% <D0z #ZER(CC# #CONT#> ZENDC#>> *
/% <ENUMZ <ZFENDZ 2CONTZ REND#>>2 *
49 S<#ZEROC# #NN=NN+1}ACTION=]F CSTRING(NNY NE, 0 THEN *
/% vvCONTwvy ELSE wvvEMDwv;#>2 #/ /# vy = DOURLE QUOTES, -
EQ)

M TYPE=TYP[ww

®SEQTYPESSEQNTYPES»

INFILE=MAKFII'ECZINFILE®, 72)1 /* ESTABLISH INPUT FILE #/
EEFINEF REEDCK(DUMMY)}
4% INPUT ROUTINE WHICH #ECHOESZz INPUT wy
LOCAL X3
READ, (X)}
PRINT X3
ELSE RETURN X33
END REEDCK} -
CYMPUTE

#WREADCK=REENCK(Q)ww
/* MACRO MAKING !T UNECESSARY TO NRITE ‘DUMMY ARGUMENTS s#/

tUl

‘PEFINEF SETUP(DUMMY)}

LQCAL NERRORS.SEQTYPES CTYPES, TUP, “TYPEJCLIST,N,
CSTRING,JsCyTY,TU ,X,C, ALLC TYPEF, RAHYABL.
ROUTS,RT, ROUTSCLD PAKTEXT,TXY,RNUMS, R, TXZ,
STATSUSN,ST,Y,TABLE,STATE,TRIP,52,S3,ROUTSEY}

-143-

10,

SAMFLE PROGRAMS IN SETLA

/% INITIALISF CHARACTER~TYPE ‘FUNCTION TO BF EVFRYWHERE
UNDEFINED, */

TYPEF=NL,}

/¢ SET UP COLLECTION OF ALL CHARACTERS =/

/* £ER# 1S SPEC]AL #ZEMD RECOQRT# CHARACTER #y

AGSTR = READCKS ER=#ERZ;

ALLC = [#11<=N< & ACSTR) S | ACSTR(N) 2WITH,ER)

/* THIS MACRA SETS UP THE TYPF OF A CHARACVER, ALLOWING
MULTIPLE TYPES, WHICH ARE D]AGNOSED LATER, %/

$*SETYPE(C)=TYPEF <C> = TYPEF <C2 WITH. TYPEww

/% INITIALISF THE NUMRER OF ERRQORS TO ZERQ,
READ A TUPLE LISTING TOTAL FAMILY OF CHARACTER ‘TYPES,
AND ALSO READ COLLECTION CF PAJIRS DECLARING TYPES OF
PARTICULAR CHARACTERS, +/

NERRORS=0;

SEQTYPES=REANCK}

.€TYPESSREADCKS

(¥TUP=CTYPES)
<TYPE.CLIST,JK>=TUP}
/+ NOTE THAT #CYPTES#% IS A SET OF PAIRS OF THE FORM
<CHARACTER=TYPE,<TUPLFE OF STRINGS CONTAINING
CHARACTERS OF THIS TYPE> > w/
(v1<=N<=4CLISTICSTRING=CLIST(N)}
IF oSTRING EQ,#ER# THEN
SETYPE (ER)}
/* ZERZ 1S USED IN A SPECIAL WAY, AS EXTERNAL PEPRESENTATION
CF AN INTERNAL #END RECORDZ CHARACTER, ¢/
ELSE (v1<=J<zsCSTRING) C= CSTFING(J)I
SETYPE(C)};
END IF CSTRINGS
END vi3
END ~TUP}

"«¥ERRQOR=NERRNRS= NERROPS+1**

/% CHECK THAT RANGE OF TYPEF IS INDENTICAL WITH
RANGE OF TYPESEQ =/

TY = [¢31<aN<c=+SEQTYPFES)SISEQTYPES(N)2}

TU=leINTYPEF)SE HD, TL, N23

XETY=TUJIF X NEyNL. THEN)

PRINT, #TYPES SPECIFIED BUT NOT USED ARET#:X3
ERRQR}

X8TU»TY; IF x NE,NL,THEN ‘
PRINY, =2UNSPECIFIED TYPES ARE USED, YHESF AREtZ,X}
ERROR} 3 -

/* CHECK THAT NQ UNANTICIPATED CHARACTERS APPEAR w/

X = <€ PR ® TYPEF ¢ N,(HD, PR) = ALLC2}

IF X NE, NL, THEN

. PRINT. ZUNANTYICIPATED CHAPACYERS APPEAR THESE ARE:# X3
ERROR1}
/*CHECK THAT ALL CHARACTERS HAVE UNIQUE TYPE SPECIFIED#/

-144-

10,

SAMFLE PROGRAMS IN SETLA -

xa<SCALLC®(4TYPEFSC2Y FQ,02;

1F X NE,NL, THEN
PRINT, #TYPE UNSPFCIFIED FOR FOLLCHING CHARACTERS#,X}
ERRNR

X3S C-ALLC*(4TYPEFEC2)GT, 123

¥ X NF,NL, THEN

FRINT, #TYPE MULTIPLY SPECIFIED FOR FOLLOWING FHARACYERS:# X3
ERROR} 3

7% READ IN RaW FORM OF LEXICAL STATE TRANSITION TABLE w/

/% SEE SAMPLF DATA ABOVE FOR FORM OF DATA READ, e/

RAWTABL=READCKS

CEFINEF HDD(X)} RETURY HD,X; END HKDD3

4* FORM COLLFECTION OF ALL LEX]CAL STATES MENTIONED IN DATA,

THE STATF #NNT# DESIGNATIMNG #NEXT TOKEN ABOUT TO BEGINZ
IS ORLIGATORY, %/

STATSUSD=HDD (RAWTABL)} /*CHECK THAT #NXT# BELONGS

TO STATSUSD, AND THAT THERE ARE NO REFETITIONSw/
tF N, ZNXT2+STATSUSD THEN
PRINY, ZREQUIRED STATE »NXTe OMITTED FROM TABLEZ:
ERRQR: 3
XBSST+STATSUSD*(sRAWTABLSST2)GT, 12
IF X NE,NL,THEN
PRINT, #MULTIPLY DEFINED .STATES:#,X;
ERROR} /#FORCE TO SINGLE VALUED FUNCTIONS/ -
(vY=X) RAWTABL(Y)=ARB, RAWTABLSY2}}
END IF X NE, NL,?
/WCHECK THAT RIGHT NUMBER OF TERMS IN ALL
ROWS OF TRANSITION TABLE, w/
XBSSTSTATSUSD*(¢RAWTABL(ST)) NE, +SEQTYPES 2}
tF X NE, NL, THEN
PRINT, #STATES DEFINED WITH WRONG NUMBER OF TYPE ENTRIESt!#,X}
ERROR} 3
/*CONVERY TO MAP OF TWO INDICESw/
TABLE=S<STATE,SEQTYPE(J),RANTABL (STATE)(J)>,
STATE«STATSUSD, 1<=J<z+SEQTYPE2}
/¢ COLLECTION OF KEYWORDS REQUIRING PARAMETERS, w/
8R2=<12G0#%, 2DO¥2}

SATXYSTRIP(3I)we

€3 3<IZEND#, #SKIPZ,#CONT#2)

/* KEYWORDS NOT REQUIRING PARAMETERS, */

/¢ CHECK THAT PARAMETERS ARE PRESENT :JUST WHERE THEY. ARE
CALLED FnoR, e/

X = STRIP*TARLE? ((N,PAJR, ‘TXY) A, N, TXY»S3) -OR;

1F X NE,NL, THEN

BRINT, #lLLEPAL ENTRIES IN FOLLOWING FOSITIONS OF TABLE#.X)

-145-

10, SAMFLE PROGRAMS IN SETLA

ERROR} ; _ _
/* CHECK THAT ALL PARAMETERS IN #G0# ENTRIES
ARE VALIN LEXICAL STATES, */
X3STRIPATARBLE®*(PAIR,TXY) AND,
(HD,TXY)Y EQ,#G0# AND, N, TXY(2)~ STATSUSD2;
¥ X NE,NL, THEN
PRINT.
#I1LLFORMED GO TO ENTRIES IN FOLLCWING TABLE POSITIONS:#
' X3
ERROR; }
#eNOW PREPARE TO CHECK NELLFORMEDNESS OF ALL CALL=TYPE
ENTRIESw/
/% READ IN CNLLECTION OF LABELED, USER=DEFINED ROUTINES,
FORM SET OF ALL LABELS USED, «/
RQUTSET=READCKS ROUTS=HDDIROUTSET)}
/%CHECK THAT ALL ROUTINES UNIQUELY DEFINEDe/
/% INITIALISFE FOR SUBSEQUENT .COLLECTIGN OF ALL ROUTINES
MENTIONEDN IN TRANSITION TABLE, */
RQUTSCLD=NL 3 . ‘
XBSRT-ROUTS+ (+ROUTSETSRT2INE, 12}
1F X NE,NL, THEN
PRINT, 2iLLDEFINEDR OR MULTIPLY DEFINED ROUTINESt#,X%:
ERROR 33
/v USING AUXILIARY ROUTINE #CALLOK#, -GIVEN BELOW,
CHECK ON WELL-FORMEDNESS .OF ALL #D02 TYPE TABLF ENTRIES e
X3STRIP-TARLFE*(PAIR,TXY) AND,
(KD, TXY) EQ, #DO# AND, N, CALLOK, TX¥2}
¥ X NE,NL, THEN
PRINT, #ILLEGAL CALL»TYPE ENTRIES IN FOLLOWING POSTTIONS:Z,X)
ERRQR; 3 :
/84CHECK THAT ALL ROUTINES CALLED ARE -DEFINEDw/
X8ROUTSCLD=ROUTS) IF X NE, NL, THEN
PRINT,2RNUTINES USED BUT -NOT DEFINED ARE#, %)
ERROR} 1 '
/* CHECK THAT ALL ROUTINES DEFINED ARE ACTUALLY USEL, =/
X3ROUTS=ROUTSCLDIIF X NE NL,THEN :
PRINT ,ZWARNING weveww ROUTINES DEFINED BUT NOT USEDt#,X3)
YA NUMBER ROUTINES #/
RNUMS = Ni,,3 (YR = ROUTS) RNUMS(R) = ¢ RNUMS o1 33
/% AT THIS PnINT WE BEGIN TO PRODUCE .A BLOCK -OF VALID SETL
CODE, ULTIMATELY TO CONSTITUTE THE AUXILTARY ROUTINE
PACKAGE #RPAK#, TH!S CODE CONSISTS OF USER SUPPLIED CODE
FRAGMENTS, MERGED W]TH STANDARD #ROJLERPLATEZ «/

/% THE CODE REQUIRED HAS THE FOLLOWING FORM
DEFINEF RPAK(NUMROUT)}
=4 COMMENT ON EXTERNAL VARIABLES USEDe
GO YO (ROUTL, ROUT2,,.. .,ROUTN, '2222Z%Z> (NUMROUT);
ROUT11 USEReSUPPLIED TEXT ..,
ROUT2| USEReSUPPLIED TEXT ,,

-146-

10, SAMFLE PROGRAMS IN SETLA -

ETC,
RETURN}
END RPAK:1 w/

/%SET UP RPAK FOR COMPILATIONw/
RFINAL=#Z222272%#)
/* DUMMY LABEL USED TN COMPLETE TURLE w/
FAKTEXT=z#2DEF INE RPAK(HNUMROUT)j 2+ A .
#/*SETUP EXTERNAL CSTRING,TOKEEGIN, CURPOINTER, STATE,TOKEN,
CATAe/#
¢ %GO TO (<# +[(+:ROUT =+ ROUTS) (ROUT o #,#)
+ RFINAL + #>)(NUMROUT)# +
[+1ROUT » ROUTS] (ROUT + #1# + ROUTSET(ROUT)
+ ZRETURNSZ) + #END RPAK}#3
/* NOW RFPLACE ROUT NAMES IN ACTION TABLE
BY CORRESPONDING INDEX IN FPAK w/
(v X » STATSUSD, Y = TY * (PAIR, TABLE(X.Y))
AND, (HD, TABLE(X,Y) EQ, #[0#)
TXZ= TABLE(X,Y)}
J = 13
CWHILE (TXZ(J) 1S, OP)INE,OM,
- DOINA J=Jd+l13})
TXX=TXZ}
IF op EQ, #DO# THEN
TXX(Jel) 3 RNUMS(TXX(Je1));
: TABLE(X,Y) = TXX3
END 1F3
END WHILE!
END wvX3
/* NOW RPAK HWAS REEN SEY UP, TYPEF SUPPLIED,
AND TABLE CONSTRUCTED 'w/
RETURN<SPAKTEXT, TYPEF.TABLE>:
END SETUP}
COMPUTE;

LQJ

PEFINEF CALLOK, ENTRY)

/% AUXILTARY ROUTINE TO CHECK VALIDITY OF #DO# ENTRIES
IN THE ACTION TABLE, =/

/* SETUP EXTERNAL ROUTSCLDsSTATSUSD} :w/

LOCAL OK,N,KEY,LABEL) -

/% EXAMINE ALL #GO0# AND #DOz JTEMS IN COMPOSITE TABLE, #/

v 1<=N<= & ENTRY ¢ (ENTRY(N) IS, KEY) =

. <t #G0#, #D0#2)

4% ERROR IF FINAL ENTRY LACKS PARAMETER, w»/

IF .N EQ, ¢ ENTRY THEN RETURN F,;}

-147-

10, SAMFLE PROGRAMS IN SETLA

/% ERROR IF #GO# TO NONEXISTENT LEXICAL STATE e/
/* COLLECY NAMES OF AlL ROUTINES IN DO ENTRIES, #/
I¥ KEY EQ, #60# THEN IF N, ENTRY(Ne1) * STATSUSD
THEN RETURN F,;1
ELSE /+kEYsCALL «/
ENTRY(Ne1) IN, ROUTSCLD:
END 1F KEVY;
END vi<sz)
RETURN T,1
END CALLOK,:
COMPUTE}

. —-148-

/n

/¥
/e

/e

/v

AMFLE PROGRAMS IN SETLA -

YREE PRINTING ROUTINES

ThE PACKAGE OF ROUTINES WHICH FOLLOWS PRINTS A TREE

IN A TWO*DIMENSIONAL TREE=-LIKE FORMAT, WITH THE ROOT.

AT THE LEFT~HAND EDGE OF THE PAGF, AN[PARENTS CONNECTED
EY ARROWS TO THEIR OFFSPRING »/

Dy

THE ROUTINE WILL HANDLF BOTH BINARY AND ORDERED TREES #»/
LARGE TREES ARE RECURSIVELY BROKEN UP INTO SURTREES

WHICH ARE SMaLL ENOUGH TO PRINT, #/

WE BEGIN W]TH VARIOUS AUXILIARY ROUTINES, w/

TE]S ROUTINE nONVERTS A NODE TC BE PRINTED INTO AN
EXTERNAL FORM OF AT MCST 30 CHARACTERS LONG, w/

CEFINEF STRINGF(0OBJ) I
LOCAL X3

XsETRINGOF(ORJ)
IF(eX)LE.30 YHEN RETURN X;
ELEE RETURN X(1:30);1

ENE STRINGF}

CEFINEF PADOUT(LINE)}

/¢ THIS PADS A LINE WITH BLANKS TO SPECIFIED LENGTH e/
RETURN LINE+MRLANKS(LILINLIMseLINE)3 -END PADQUTS
CCMPUTES

pej
QEFINE PRNTIN(NODE)}
/*PRINTS NODE WITHW ALL PREFIXEL ARROWS, AND
WITH ADDRESS IF IT IS TOP OF SUBTREEw/
/¢TPRINT EXTERNAL AUXSEQ, SEQNOw/
LEGAL LINE,AUX,NJ
/* THE VECTOR AUXSEQ]S SET UP BY THE MASTER ROUTINE
PRNTOUT, GIVEN BELOW, IT DFESCRIBES THE SEY OF UP AND DOWN
ARROWS, ETG,» TO BE PREFIXED TO THE NODE APPEARING ON A
GIVEN LINE,
THE CODE +2 OR 3 DESIGNATES AN-¢ IN GIVEN COLUMN,
CODE ‘=2 OR =3 INDJCATES A 4,
CODE +% INDICATES /# , POINTING TO A RIGHT DESOGENDANT,
. CODE =1 INDICATES 4», POINTING :DIRECTLY TO LEF? DESCENDANT,
ey
JFL$AUXSEQ) EA,1 THEN .GO TO ISTOP};
LINEs 2 23}

-149-

10, SAMFLE PROGRAMS IN SETLA

(vl <aN<AUXSEN=1)
AUX=AUXSEN(N)}
IF AUX GE,2 THEN LINE=LINEez * #;
ELSE IF AUX LE, =2 THEN LINE=LINE+ # & #;
ELSE LINE=LINE+# %; :
END IF;
END ~1
AUXSAUXSEQ(4AIIXSEQel1)}
[F AUX EQ, 1 THEN LINEsl.INE+ % /o¢;
ELSE LINFE = LINEe # ¢2%; :
END IF:
/*NOW PRINT [TEM ITSELFw/
PRENT, PADQUT(LINF+STRINGF(S(NODRE)Y));
RE TURN; :

ISTEGPt/¢HERE THE TOP NODE, WITH ITS NUMBER, 1S TO RE PRINTEDw/

BCiy

/* THE TOP NNDE A TRE[QR SURTREE 1S PREFIXEL WITH

INt, N BEING THE TREE SERIA|L NUMBER (ALSO ESTABLISHED
BY PRNTOUTY, THIS SERIAL NUMBER 1S USED T0 REFERENCE
CROSS~REFERENCED SURTREES, =/

LINE=DEC, SEQNOSLINE=#iZ+((420 INE)wZ £)eLINEez1#}

PRINT, PADOUT (LINE«STRINGF(S(NODE))); RETURN}

END PRNTING .

CEMPUTE

Des
DEFINE PRNTNO(NUM);
/#WORKS MUCH LIKE PRNTIN,BUT AUXSEQ 1 :SHORTER,
AND PRINTS $(CONVERTED NUMBER) RATHER THAN S -/

/% THIS ROUTINE USED WHEN A REFERENCE TO A SUBTREE

‘RATHER THAN A NODE 1S TO BE PRINTED, w/
/*TPRINT EXTERNAL AUXSEQe/
LECAL LINE,)AUX,N}
LINE= ¢# 23
(w1<aNCLAUXSEN) AUX=AUXSEQ(N)}

IF AUX GE, 2 THEN LINESLINE+ # ¢ #3

ELSE IF AUX LE,=2 THEN LINE=LINE« # 4 ¥}
ELSE LINE=sLINEeg Z3

END IF}
END vy
ALX=AUXSEQ(+AUXSEQ)}
IF AUX EQ,% THEN LINE=LINE+# fw#)

ELSE LINF=LINE® # s=#;
. END IF3 .

PRINT, PADOUT(LINE##t#«DEC, NUM)j RETURN}
END PRNTNOS
CEMPUTES

-150-

10; SAMFLE PROGRAMS IN SETLA .

DEFINEF AUXNEFD(TOP);
/*CALCULATES THE NUMBER OF COLUMNS TO THE RIGKT
WHICH ARF NEEDED IF AN ITEM AND ITS IMMEDIATE
DESCENDANTS ARE TN BE PRINTED IN PLACEe/
/*TPRINT EXTFRNAL L,R,D,S,BINw/
LCCAL DESCS,Nj
7% FLAG #BINy SET WHEN BINARY TREES, RATHER THAN ORDERED TREE
ARE BEING PROCESSED, w/
/* THE PARENT/CHILD RELATION IS GIVEN BY TWO FUNCT]CNS #L%#
AND #R# (LEFT AND RIGHT DFSCENDANTS) FOR BINARY
TREES, FNR ORDERED TREES, DESCS(NODE)(N) 1S THE
NeTH DESCFNDANT OF NQODE #NCDE#, */
IF BIN THEN Gn TO BINCAS;}}
/% NOTE THAT THE FUNCTION #S# ASSOCIATES WITH FACH TREE=
NODE, A RFPRESENTATION TO EE PRINTED, =/
DESCS=D(TOP);
IF DESCS EQ, NM, THEN RETURN &STRINGF(S(TOP})}
ELLSF RETURN +STRINGF(S(TOP)) MAX,
((MAX,t 1<=N<z+DEBCSI(4STRINGF(S(DESCSIN}))I+3))}

ENY IF3
/* SINCE DESCENDANT NODE INDEbTED THREE CHARACTERSw#/

BINCASY IF L(TOP) EQ, OM, THEN
, IF R(TOP) Eo, OM, THEN RETURN &STRINGF (S¢(TOP))3}
ELSE RETURN
aSTRINGF(S(TOP)) MAX, (4STRINGF(S(R(TOP)))+3);
END I1F Ry ,
ELSE IF R(TOP) EQ,OM, THEN -
RETURN $STRINGF(S(TOP)) MAX,(+STRINGF(S(L(TOP)))*3)}
ELSE RETURN aSTRlMGF(S(TOP>> MAX,
(&STRINGF(S(L(TOP)))»J) MAX, (&JTRINGF‘S(R(TOP)))*3)3
END IF L;
END AUXNEED:
CCMPUTES

UDEFINE TPRINT, X3

/* THIS IS THE MASTER TREE=PRINT ROUTINE,*/

LEGAL L,R,S,TOP,D,AUXLEN,RRPILE,AUXSEQ,PRTUP,MINS] NTOP,
SKIP, JK RENNO;

/% THE ASSUMED FORM OF THE ARGUMENT TO THIS ROUT!NE
IS AS FOLLOWS: w/

/eX=<| ,R,STFUNCT]ON ASSOC!ATING THING 'TO PRINT WI¥H NODE, TOP>

IF BINARY TREEw/

/*X3<DESC,S,ToP> IF ORDERED TREE +/

SkxP:# ?) 4

A EXTRACT_PARAHETERS'PROM'ARGUMENT TUPLE,

=151~

10, SAMFLE PROGRAMS IN SETLA

SFT OR DROP #RINARY# FLAG, w/
[FCEXIEQ, 4 TWEN <L,R,S5,TOP,JK>=X} BIN=T 3
ELSE <D,S,TOP,JK»=X3 BIN=F,3 END IF;
CENNO=0}
4% GENNQ SERVES TO GENERATE SERIAL NUMBERS FOR SIIBTREES,
AS NEEDEN, PRPILE 1S PILE OF SUBTREES WAITING TO RE
PRINTED, «/
PRPILE =<3<TQP,0> 2} /*THE ITEMS ON PRFILE ARE
<YUP OF SUBTRFE TO PRIIIT, SERIAL NUMBER OF SURTREE>«/
(WHILE PRPJLE NE,NL,)
/* NOTE THAT PRNTOUT WILL GENFRATE NEW SUBYREES IF THE
TREE 1T 1S PROCESSING IS TRO RIG TC PRINT, e/
PRTUP FROM, PRPILE}
<NTOP,SFQNO,JK>=PRTUP}
PRINT, SKiP: PRINTY, SKIP; /#THUS SKIPPING 2 LINFSe/
AUXSEQ=NULT .} PRNTOAUT(NTOP);
END WHILES
RETURNS
ENU TPRINT,
CCMPUTE

ue}
DEFINE PRNTOUT(NTOP);
LCCAL N,DESCS,NTOLAST)

/* THIS 1S TWE PRINCIPAL EXECUTIVE ROUTINE OF THE TREE~PRINT
PACKAGE, IT GENERATES SUCCESSIVE ZLINES#2 OF THE TREE
TO BE PRINTED, AND CALLS #PRNTINZ TO DO THF ACTUAL
PRINTING, #NTOP# 1S THE TOP NODE OF A TREE 70 BE
PRINTED, #AUXNEED#? REPRESENTS THE ENCODED FORM OF
A LINE, w/

/*TPRINT EXYERNAL BIN,D.L,R/GENNO,AUXSEQw/

IFCAUXNEED(NTOP)+ 3#+AUXSEQ#3) GT, LINLIM THEN GO TO ISBIGS;
IF BIN THEN GO TO BINCAS;}

UESCS=D(NTOP)s IF DESCS EQ, OM, THEN GO TO TWIG;3;

/* ENTRY 1S MADE HERE WHEN A DESCENDANT NODE WWICH IS
NOT A TREE=TWIG 1§ TO BE PRINTED,#/ _

/* THE VECTOR #AUXSEO# KEEPS 'TRACK OF THE TREEePOSITION
OF A GIVEN NODF, AND IS USED PY #PRNTINZ T0O SET UP A
PATTERN OF ARROWS ON THE LEFT~HAND PORYION OF THE L]INE .ON
WHICH A NODE APPEARS,%/

/* AUXSEQ IS ESSENTIALLY THE TREE ADDRESS OF A NODE,
REPRESENTED AS A TUPLE OF INTEGERS, A POSITIVE INTEGER
REPRESENTING A LEFT~HAND DESCENDAKT (POSITIONED HIGHER ON
THE PRINTED PAGE) AND A NEGATIVE INTEGER REPRESENTING A
RIGHT«HAND DESCENDANT (POSITICNED LOWER ON THE
PRINTED PAGE), */

/% NOTE THAT FOR A NODE WITH N DESCENDANTS IN AN ORDERED
TREE, DESCENDANTS 1 THRU (N+1)/2 ARE REGARDED aS
LEFT=HAND, AND THE REMAINING DFESCENDANTS AS

-152-

10,

SK]Fys

SAMFLE PROGRAMS IN SETLA

RIGHT=HAND, w/
/% HOWEVER, THE CODING USED IN AUXSEQ IS SOMEWHAY COMPLICATED
RY THE NFED TO TRANSMIT ATDDITIONAL INFORMATION TO #PRNTIN:
SO THAT aN APPROPNRIATE PATTERN OF RISING AND FALLING
ARROWS CAN BF FORMED,
FIRST, CANSIDER A BINARY TREE,
IF NODE1 HAS NODE2 AS A LEFT=HAND DESCENCANT, THEN
ALL THE RIGHT+HAND DESCENDANTS OF NODE2 WILL #LIE UNDER
THE RRANCHZ CONNECTING NODE4 YO NCDE2, AND THEREFORE CALL
FOR A + AT THE LEVFL OF NCDE1, THE SAME HOLNS WITH LEFT/
RIGHT ANN */4 REVERSED, ACCORDINGLY, WE MARX EVERY
LEFT=RIGHT OR RIGHT-LEFY REVERSAL IN AUXSEfR BY
+3 OR »3 INSTEAD 0OF «1 OR =1 AS A COMPONENT, THUS
FLAGGING FOR THE PRINTING OF ¢ OR ¢ */
/* IN THE CASE OF AN ORDERED TREE THERE IS ANOTHER SLIGHT
COMPLICATION TO BF FACED, THE OFFSPRING OF A #ZNON-EXTREME
LEFT (OR RIGHT) DESCENDANT #LIES LUNDER THWE BRANCHZ
LEADING TO MNRE EXTREME LFFT (OR RIGHT) SIBLINGS OF ITS
PARENT, ACCORDINGLY, #2 AND -2 ARE USED T0O SIGNAL
- NONEXTREME DESCENNANTS, AND TQ CAUSE ¢ OR + T0Q
BE PRINTFD, ¢/
/% PRINT LEFT DESCENDANTYS FIRST, IF CURRENT NODE IS EXTREME
RIGHT DESCENDANT, SET ITS PATH TO SHOW EVEN THOUGH IT
IT WOULD NOT IF THERE WERE NN REVERSAL, e/
I[F AUXSEQ EQ, NULT, THEN GO TO SKIFi;}
[F AUXSEQ(+AUXSEQ) EQ,=1 THEN AUXSEQ(&AUXSER)= «3};
/*LEFTMOST DESCENDANTw/
AUXSEQ=AUXSENe<i>; /#i DESIGNATES LEFTMOSTw/
PRNTOUT(DESCS(1))}
ALXSEQ(+AUXSEN) =2}
/% 2 DESIGNATES NONEXTREME LEFT DESCENDANTS| e/
/* PRINT REMAINING LEFT«HAND OFESCENDANTS#/
(v31<N<=(¢DESNS+1)/2)PRNTOQUT(DESCS(N))}}
/% NOW PRINT NODE ITSELF, »/
RANTIN(NTOPR);
ALXSEQ(+AUXSEN)=e2;
/*®2 NDESIGNATES NON=EXTREME RIGHT DESGENDANTS, ¢/
/* NOW REGIN TO PRINT RIGHT .DESCENDANTS, */
NTULAST=0M,} :
/¢ AUXSEQ WIL{ HAVE ONFE COMPONENT IF AT TOP OF TREE, w/
[F(+AUXSEQ) NE, 1 . ‘
THEN NTOLAST=AUXSEQ(+AUXSEQm1))} .
/* CORRECT =3 SETTING, IF IT PERSISTS, AND CHANGE 1 70 3
IN NEXT«TO LAST _AST COMPONENT OF NODE ADDRESS VECTOR, w/
JF NTOLAST EQ, =3
THEN AUXSEQ(¢AUXSEQw1)=el}
ELSE 1F NTOLAST EQ,1
THEN AUXSEQ(4AUXSERe1)=3}
END IF NTOLAST 3

/% IN CASE OF A SINGLE DESCENDANT, WHICH 1S TREATGD AS LEFT,

-153-

10, SAMFLE PROGRAMS IN SETLA

YHERE ARE NO RIGHT DESGENDANTS, e/
[F(¢DESCS) FQ.1 THEN GO TO DONE3S
/* OTHERWISE PRINT ALL NONEXTREME RIGHY DESCENDANTS, #/
(v(4DESCS+1)/2<N<4DESCSY PRNTOLT(DESCS(N)) 3
/¢ AND THEN PRINT RIGHTMOST DESCENDANT«/ AUXSEQ(4AUXSEQ)=z«13
PRNTOUT(DESCS¢+DESCS))}
DONE} JFLEAUXSEQ) En, 1 THEN AUXSEQ=NULT,3 RETURNS ENT IF;
/* IF NECESSARY, CORRECT PRIOR LEFT TO RIGHT #TURNZ FLAG,*/
IF AUXSEQ(+AUYSEQ=1) EQ, 3 THEN AUXSEG (sAUXSFQm=1331} 3
DONER?: 1F(4AUXSEQ)EN, 1 THEN AUXSEQ=NULT,3 RETURN} END 1Fy :
/% CUT OFF FINAL COMPONENT OF ADDRESS REFORE RECURSIVE RETURNe
ALXSEN=AUXSFEQ(114AUXSEA=1)3 RETURN;
/¢ ENTER HERE FOR TREATMENT OF BINARY TREES, e/ _
BINCASIAUXSEQ=AUXSENs<l>; IF L(NTOP) EQ, OM, THEN GC TO NOLEFT;3
IFCYAUXSEQIEQ, 1 THEN
PRNTOUT(L(NTOP))
GO YO NOLEFTS
END IF3 .
/% IF NOT Y0P, AND PRIOR 1S RIGHT TESCENDANT, SIGNAL #TURNZ
BEFORE PRINTING LEFT«DESCENDANT SUBTREE, w/
[F AUXSEQ(4AUYSEQ=1) EQ.=1 THEN AUXSEQ(4AUXSER=1)==3}1
PENTOUTCL(NTOP)) S
/¢ THEN PRINT NODE, AND SIGNAL FOR RIGHT DESCENDANT, w/
NOLEFTiFRNTIN(NTOP)l AUXSEQ(&AUXSEQ):«ij
/* IF NECESSARY, CORRENT PRIQR RIGHT TO LEFY
ZTURNZ FLAG, w/
NTOLAST = oM,

xr(&AUXSEO)NE i
THEN NTOLAST = AUXSEQ(¢AUXSEG =1)};

IF NTOLAST EQ,»3 "THEN AUXSEQ(+AUXSEQ=1)==1}
/% AND IF NECESSARY, SET LEFT 7O RIGHT #TURNZ FLAG,*/
ELSE IF NTOLAST EQ,1 THEN AUXSEO(&AUXSEQ=1)333}
IF R(NTOP) EQ, OM, THEN GO TO DONE}}
/* PRINT RIGHT DESCENDANT TREE IF ANY, %/
PENTOUT(R(NTOP))INGO TO DONE!
TWIGY /+NON=BINARY TWIG CASEw/
ALXSEQzAUXSEQe<0>}
/% A DUMMY FINAL COMPOMENT, SINCE PRNTIN ASSUMES THAT
¢AUXSEQ FQ, Ne1 UHEN AN NeTH LLEVEL NORE IS PRINTED, ¥/
PRNTIN(NTOP); 0 TO DONER; * :
/* SEQUENCE FnR TREATING SUBTREE T00 EXTENDED TO PIT,
GENERATE SEQUENCE NUMBER ‘FOR SUBTREE: PRINY TS INDEX
INSTEAD nF TS TOP NODEs PUT SUBTREE INTO WORKPILE
. FOR FUTURE PRINTIMNG, */
ISBIGIGENNO=GENNO+11 PRNTNOCGENNO)}
(<NTOP,GENNO>)IN, PRPILES
RETURN;
END PRNTQUTS.

-154-

10, SAMFLE PROGRAMS IN SETLA -

CCMPUTES FINISH}

-155-

10, SAMFLE PROGRAMS IN SETLA

NODAL SPAN PARSING ALGORITHM: (0,P, VOL 1l, P,158)

/* NUTE! THE INPUT IS AT THE END OF THE PROGRAM#/
pe} :
CEFINEF NODPARS (INPU,GRAM,RO00T,SYNTYPES);

/% THE ROUTINE WHICH FOLLOWS REPRESENYS JOHN COCKE#S NODAL SPAN
FARSING ALGORITHM, SEE THE CITED SECTION OF THE 0O,P, VOL II
FQR A DETAILFD ACCOUNT OF THIS ALGORITHM, AND VARIOUS
IMPROVEMENTS OF IT DUE TO JAY EARLFY AND OTHERS, w/
/e TPt ARGUMENTS TO THIS ROUTINE ARE AS FCLLOWS}
INPUT =~ 1S A TUPLE, REPRESENTING A TOKEN STRING TO BE PARSED.
GHAM =]S A ARRAMMAR IN #CHOMSKY NORMAL FORM#, 1,E,,
CONTAINING BINARY PRODUCTIONS ONLY., FEACE PRODUCTION
A = BC 1S REPRESENTED BY A TRIPLE <R, €, A > ,
SYNTYPES o]S A MAP SENDING EACH TOKEN INTO THF SET OF ALL
POSSIBLE SYNTACTIf TYPE SYMBOLS WHICH CAN REPRESENT IT,
ROOT « IS THFE RONT SYMBOL OF THE GRAMMAR, w/
/e ThE APPRQACH 1S AS FOLLOWS 1 IF THFE NeTH THRU
(M=1)~ST SYMROLS OF IMPUT CAN BE PARSED AS AN ELEMENT OF
SUME SYNTACTIC TYPE #A#, THEN THE SPAN <M, A,nN> IS SA!D TO
~ EE PRESENT IN THE INPUT, =/
/= TRE SET OF ALI SPANS PRESENT CAN BE FOUND BY,A BINARY
TRANSIT]VE=CI.OSURE LIKE PROCESS WHICH COMBINES
AUJACENT SPANS, e/
/% INPUT 1S GRAMMATICAL IF AND ONLY IF THERE IS A SINGLE
SPAN COVERING THE WHOLE OF 1T, AND IF THE SECOND CONPONENT
€F THIS SPAN 1S THE GRAMMAR#S ROOT SYMBOL, */
/¢ |F SUCH A SPAN EXISTS, CALL IT THE #TOPSPANZ, 3
b SPAN]S #RFLEVANT# IF IT IS INVOLVED (ANCESTRALLY) IN THE
CUNSTRUCTION OF TOPSPAN, THE ALGOR]JTHM GIVEN RELOW FINISHES
EY CONSTRUCTING RELEVANT SPANS, KFEPING THEM, AND
CLISCARDING IRRELEVANT SPANS, %/

LOCAL TODO,S,N,NFXT,EN ,TYP,M10,
. SHEND, TYPL1,TYP2,NEWSP, TOPSPAN,D, X}

/e £70D07 1S A WNRKPILE OF SPANS NAITING ‘TO BE COMRINED WITH
YTHEIR LEFT»HAND NEIGHRORS, */

/« DIVLIS RECORDS THE MANMNER IN WHICH EACH SPAN WAS PRODUCED, #*/

TQCO=NL,sDIVLIS=NL .

/¢ INJTIALISE #SPANS# TO INCLUDE ‘EVERY ONE=LETTER SPEN
COVERING THE FIRST INPUT TOKEN, ¢/

SPANSZ £ «2,Ss1>, S*SYNTYRPESSINPU(1)22}

(vi<h\gs= &INPU)

/e WCRKING FROM LEFT YO RIGHT, GENERATE 'NEW OME=SYMBAL :SPANS,
AND COMBINE THEM WITH ADJACENT ‘SPANS TO THE LEFT, REPEATING
AS LONG AS NEW COMBINATIONS ARE GENERATED, w/
T0D0 = < <N+1,S,N> ,8» SYNTYPESSINRUIN)2 2}
SRANS=SPANS+TODO}

-156- .

10, SAMFLE PROGRAMS IN SETLA

tWwHILE YODO NE, NL,)
NEXT FROM, TODO;

/* THE FOLLOWING MACRN CONSTRUCTS MEW SPANS AND PLACES THEM IN
SPANS AND [N TODOw/
/* |% ALSO ADDS ITEMS TO THE DIVLIS #ANCESTRY RECORD#
A3 APPRQPRIATE, w/°

+uMAKNEW(NEXT)= <EN ,TYP2 ,MID>=NEXT3 M]D=MD, MID};

/% CCMBINE SPAN <LAST, TYP2, MID > WITH < MID, TYP1, START>
1F GRAMMAR ALLOWS, GEMWERATING NEW SPANS AND MAKING NEW
*ANCESTRY RECORD® ENTRIES, »/ o

(v SFEND= SPANSSMID2 , TYR < GRAM <(HD, SPEND) [S,TYRP1,TYP22)

NEWSP=<EN, TYP,HD, (TL,SPEND) >} .
DIVLIS=DIVLIS WITH,<NEYSP,MID,TYPL,TYP2>;
IF N, NEWSP » SPANS THEN
NEWSP IN, SPANS;
NEWSP IN,TODO;
END 1F3
END “SFEND;

L J

MAKNEW (NEXT)
“END WHILE TONOS

ENC v 1<N;

/% NCW CHECK GRAMMATICALITY OF INPUY 'STRING #/

IF Ny (<eINPU®4,R00T7,1> 15,TOPSPAN) + SPANS THEN

RETURN <NL..N|.'F > 3}
/¥ESE CLEAN UP SET OF SPANS AND DETERMINE AMBIGUITY "/

PRINT, #SPANS REFORE CLEANING#, SFANS)

PRIN‘; #DIVISION LISTY BEFORE CLEANING#, NIVLIS)

/e TFHROW AWAY SPANS, RELEVANT ONES WILL BE RECOVERED BY
*GETDESCS#, »/

/% #AMBZ IS A FLAG SET TO TRUE IF PARSE 1S AMBIGUOUS, #/

SPANSENL , 3 AMB=F, s GETDESCS(TOPSPAN)}

/* THE FOLLOWING RETAINS IN TWE ANCESTRY RECORD ONLY THOSE TUPLES
WHUSE FIRST COMPONENTS ARE IN 'THE CLEANED SRANS e/

LIVLIS = < DaDIVLIS*(HD, D)= SPANS2}

RETURNC SPANS,DJVLIS,AMB>;
END NODPARS;

/* THE FOLLOWING SUBROUTINE, BY TRACING SPAN ANEESTRY FRCM THE ROO
SYMBOL DOWN,. ELIMINATES UNNECCESSARY SPANS PRODUCED
BY MACRO MAKNEW, %/

LEFINE GETDESCS(TOP))
#9AUXILIARY ANCESTRYeTRACING SUBRQUTINEw/
“LQCAL EN +START,MID,TYP1,TYP2,X,JK}

-157-

10, SAMFLE PROGRAMS [N SETLA

IF. TOP+SPANS THEN RETURN} 3
YUP IN, SPaNSS
/* PARSE IS aMBIGUOUS IF SOME RELEVANT ‘SPAN HAS
MULTIPLE ANCESTRY, %/
IFC4DIVLISSTNP2)YGT, 1 THWEN AMB= T,53
/% EXTRACT COMPONENTS OF SPAN TO RECONSTRUCT ANCESTRY, w/
<EN ., JK,START,JK> = TOP;
(vX+D]VL1ISSTOP2)
<MID, TYPL,TYP2,JK> = X; '
GETDESCS (<EN ,TYP2,MID>); .
GETDESCS(<MID,TYR1,START>)}
ENE ‘v X3
RETURN3
END GETDESCS:
COMPUTE}

-158-

10y SAMELE PROGRAMS IN SETLA -

1oy

/* TkE FOLLOWING IS SAMPLE INPUT TO THE NCDAL PARSE ROUTINE

A PRQCUCTION A4BC IS WRITTEN AS A ‘TUPLE <#B#,#C¥,#A#>,

ALL PRODUCTIONS ARE INCLUDED IN THE SEY GRAM, THEY MUST BE IN
CHOMSKY NORMAL FORM, THESE PRODUCTIONS CAN NOT INCLUDE TERMINALS 0
RIGHT HAND SIDE (NOR OF COURSE ON THE LEFT) TERMINALS ARE

IN SYN®/ '

GRAM=§=<¢A¥,th,¢S¢>.<zAt.tB#,#A¢>2§PRINT. ZGRAMMERZ, GRAM;

/* CN |S THE INPUT STRING :
IN THIS PARTIRULAR CASE THE INPUT STRING IS XYZ,¢/

VQN = e#Xg, 2YZ, 27# >3 PRINT, 2INPUT STRING#, CN;

4% 2SYNZ IS A MAP SENDING EACH INPUT TOKEN TO THE SET OF ALL
11S POSSIBLE SYNTACTICAL TYPES w/

SYNSSISZXZ,2A2>,<2Y#Z,#B#> 231PRINT , #SYNTYPES#, SYNJ

09,49,08,LP14 3,273 KiN,

-159-

Item 12. DESCRIPTION OF THE SETL LANGUAGE.

First Part: Object Types, ExXpressions.

1. Introduction

A programming language may be judged by the data structures which
it incorporates, which should ideally be useful in a wide variety of
circumstances and permit at least moderately efficient manipulation.
In presenting the SETL language which is now to be described we
are suggesting that general finite sets can be represented and
manipulated in useful ways.

Much of the expression semantics of SETL is modeled upon that
used in the mathematical theory of sets, and many of the syntactic
conventions used reflect notations which are standard in that
theory. It is therefore worth making a few comments on mathemati-
cal set theory itself before immersing ourselves in the linguistic
details of SETL. (These comments will be of more interest to those
readers with a mathematical background than to those principally
interested in programming languages.) An elegant short summary
of the axiomatic foundations of the subject appear in Cohen [1],
pp- 52-56. Axiomatic set theory uses a very small number of
formal primitives, in terms of which the whole structure of mathe-
matics can be built up rapidly and comfortably. We list these set
theoretic primitives, and comment on the SETL constructions which
correspond to them; of.course, whereas mathematical set theory
deals with both finite and infinite sets, SETL, intended as .an
executable programming language, deals with finite seﬁs only.

The primitiveS'in question are: M

(a) The null set. Provided as a basic entity in SETL.

(b) For two sets a and b, the unordered pair {a,b}.

This set-by-enumeration primitive is provided as a basic construc-
tion in SETL, even in a some&hat generalized form. It obviously
yields a set (of two elements), thus conforming to the desire of

of pure set theory to avoid the introduction of objects other than
sets. We may note in this connection that SETL will from the start

take a somewhat different path from pure set theory, since its

-160-

semantic universe will include not only sets but also atoms.

oms are customarily excluded from pure set theory on grounds
of elegance. This exclusion, amounting to the insistence that
set theory deal only with sets and not with objects of any other
kind, is inconvenient in a programming language context, where
one generally wishes for practical reasons to be able to speak
of integers and character strings at least, without being forced
to the trouble of mapping these additional objects upon objects
of pure set theory. Thus for programming purposes a set theory
including atoms which themselves have no members but which may
freely be members of sets is more convenient than pure set theory.
SETL incorporates this convenient modification. The atoms of SETL
will generally be 'primitive' data types, such as integers,
character strings, and so forth, familiar from conventional
programming languages; we will find it convenient however to
consider 'tuples' to be non-sets also, in a manner to be explained
below.

Sets may have sets or atoms as members; two sets A and B are
equal if and only if each member of A is equal to some member of B,
and conversely. Atoms differ from sets in that equality/inequality
of atoms is determined by a rule special to the type of atoms
involved. Note that any object class for which there is given
a procedure for determining object equality/inequality can be
accommodated without difficulty in a routinely extended set theory.

(c) Any set theory requires an ordered pair and ordered n-tuple
notion. In conventional set theory one meets this requirement
without introducing objects other than sets by making use of a
trick construction. One possible construction of this kind is
to define the ordered pair <a,b> as the set {{a},{¢,{b}}}, where
¢ denotes the null set. However} in standard set theory, a somewhat
different trick is used. One defines the ordered pair <a,b> in

terms of unordered pairs as follows:
<a,b> = {{a}, {a,b}}

Ordered n-tuples are then defined inductively by <Kyseee X >

<<x >,xn>. This line of construction, while mathemati-

cee X
1’ “n-1 ‘
11ly neat, leads to programming complications, -and we will find it

-161-

more convenient to regard n-tuples as non-sets, using
conventions whose details will be set forth below.

(d) The set union operation is basic to mathematical set
theory, and is provided as a primitive in SETL.

(e) The power set or set of all subsets construction is
important ia set theory. This is provided in SETL as a basic
operation. Note as a eaveat that for sets as large as the power
set of a set having more than a very few elements, efficiency
inevitably becomes a serious consideration, and it becomes
reasonable to provide as built-in features operations which from
the pure mathematical point of view are redundant. As a small
concession to this very large fact, we provide in SETL not only
the power set construction but an operation which, for a given set,
generates the set of all subsets which have a given cardinality.

(f) Set theory makes essential use of the "choice" functions
defined by the various versions of the axiom of choice. In SETL,
these are all provided by a simple choice operation 3x, ‘which in
an unspecified but implementation-defined way chooses some element
out of each non-null set, x..

(g) Another basic primitive of mathematical set theory is the
"range of a function" consfruction. This construction, one of the
keystones of set theory in its more elegant representations, asserts
that if A(x,y) 1is any formula of set theory, depending on the two
free variables x and y and determining y uniquely for each parti-.
cular x, then, given any specified set u, there exists a unique set
v consisting of all y for which there exists an x in u such that
A(x,y). SETL, is intended to be executable, and for this reason will
not permit a construction quite as general as this; in SETL, we will
only allow the range set v to be formed in case we know a priort
which set w must be searched in order to find the element y whose
existence abstract set theory asserts; or if the element y can be
constructed in some explicit way from x using basic and programmer-
defined SETL operations, so that we may write y = f(x) using a SETL
expression f(x) in which the vériable X appears. In the former'case,

SETL will allow us to write v as
v={yew | (Ix e v (Alx,yv))} ;
in the latter case, as

-162-

v={f(x), x € u} .

(h) Set theory assumes at least one infinite set, whose
existence is asserted by the normal set-theoretic axiom of infinity.
Such a set is used as a starting point to build up the theory of
the set of integers (and beyond this, of all of the transfinite
cardinals). The sequence of integers is often defined in set
theory as ¢, {¢}, {{¢}}, {{{9p}}} ... etc. A construction of
this kind, while set-theoretically very neat, defines the integers
using what is in effect a unary representation, which is of course
pointlessly inefficient in view of the existence of binary repré—
sentations for the integers. In SETL we follow the invariable
computer practice and regard £he integers as a separate atomic
data type, also providing various standard arithmetic operations,
as basic SETL functions.

In set theory, once the set Z of integers has been defined and
the axiom of mathematical induction proved, the existence of Z, and
more particularly the possibility of speaking of the whole of Z as
a single object, forms the basis upon which one builds all subsequent
inductive constructions. To construct a function f£(n) defined
inductively, the tactic generally used in abstract set theory is
as follows: first, using mathematical induction, one proves that
for each N € Z there exists a unique set of ordered pairs, this
set constituting the graph of the function £f(n) for all n less
than or equal to N; then, using the axiom of range, one forms the
union of all these sets of ordered pairs} thus obtaining the graph
of the entire function f. In SETL we replace this abstract argument
by a construct. which not only avoids all reference to the
infinite totality of'integers but has significant advantages of
efficiency: namely by programmed iterative loops, and more generally
by structured patterns of recursive subroutine calls evaluating an-
inductively defined function directly. Thus, the label-plus-go-to
mechanisms of SETL, and the recursive subrﬁutines which the language
provides, are to be regarded as a replacement for the axiom of
infinity occurring in abstract set theory. As is known, recursive
subroutines alone would suffice for this purpose, but we provide

plicitly programmed iterations as well, since they furnish a

~163-

mode of epxression more natural in certain circumstances and

more efficient in general.

2. Grammar of expressions

The tbkens of SETL are names, underlined names, signed integers,
real numbers, character string constants, andoctal constants _
which denote bit-strings. Names and signed integers are formed
in the usual way; character string constants are included
within single quotation marks, and octal constants consist of an
octal integer with the suffix B. The formation of character
string and octal constants is sufficiently well illustrated by

the following examples.
'This is a character string' , 00237B .

(Quotes within quoted character strings are represented by

double quotes.) Real numbers are
2.0 , -3.14 , -3.14E-14 .

SETL makes use of the following special symbols, each of which

is a lexical delimiter:

Besides the operation symbols appearing in this list, additional
operation symbols, both system and programmer defined, are provided,

and consist of underlined valid names as in eq, ne, with, less, lesf,

etc. Names may be used as labels, in which case they are followed
by a colon. ‘

The basic entities of SETL are sets and atoms. Sets have
elements and are defined by the elements which they contain.
Both sets and atoms may be elements of sets. Atoms are either
integers, reals, boolean elements, bit-strings, character-strings,
labels, blank atoms, subroutines, funétions, or tuples. Expressions
of any of the types: tuple, real, set, integer, Boolean, bit-string,
character-string, label, blank, subroutine, or function may be
written; we shall shortly describe the structure of each of these

types of expressions.

-164-

2a. Elementary Set Expressions

If x designates a set or atom, while a designates a set, then
X € a 1s a boolean expression having the customary meaning.
If a 1is a name designating any set or atom, then {a} designates
the set whose only element is a. More generally, {a,b,...,c}
designates the set whose only elements are a,b,...,c. We allow
a,b,c, etc., to be arbitrary valid expressions. This bracket
construction can be nested to any depth, so that, for example,
{a, {a}, {{a}}, {{a},b}} 1is a valid expression in SETL,
a,b designating any sets or atoms. The hull set is written as n!.

If a and b are sets, then a + b denotes their union, a * b
their intersection, a - b the difference set of a and b, and a/b
the symmetric difference of a and b (so that a/b is the same as
(a-b) + (b-a)). The expression a + {b} may be abbreviated as
a with b; a - {b} may be abbreviated as a less b.

If é is a set, then #a denotes the number of elements of a.
Each object in SETL has a type. The type of a set is set.

If a designates a set, then @ a designates any arbitrary
chosen element of this set. The notation pow(a) designates
the set of all subsets of a, and npow(k,a) the set of all subéets
of a consisting of precisely }V eléements. These operations,
while provided in SETL, are good examples of the type of set-
theoretic construction which should be used very cautiously if

impossibly inefficient algorithms are not to result.

2b. Elementary Tuple Expressions.

Besides sets, which are. unordered, SETL provides tuples, which
are ordered. A tuple may be regarded as corresponding to a

sequence C;/Cy,Cys--- of components, all but a finite number of

which are identical with the undefined atom (see below). Two

tuples are equal if and only if all their .components are equal.

The length of a tuple is the index of its last defined component.
If this component is C, v then the tuple whose components are

cl,cé,...,cn,Q,Q,Q,...will often be written as
' <cl,c2,...,cn>

though of course it might also be written in other ways, as for

examp;e =165-

KC. 4Chseee T 480> .
ll 2’ I nl

The tuple described by the sequence of components Q,Q, ’
which in the sense defined above is a tuple of length 0, is the

null tuple, and may also be written as nult

The type of a tuple is tupl

Given a tuple

t = <cl,...,cn>‘,

then

S t(k)
denotes the k-th component of t. The component t(1l) may be
written as

hd t .
The notation

t(i:j)

denotes the tuple whose components, for 1 < k < j, are t(i+k-1).
The notation
#t

denotes the length of t. The notation

Lt
is an abbreviation for
t(2:4t-1) ,
while t(i:) is an abbreviation for t(i:#t-i+1l).

Observe that all of these notational conventions apply also
to tuples some of whose components are undefined.
Given two tuples t and t', t+t' denotes their concatenation.

E.g. if t = <a,b> and t' = <¢,a> then t+t' = <a,b,c,a>.

2c. Functional Application.
If f is a set and a any set or atom, and if f contains precisely

one tuple <a,x> whose first component is a then f(a) designates
the element x, i.e., the image of a under f£. More generally, if £
is a set of ordered pairs, then f{a} is the set of all x such that
<a,x> € f. This is the set of all images of a by f. If f{al

contains no element or contains more than one element, then f(a)

-l66-

the undefined atom Q. If f and a are sets, then f[a] designates
te union of all the sets f{x} for x € a. Note then that f{a}
may be written as f[{al].

More generally and precisely: suppose that f is a set, and x
an object other than the undefined atom . Then the elements of
the set f{x} are

(a) all the second components y of tuples <x,y> of length 2
belonging to f and having first component equal to x; together with

(b) all the 'tails' <YQr¥opreee? of tuples X Yqr¥preee>
of length greater than 2 belonging to £ and having first component
equal to x.

We then define f(x) to be the unique element of f{x}, if this
set has a unique element; otherwise to be . The set f[a] is
defined as the union of all the sets f{x}, x ranging over all the
elements of the set a. (Note that f[a] will also be assigned a
meaning for f a character string, bit string, or a tuple; cf. below.)

We also define

f{x,y} to be identical with (£{x}) {y},
£{x,y,z} to be identical with ((£{xhH) {yh{z}, etc.;
and
f(X,¥,c0.,2,W)

to be identical with
(f{x,yse..,2} (W) .

Note that if f is a set of tripies <x,y,2>, and if g is the
corresponding set of pairs <x,<y,z>>, (which is quite a different
set) then f{x,y} and g{x,y} happen to be the same.

It is also convenient to let f{a,[bl} be the union of all the
sets f{a,x} for X € b, and more generally to allow such

constructions as
f{al""’[ai]’ai+1""’[aj'aj+l”"’an]""} ,
which denotes the union of all the sets

}

f{al""’xi'ai+1""’xj’xj+1""’xn""

€ a. , etc.

vola X.
ere X, € a;, X. € a., 341

i i Jj j j+1l

-167-

In all of these expressions we allow £ to be not only a
function or set name, but any expression whose value is a functio

or a set. Thus, for example, the expression
{<a,aa>,<b,bb>,<c,cc>,<a,ax>}{a}
is legitimate, énd has the same value as the simpler expression
{aa,ax} .

Of course, if £ is a function (which is to say a programmed procedure
with a certain definite number of arguments) the correct number of
parameters must be supplied to it. Thus, for example, if f is a

function of two arguments, the expressions
f(a,b), fla,bl, £{{a},b} ,
etc. are all valid, whiie
f(a), flal, fl{a,b,[c]}

are all invalid.

2d. Boolean Expressions, Quantified Expressions, Precedence Rules.

Equality, inequality, and set inclusion are provided as operators
having the form a eg b, a ne b, a incs b. Bit strings, character
strings, labels, blank atoms, subroutines, and functions may be
tested for equality and inequality by using the operators eg and ne.
The special symbols t, f denote the boolean values "true" and
"false" respectively. The standard boolean operations and, or,

not, implies, exor are provided; and, not, 'and implies may also be

abbreviated as a, n, imp. Between two integers or reals m and n

the usual comparison operators, having the form eg, ne, ge, le, gt,

lt are provided. An element may be tested for having "atom" status

by applying the operator atom a. (If a is a tuple, atom a is false.)
If e is a set, and c(x) a Boolean formula in which a name x

occurs, then a formula of either of the forms

(1) ' . Ix € e | C(x)
(2) Vx € e | C(x)
represents a Boolean value. The value of the first of these
expressions, the so-called existentially quantified form, is

-168-

obtained by calculating the value of the Boolean expression C(x)
>gressively for each of the elements of the set e, and by
assigning the value "true" on first obtaining a "true" result,
but assigning the value "false" if no such result is obtained.
The second of these expressions, the so-called universally
quantified form, is calculated in corresponding fashion but
with "false" replacing "true" and vice versa in the preceding
description. In forming expressions like (1) or (2) we wish,

however, to exclude such ambiguous cases as
¥x e e | (D(x) or 3x e.e | C(x))

which are in a sense set-theoretical versions of those ambiguous
programming sequences in which an iteration variable is explicitly
modified within an iteration, or in which an iteration is headed

by some such ambiguous statement, for example the FORTRAN statement
DO 1 I=1,I+l

Such ill-formed cases may be excluded by applying the following
technical rﬁle. An occurrence of any name in the role of x in a
formula like (1) or (2), i.e., an occurrence of a name x within
a part P of a larger formula, P having either the structure
Ix|expr Q or VYx|expr Q, is said to be a dummy, or bound,
occurrence of the name x. An occurrence of a name x which is not
bound is said to be a real, or free, occurrence of x. We require,
in order that the boolean expressions (1) and (2) be properly
formed, that all occurrences of the name x in the boolean expres-
sion C(x) be free, i.e., that none of these expressions be bound.
Several additional boolean expression forms closely related to

the forms (1) and (2) are provided, and have the appearance
(3a) min < 3k < max | C(k) (3b) max > 3k > min | C(k)

(4a) min < Yk < max | Cc(k) (4b) max > ¥k > min | C(k)

In these formulae C(k) is a boolean expresgion in which the name
k occurs, all of its occurrences being free; min and max are

integer expressions in which k does not occur. - The value of the
first -of these expressions is formed by calculating the value of

e boolean expressions C(k) for all integers in the range

-169- -

extending from the value of min to the value of max, assigning
the value "true" if C(k) ever assumes the value "true", and
assigning the value "false" otherwise. If max < min, (3a) has
the value "false". The expression (4a) has an equally evident
meaning.

The variant forms (3b) and (4b) provide for a variant order
of search. Thus, (3a) implies an iterative search in which
integers k are tested in increasing order until the expression
C(k) takes on the value t; and (4a) an iterative search in which
integers k are tested in increasing order until the expression
C(k) takes on the value f. Similarly, (3b) implies an iterative
search in which integers k are tested in decreasing order until
the expression €(k) takes on the value t; and (4b) an iterative
search in which the integers k are tested in decreasing order
until the expression C(k) takes on the value f.

The evaluation of (1) will set x to the first value found .for which
C(x) is true,if any exists. Similarly, the evaluation of (3a)- (resp.
(3b)) will set k to the smallest (resp. largest) integer
value (in the range shown) for which C(k) is true, if any
such value exists. More generally, we allow compound expressions

having forms like
Ix; € e, ¥x, € e2(xl), ¥x; € e3(xl,x2),...[C(xl,...,xn)

which may be taken in an evident way as abbreviations for expres-

sions compounded using the basic construction (1), (2), (3), (4).

In a boolean expression of this kind, we require that el
contain no occurrence of the variables xl,...,xn; that ez(xi)

contain no bound occurrence of x, and no occurrence of KyreeesX s

1 n

etc. All but the first of a sequence of like Quantifiers may be

omitted, so that, for example, the formula displayed just above

may be abbreviated as

3%, € ey, sz e'ez(xl), X4 e‘e3(xl,x2),... C(xl,...,xn)

SETL will use an operator procedure rule which is simpler

than those which have become customary} These rules may be

-170-

described as follows.

i. All binary operators, except built-in operators producing
poolean from non-boolean values, are to‘have the same precedence.
These latter operators, i.e., the operators (e, eq, ne, incs, ge,
%e, gt, and 2t) have higher precedence, and thus are evaluated
first when they occur in compound expressions. Aside from this,
unparenthesized expressions containing binary operators of equal
precedence are to‘be evaluated from left to right. Of course,
parenthesized expressions will be evaluated in the order indicated
by parentheses. o |

ii. Monadic operators will always have highest prededence,

i.e., minimal scope, except as indicated by rule (i). Thus, for
example, n x € a 1is equivalent to n(x € a), while n a and b
is equivalent to (n a) and b . Note also that - x eq y is

- (x eq y), an invalid expression.

iii. As indicated below, SETL allows programmer-defined infix
binary and monadic operators. ' The conventions just described apply
to those operators also.

A similar precedence rule is required to avoid ambiguity in the

scope of quantifiers. One may ask, for example, if the expression
Yx e e | x gt 0 or y eq 0
is to have the reading

(Vx e e | x gt 0) or (y eq 0) ,
or the reading ‘ ‘

Yx ee | (x gt 0oryeq0) .

We adopt fhe following convention. A string of quantifiers
terminated by a vertical bar islto be regarded as a monadic
operator. As such, it will have minimal scope (except insofar
as built-in operators producing boolean from nonboolean quanti-
fiers may have higher precedence). It follows that the first
of the above readings is correct.

We note once more that if certain variables X see. X OCCUr
in a quantified boolean expression B of the above type, and if

ree- X are all existentially quantified and are not preceded

-171-

in the sequence of quantifiers occurring within B by any
universally quantified variables, then after evaluation of the

expression B, the variables x ..,%X_will take on those first

’e
values appearing in the iteraiive segrch required to evaluate B
which yield the .value true for B. If no such values exist, then
X reee Xy will all take on the undefined value . Thus, for
example, i1f seq is a sequence of sets of integers, evaluation of

the expression
min < 3k < max, ¥Yn € seq(k) | n gt O

will cause k to assume the smallest value, in the indicated range,
for which all integers in the set seq(k) are strictly positive.

Similarly, evaluations of the expression
max > 3k > min, ¥Yn € seq(k) | n gt 0

will cause k to assume the largest value, in the indicated range,
for which all integers in the set seqg(k) are strictly positive.

For a third example, note that evaluation of the expression
max > 3k > min, 3n e set(k) | n gt 0

will cause k to assume the largest value, in the indicated range,
for which there exists a positive integer in the set set(k), and
will at the same time cause n to assume a p9§itive value belonging
to this set; n will be the first positive integer found in the
implementation-defined order of search over the set seti(k). (Xf

no such n exits, n will be assigned the value Q.)

2e. Integer Arithmetic Expressions, String Expressions.

The arithmetic operators *, +, -, /, // are provided, the last
of these operators denoting the remainder after a division. In

addition, the built-in arithmetic operators max, min, abs, the

first two of these being dyadic, the last monadic, are provided.
Integer arithmetic is carried to as many digits of accuracy as
are required for each operation.
The expression m exp n designates m to the n-th power. If n
is negative, then the result is real (see the following section)
All the boolean operations apply on a bit-by-bit basis to

bit-strings. If two strings of unequal length are combined by
~-172-

these operations, the shorter is extended by leading zeros to
le length of the longer. Boolean quantities are identified
weth bit-strings of length 1.

Given two strings s and s' of the same type, s+s' designates
their concatenation. If n is an integer not exceeding the length
of s, then s(n) denotes the n-th bit (or, in the case of a charac-
ter string, the n-th character) of s. If n is greater than #s,
s(n) is Q. The notation s(m:n) designates that portion of s which
starts at its m-th bit (or character) position and extends for n
positions. The notation s(m:) designates that portion of s
‘between its m-th position and its last position. The symbols
nulb and nulc denote null bit and character strings respectively.

The allowable characters in a character string are all the
normal members of the SETL character set, plus one additional
character designated er (end record), which plays a special role
in connection with input/output (see below).

If n is an integer and s a string, then n * s denotes the result
of joining together n identical copies of s end-to-end. If n is
an integer, then dec n denotes the (shortest) character étring
representing n in decimal form, and oct n denotes the (shortest)
character string représenting n in octal form. If s is a character
string representing an integer in decimal (respectively octal) form,
then dec s (respectively oct s) yields that integer.

If S is a string and f a function, then f[S] designates the
string whose n-th component is f£(S(n)).

2f. Real Arithmetic Expressions.

Real arithmetic is provided in SETL, in a manner depending (as
usual) on machine and implementation. The arithmetic operations
+, -, *, /, and exp (exponential) are provided for real numbers.
The operation reall log real2 , Where reall is the logarithmic
base, is also provided, as are cos(x), sin(x), x min y, x max y,
and abs y. If x is real, top x is the least integer exceeding x,
'and bot x is the greatest integer not exceeding x. If n is an integer,
then—Egé n is the real number most closely approximating n from above,
agiven the limited precision of real numbers. (Note for example that

100 _

e integef n=2 1 would be carried precisely in SETL; if

hundred bit real arithmetic were being used top n would be the real

number 2100.

-173-

2g. Label Expressions.

No operations combining labels, except the equality and
inequality comparisons, exist; however, labels may be members
of sets and may therefore appear w1th1n ordered pairs, so that
the result of applylng a function to an element may be a label.
An expression producing a label value may appear in a go to
statement (see below). This possibility can be used to obtain

a "computed" go to effect in SETL programs.

2h. Blank Atoms.

Blank atoms are provided for use as structural markers in
complex objects built up in the course of a SETL computation;

SETL will use blank atoms in many situations in which a pointer-
oriented language would use machine addresses or pointers to data
blocks.

No operations' combining blankAatoms, eXcept the equality and
inequality comparisons exist; however, blank atoms may be elements
of sets, just as atoms of any other kind. Blank atoms are
creaﬁed by the buithin SETL function newat, which creates a new
blank atom each time it is called. Note, for example, that such

an expression as <newat, newat> designates an ordered pair

consisting of two distinet blank atoms.

The'Undefined atom @ is a particular blank atom related to
various SETL operations in somewhat special ways. We do not allow
2 to be a member of any set, so that any attempt to form such a

combination as

{Q},{Q,a}

will lead to an error return. However, can be a component of

a tuple. An attempt to form any of

dpow (Q), Q(x), £(R), £{Q}, £[Q], Q, or #0
will also lead to an error return. The atom @ is allowed in the
combinations x eq and x ne Q, but of course not in x gt @
or in any other arithmetic, string, or boolean operation.

(Note that any attempt to execute an operation with arguments of

inappropriate type will also lead to an error return.) An

-174-

occurrence of Q either in a quantifier of the form
Vxe 2, xe, Q< Yk < x, etec.
in a range restriction
xe, < k <x, etc.,
or in any iteration control of the form
(while Q)

will lead to an error return. The value Q@ will be returned as

the value of @ nf and as the value of f(a) if a is not in the

domain of a set f of ordered pairs. We also have hd Q =tf Q=Q.
These conventions‘help to locate bugs in SETL programs, as they

ensure that many situations, in which the actual form of data

differs from its assumed form will lead rapidly to the occurrence

of @ as a value and very shortly thereafter to an error return.

2i. Set Formers.

We now wish to describe an important type of set expression
having a very great expressive power. This set former expression

has the following general form

€ en(xl,...,xn_l)

(1) {e(xl,...,xn), X, € e, X, € e2(xl),..., X

| C(xl,...,xn)}

In this general expression, Xyre++ X are names; e, designates
a set-expression not containing any occurrence of these names,
e2(xl) a set expression not containing any occurrence of Xoreoe X,
and containing only free occurrences of xl, etc. Moreover,
C(xl,...,xn) designates a boolean expression containing only free
occurrences of XpreeerX s and e(xl,...,xn) designates any arbitrary
expression containing only free occurrences of these same names.
The notational form (1) is familiar from set theory. Its value is
the set formed by the following rule: calculate the set e for
each of its elements X calculate the set e2(xl); for each of
these elements calculate the set e3(xl,x2), etc. For each
n-tuple XyreeorXy obtained in this way and having the property

at the boolean expression C(Xl’f"’xn) has the value "true",

calculate e(xl,...,xh); gather all these elements into a set,

-175-

thus obtaining the value of (1).

The individual restrictions

(2) : Xy € ej(xl""’xj—l)

occurring in (1) may be called range restrictions; for use in
cases in which ranges of integers play a role, another kind of

range restriction, having one of the forms
(3) min < x < max , min < X < max , max > x > min, - etc.

is provided. (cf. Section 2d). If a range restriction of the type
of (3) occurs in the formula (1) in place of one of the range
restrictions (2), then, for each appropriate xl""’xj—l the two

arithmetic expressions mlnj(x "’Xj-i) and maxj(xl,...,x._l)

will be calculated, and in thelformation of the set (1) xjjwill
vary over the numerical range determined by these upper and lower
limits (in the indicated order).

If no particular boolean condition C is to be imposed, then the

expression (1) may be written as

{e(x .,xn), X; € e/ X, € e2(xl), ceey xneen(xlf""xn—l)} .

17"

The special case

{x, x ee | C(x)}
may be abbreviated as _
{xee | cx)} .

2j. Conditional Expressions.

A conditional expression like that of ALGOL is provided; this

has the form

if bool, then expr, else if bool2 then exXpr, ... else expr

1 1

and has its customary and evident meaning. Here, booll,...,booln_l

are required to be boolean expressions, while expr - s€Xpr - are |

l,oo
expressions having arbitrary values. ?

A resolving convention is required if the implied scope of the

concluding else in a conditional expression is not to be ambiguous.

One may ask, for example, if the expression

-176-

(1) if x gt 0 then y else x + y
: to have the reading

(2) A if x gt 0 then y else (x+y)

or the reading

(3) (if x gt 0 then y else x) + y

We resolve this ambiguity by agreeing that the concluding else in
a conditional expressions is to be regarded as a monadic operator.
As such, it will.have minimal scope (except insofar as built-in
operators producing boolean from nonboolean quantities may have
higher precedence). It follows that the normal reading of (1)

is (3).

2k. The Use of Functions within Expressions; Programmer-Defined

Operations.

SETL allows subroutines and functions to be defined in a manner
to be described in more detail below. Functions may be used as
parts of expressions; a function invocation occurring within an

expression will have the form
name (exprl,...,exprn) .

Here, name is the function name, while exprl,...,exprn may be
arbitrary SETL expressions. These expressions are evaluated
before the function is invoked, and the values thereby obtained
define the arguments to be transmitted to the function. A function
called from within an expression may modify various of the function's
arguments, and its invocation may in general cause other "side
effects". Function arguments whose values are to be modified
should be simple names rather than compound expressions.
Subroutines and functions may be the values of expressions.
Subroutines and functions may be compared .for equality and
inequality. They may also be applied to other elements, either
in the form f£(x), or in the form f[x], or in any of the related,
more general, forms that ha&e been described in section 2c. Note,
‘ﬁr example, that if x is a set, y an integer, and g(z) a function-

lued function whose value is F, then g(z){I[x],y} is a valid

-177-

expression, having the same value as F{[x],y}. That is, its
value is the set consisting of all the elements F(u,y), where
u € X.

The value of a function f of zero arguments is written as £().
SETL allows programmer-defined functions and subroutines of
two arguments to be written as infix operators, provided that this

notational intent is appropriately stated in the definition of
the function (additional details are given below). Similarly,
functions of a single argument may be written as prefixed monadic
operators. The name of a function to be written in such an
operator form, whether monadic or dyadid, is underlined. Thus,
for example, if reverse and invert are the names of programmer-

defined dyadic operators we may write
(seta reverse setb) invert setc

as part of a compound expression.

The basic SETL expression forms may be nested in arbitrary
fashion to produce complex expressions. Thus, set-forming
constructions may be nested within conditional expressions,
which may in turn be nested within n-tuple forming expressions,
etc. The order of expression evaluation is inside-out and left-
to-right. This observation concerning evaluation order may be
important if functions producing side effects are invoked during
the evaluation of an expression. Function evaluation is in

systematic inner-to-outer, Ieft—to-right order.

22. Examples of the Use of the SETL Expression Forms.

It is not uncommon for operations which would have to be- .
represented by short programs in lower-level languages to reduce
to simple expression evaluations in SETL. Often search loops are
replaceable by existential expressions, procedures which build up
arrays by set-formers, and so forth. Numerous substantial
programs exemplifying this remark will be given in later portions
of the present mahuséript. Hefe we give only a few simple

examples. In this example we use the SETL print statement.

-178-

This statement will be described in more detail in a later section.

or the present, it is sufficient to remark .that

print e;
prints the value of the expression e using standardized formatting

conventions.
Example 1: Print the set of all primes not exceeding n.
print {1 <m <n | (not 1 <3k <m | (m // k) eg 0)};

Example 2: Print the first nonempty string of symbols which occurs
with an asterisk immediately to its left and right within a string s.

Print a diagnostic message if there is no such substring.

print if not 1 < Im < #s, m+l < n < #sls(m) eq '*' and s(n) eg '*'
then 'no substring of type sought'
else s(m+l: n-m-1);

Example 3: Form and print a mapping giving the number of times

each character appears in a character string s.
print {<c, #{1 < n < #s | s(n) eq c}>,

c e {s(n), 1 < n < #sl};

2m. The object-type operator. The special operator 'is'.

Occasionally one will want to test the type (i.e., set, tuple,
string, etc.) of a SETL object, or to use this type as the basis
for a go-to with calculated label. Accordingly, the operator type
is provided, type x being the type of x. The value of type x is
a blank atom, more specifically one of the blank atoms designated

by the special constant symbbls. integer, real, cstring, bstring,

subroutine, function, label, blank, tupl, set. Thus, for example,

the test for a pair is
(1) if (type x) ne tupl then f else (# k) eq 2 .

The special binary operator is provides a convenient on-the-fly

assignment form like that available in APL. The expression

) ' X is y

=179~

-

has x as its value, but when evaluated makes the value of y
(which must be a simple variable) equal to that of x. 1In (2),
X can be any expression; (2) itself is an expression and can
be used as part of a compound expression.
The is operator obeys somewhat nonstandard precedence conven-
~tions. It has minimal left-hand and maximal right-hand precedences.

Thus, for example, .
(3) o x%y is z+w

has the significance
((x+y) is z)'+ w

tand the value (x+y)+w); even
(4) ' utv is f(w)
has the significance
(utv is £) (w)
and therefore the same value ‘as
| (u+v)(w)

(which is of course a functional evaluation or indexing operation).-

Such combinations as

utv is (x+y)

are illegal.

-180-

Item 13. DESCRIPTION OF THE SETL LANGUAGE .

Second Part: Assignment Statements.

SETL admits various expression forms in addition to those
described above. Many of these additional expressidn forms
have a syntax and semantics which relates them closely to some
of the statement forms used in SETL. For this reason, we postpone
the discussion of these eXpression forms, and proceed now to discuss
the statement forms of the SETL language, starting with assignment
statements.

Note to begin with that single statements of the SETL language
are punctuated with terminating semicolons.

Note also that SETL provides for the use of comments, which,
being entirely ignored by the SETL processor; can be inserted any-
where in a SETL text except within a single token. As in PL/1,
comments are enclosed fore-and-aft by use of the composite marks
/* (prefixed) and */ (affixed). Thus, for example,

/* this is an example of a setl comment. */ .
The simplest kind of assignment statement has the familiar form
name = expr;

here name must be any valid variable name, while expr can be any
valid expression.

In addition to this simple form of assignment statement, we also
wish to make use of various assignment forms related to the "indexed"
assignment operations conventionally used in programming languages.

The simplestsuch operator would have the form
(1) name (exprl) = expr2;

The semantics of the statement (1) should be such as to force the
expression name(exprl), when evaluated subsequently, to yield
expr2 as its value. Thus, if the value of name is a set, then (1)

will have the same force as

name = {p € name|if type p ne tupl then t else p(l) ne(exprl)}

with <exprl,expr2> .

-181-

Similarly, we will wish to make use of such assignments as
(2) hd x = a and t y=b

The semantics of (2) must be such as to force the expressions

hd x and tf y, when subsequently evaluated, to yield a and b as
their respective values. It is therefore reasonable to interpret
the first of the assignments (2) as being equivalent to

x = <a> + t& x; and the second assignﬁgnt as being equivalent to

y =<hd y> + b . Thus we see that operators of various kinds can be
exXpected to appear on the left-hand side of SETL assignment state-
ments. The power and flexibility of assignment statements in SETL .
will be greatly increased by allowing operators appearing in this
"sinister" position (i.e., on the left-hand side of assignment
statements) to be compounded. .This possibility has not been
regularly exploited in programming languages, for which reason we
shall explain both the syntax and semantics of our intended con-
structions in more detail than would otherwise be necessary.

The scheme proposed is generally applicable to "procedural”
programming languages. It is based upon certain general algebraic
observations concerning "retrieval and assignment" pairs of functions
which will be presented below. The scheme avoids the explicit
transmission of pointers, and the complications which such trans-
mission may lead to. The mechanisms provided constitute systematic
generalization to the left-hand sides of assignments of the standard
subroutine-function linkage concepts applying to the right-hand side
of an assignment; and are as basic as (though not necessarily as
generally useful as) these latter concepts. For this reason, we
shall call the interprocedural linkages to be suggested "sinister
calls", and call the conventional call linkages used on the right-
hand side of an assignment "dexter calls".

To stress tﬁe general nature of the considerations involved,
we shall begin with a few very general remarks. SETL belongs to
the class of “procedural“ languages, that is, to those languages
which in one or another manner represent ﬁhe algebra of transforma-
tions on a universe of stored data objects. The semantic operations -

most fundamental to such languages are:

-182-

i - access to a designatediportion of a stored object.

ii -~ modification of a designated portion of a stored object.

iii - combination of transformations by successive application.

iv - choice of transformation to be applied depending on a
predicate of particular stored data objects. A

v - combination of two or more stored objects in some "algebraic"
fashion, useful generally or for some specifically intended applica-
tion area, the outcome of this combination process being some "out-
put"” object.

vi - repetitive application of a transformation until a certain

condition is established.

With these primary operations various secondary operations may

be listed; of these possibilities we shall mention only

vii - application of a given transformation to all the subobjects

of a given object (iteration-over-parts).

All the considerations in the next few pages will center around
operations 1 and ii. We call these operations retrieval and
storage operations respectively.

Let us now proceed with a more detailed discussion, starting with
an example, which will serve to fix our overall goal firmly inr mind.

Using the scheme to be suggested in the pages which follow it
will be possible to program a function called last, which when called
in the normal dexter way returns the last element of an n-tuple; and

then to use this function to the left of an equal sign, writing
last tupl = x

to change the final (and only the final) component of tupl. Then,

for example, by executing

X = <<1,2,3>,4,5>;
last hd x = 10;

one will cause X to take on the value

<<1,2,10>,4,5>,
etc.
The key to the situation that is to be studied lies in the proper
Zfinition of storage operators and retrieval operators. Under what
conditions will we wish to say that an operator has one of these two

-183-

characteristics? First consider retrieval; and let op stand for an
operator. If this is to be a retrieval operator, iz_ﬁust in the
first place be free of "side effects". That is, if op a is called
once, and then again, the same value should be returned both times.
More generally, if t is a temporary variable not occurring else-
where in a program, then execution t = op a; should have no influence
on the remainder of the program.

Next there should exist a storage procedure corresponding to the

retrieval operator. This will be some procedure, call it
(1) opstore(a,x) ;

such that after executing (1) we can be sure that an immediately
following call to op a will return the value x. Moreover, two
successive calls to (1) should have the same effect as a single call;

and, more precisely, whenever the value of op a is already X,

opstore(a,x) should be an identity transformation. The last require-

ment is rather sharp, and pins opstore(a,x) rather closely to
op a; moreover, it implies that the property "to be a retrieval
operator"” is not possessed by all operators op.-

Note the following simple retrieval storage operation pairs in
SETL: (some of these pairs stand in the retrieval-storage relation-

ship only in most cases, but not in all possible degenerate cases):

(2a) retrieval operator: hd a
storage operator: a = <x> + tl a;

(2b) retrieval operator: tL a
storage operator: a = <hd a> + x;

(2¢) retrieval operator: alz) (for a set a containing n-tuples)
storage operator: a = {y e a|if (type y) ne tupl then t

else(n(hd y)eq z)or(#y)le llwith <z,x>;

(2ad) retrieval operator: a{z}
storage operator: a = {y € a|if (type y) ne tupl then t
else(n(hd y) eq 2z) (#y) le 1}
+ {<z,w>, w € x};

and among a large family of other more complex examples which might

be cited Q’ |
(2e) retrieval operator: a(i:j) (for a tuple or string a)
storage operator: a = a(l:i-1) + x + a(j+l:#a-j) -

-184-

Suppose that op is a retrieval operator for which some associated
:orage procedure opstore(a,x) has been selected. We will find it
heuristically and syntactically convenient to indicate a call on

this storage procedure by writing
op a = X;

That is, we indicate a call on the storage procedure by writing the
retrieval operator in a syntactically 'sinister' position.
By defining a formal notation of independent storage operators

we help ourselves to pin down the intuitive idea that a storage

operator should change no more than is requiréd by its relation

to a particular retrieval operator:

Let op and op' be two retrieval operators; anticipating the
syntactic style to be developed we shall write calls on their

associated storage procedures as
(3a) op a = Xx; and (3b) op' a = x;

respectively. We call op and op' independent retrieval operators

if in the succession of calls
(4) y = Op a; op' a = x; zZ = Oop a;

the variables y and z necessarily receive the same value; provided
that the same is true when op' and op exchange roles.
The following observatjion is now crucial: Let two retrieval

operators op and op', not necessarily independent, be given.
The composite operator op op' is a retrieval operator; we can

define its storage routine by the code sequence

i. t = op' a; /* where 't' is a 'compiler temporaryf */
ii. op -t = Xx;
iii. op' a = t;

the effect of this may appropriately be represented by writing

(5) op op' a = x;
Proof: (which please ponder). (1) In the first place, we must show
that op op' has no side effects. But if t is a temporary variable
t occurring elsewhere in a program, then execution of t =op op' a;
_.e., of tl'= op' a; t = op tyi where t1 is another such temporary
variable clearly does not influence the remainder of the program.
-185-

(2) Next we show that the second of two immediatively successive
executions of the storage sequence (i,ii,iii) is equivalent to a

no-operation. Specificélly, suppose that we execute:

t = op a;
opt = Xx;
op' a = t;

ty, = op' aj
op tl = X;
op' a = tl;

‘Then the third and fourth operations are clearly equivalent to tl t;

and thus the sequence as a whole is equivalent to

t; = op' a;
op t; = %;
op tl = X3

] -— .
op' a = tl’

Since the second of twoAidentical successive stores is equivalent
to a no-op, this last code sequence is plainly equivalent to the
sequence i, ii, iii.

(3) Next suppose that we perform the storage sequence (i,ii,iii)
and then immediately perform the :retrieval u = op op' a; i.e.,

t; =op' a; u=op t;i . We must then show that the retrieval can
be replaced by u = x;. But, because of (iii), t, = op' a; is ‘
equivalent to tl = t; so that because of 1ii the whole sequence

is equivalent to (i,ii,iii) followed by u = x; .

(4) Finally we consider the case in which the storage sequence
(i,ii,iii) is preceded by the retrieval x = op op' a; . We must '
then show that the storage sequence is equivalent to a no-operation.
If the retrieval (op op' a) already gives x, then after i
the retrieval (op t) gives'x also. Hence the operation ii may
be omitted. But therefore the retrieval (op' a) gives the value t;
and hence iii may be omitted. Therefore the whole sequence i,ii,iii
amounts merely to a store into a compiler-generated temporary; and
is therefore equivalenf to a no¥operation. ‘ Q.E.D.

'The construction i,ii,iii may evidently be iterated, with the

(n)

following result. Let op, op', ..., op be a sequence of retr al
operators. Then their product QE'QE"°"IQE(n) is also a retrieval

operator, and the assignment operation:
~186-

(6) op op' :.. op a = x
tpands naturally as

(7) ' ¢ (0) _ QE(n) a; |
o=l _ _O_P_(n—l) ¢ (n)
L ; 92' t"[
op t' = X;
92' tll = tl'
op™ 4l o)
Note that if x = op ... gg(n) a , then the middle and all

following lines in (7) are equivalent to no-ops.
We shall speak of the code sequence (7) implied by the statement

(6) as unraveling (6).

It is worth noting one additional feature of the expansion (7).

Suppose that ‘GEJH) is a retrieval operator independent of op,
. N - . - .
and that SE)...,OE(n 1) is any sequence of retrieval operators.

Then the products

é\p_(n-l) ~ (n) ~ T, QE(n_l)'

(8) 7§§ éi' . op and op op' ... op

are also independent. Indeed, in this case, the only assignment

to a in (7), that is, the last line 'in (7), has no effect on the

value of 6§(n) a, and thus none on the value of

N ~~(n)

op ... Op a
More generally, if §§(3) is independent of QE(J), then
65...65(3_1)6B(J)op(3+1)...gs(n) and 65...6§(J_l)op(3)...Sb(n)

are independent. This.conclusion may be proved by "algebraic"
reasoning from the previous special case, and may also be demon-
strated directly. '

Our conclusions up to this point may be summarized in the
following

Statement A: The set of retrieval operators associated with

the set of stored objects of a procedural programming language

f~rms a semigroup, assoctated with the language in a natural way.
The following operations are basic retrievals in SETL:

f(a)r f{a}, h_d_ fl t_'Q' fl f(i:j)
-187-

The storage operators associated with these retrievals have been
displayed above. Algebraic relationships between these basic
retrievals and other more compound operators lead in accordance
with the preceding discussion to other retrieval operators, and

to significant relations between storage procedures. Note for
example that @a 1is a retrieval operation, the corresponding
storage procedure being a = {x}; . The expression f(a) is,

if defined, logically identical with the compound af{al}l. The
reader can verify that the basic definition i,ii,iii associates
with this compound retrieval precisely the storage procedufe (2¢) .
The operation f{a,b} has been defined in section 6.2(c) as being
equivalent to the compound (f{a}){b}. The reader may verify that
the general rule i,ii,iii associate with this retrieval the

storage procedure .
f = {y € £|if(type y) ne tupl then t else if(type t& y) ne tupl
then t else (hd y) ne a or (hd t& y) ne b or (4y) le 2}
+ {<a,<b,z>>, z € x};

which in accordance with our general notational conventions we can

write as
f{a,b} = z;

The same line of argument leads us to define the general assignment
f{al,...,an} = x;
as having the significance

f = {y € f£|if(type y) ne tupl then t else if(type t& y) ne tupl

then t else if (type t2 t2 y) . ne tupl then t else ... ‘else
(hd y) ne a; or (hd t& y) ne a, or ... or(#y) le n}
> .
+ {<a;i<ay,...h<a ,2%...>>, z e x};

In the same way, we are led to give
'f(al,...;an) = X;

the significance

-188-

f = {y € £f|if type y ne tupl then t else if(type t& y) ne tupl
then t else if type tl tf y ne tupl then t else ... else
(hd y) ne a; or (hd t& y) ne a, or ...}

with <a, ,<a <A 12> >3

1 orees
In accordance with our general notational conventions, we will
also write calls on the storage procedure shown in (2e) as
a(i:j) = x; .

(Note that (2e) only defines a storage procedure if (#x) eq y.)
The range operation fla] may also be regarded as a retrieval
operation, though the corresponding storage procedure is highly

nonunique. Somewhat arbitrarily, we take
fla] = x;
to mean
f={y e f|if hd y eg Q then t else if (hd y)n € a then t else f}

+ {<y,z>, vy € a, z € x};

Similarly,
f[al,...,an] = X;
will mean
f=1{ye fl]if hdy eq @ then t else if hd y n € a; then t
else if hd t% y eq @ then t else if hd t2 y n € a, then t
... else f} + {<yl,<y2,...,<yn,z$...>>,
Yy, € a1/ Y, €8y, «v., Y € 8., Z€ x};
We take the special form
f(y) = Q;
to have precisely the same significance as
f{y} = n&; .

More generally, we take

f(yl’."’Yn) Q;

have the same significance as

0"
o]
%S

f{yl,...,yn} ng;

~189-

Concluding this digression on various important particular
storage operators, we return to a more theoretical discussion of
retrieval and storage operators, and note that we may also
consider retrieval operators Op(pl,...,pn,a) depending on
several parameters, and the storage subroutines
opstore(pl,...,pn,a,x) associated with them. We require that

if the function op(pl,...,pn,a) has the value x, then the
subroutine opstore(pl,...,pn,a,x) acts as an identity operator.

In this case, a call to opstore may be written in the form
€9) Op(pl:--o,pn,a) = X7

though other syntactic forms (both for the left- and the right-
hand sides) might be preferred in particular cases.

As with simple retrieval operators, so in the case of retrieval
operators with parameters the composition of two retrieval operators |

is a retrieval operator. The natural interpretation of

(10) op(p,op'(g,a)) = x
is
(11) i'. t = op'lg,a);
ii'. opl(p,t) = x;
iii'. op'(g,a) = t;
cf. 1i,ii,iii and (7). Note in particular that if
(12) x = oplp,op'(q,a)) ,

then after (11.i') is executed opfp,t) has the value x and
op'({g,a) has the value t; hence (11.ii') and (11.iii') may be
omitted. This is to say that the whole sequence (11l) reduces to
a no-operation.

Having come this far, we may now observe that close examination
of (11) reveals a fact which permits very extensive generalization
of the "unraveling" constructions i,ii,iii and i',ii',iii'. Namely,
we see that the unraveling (11) of (10) treats all the arguments of
op and op' on an equél footing, making it unnecessary to distinguish

between a single "principal argument” and a remaining set of

-190-

"parameters". To emphasize this point, it is well to study an
tample. Consider a hypothetical three-parameter function

select(f,g,j) which returns the value defined by the expression
N\

(13) if j gt O then hd f else tf g

This is a multiparameter retrieval operation, possessing an

associated storage procedure
(14) if j gt 0 then hd f = x; else tf g = x;;

Having made this observation, we may observe that (11) automati-

cally assigns a meaning to such a statement as
(15) select (f, select(g,h,i), j) = x;

Indeed, the reader aware that the standard nested (dexter)

function calls assigns the value

(16) if j gt O then hd f else if i gt 0 then t& hd g else tf t2 h
to the expression

(17) select (£, select(g,h,i), 3J)

will verify without difficulty that if (15) is unraveled in
accordance with the generél convention (11) there results a

procedure equivalent to the conditional statement
(18) if j gt 0 then hd f = x;
else if i gt 0 then t% hd g = x;
else t2 t2 h = x;; .
It may also be remarked that the 'unraveling' process discussed
above may be carried over to more general nests of sinister calls.
Consider, for example, the .retrieval function select described

by (13) (and (14)) above. It is heuristically clear that one

ought to be able to assign a reasonable meaning to
(19) select (select(f,qg,i) ,select(ff,qq,1i),]j) = x; .

If the compound form appearing on the left appeared on the right

instead, it would retrieve

if j gt 0 then if i gt 0 then hd hd f else hd t& g
else if i gt 0 then tf hd ff else tf& tf gg

<191«

making it plain what storage operation (19) ought to represent.

The appropriate way to unravel (19) is as follows:

(20) i. t = select(f,qg,1i);
ii. tt = select(ff,gg,1i);
iii. select(t,tt,j) = x; '
iv. _select(f,g,i) = t;
v. select (ff,gg,i) = tt;

Note now that the sequence (20) is appropriately related to the

dexter call
(21) x = select(select(f,qg,i), select(ff,gg,i),j);

Indeed, if (21) is executed immediately before (20), then after

(20.1) and (20.ii) have been executed, we have
(22) select (t,tt,j) = x ,

so that (20.iii) is equivalent to a no-op, and may be removed.

But then (20.iv) is a no-op, since preceded by (20.i); and (20.v)

a no-op, since preceded by (20.ii). The storage-retrieval relation-
ship between (20) and (21) is therefore plain.

The formal argument just given plainly applies to arbitrary
combinations of retrieval functions by nesting; this remark leads
to the following substantial generalization of the fundamental
statement A made above.

Statement B: The family of multi-parameter retrieval operators

associated with the set of stored objects of a procedural program-

ming language is closed under the operation of substitution.

Yet another property of our procedure for unraveling a nested

sinister call is worth noting. If we consider the sinister call
(23) select(f,g,select(ff,gg,i)) = x;

and note from the definition (13) of select that this function does
not modify its third argument, it is apparent that the most apprépri—

ate expansion of (25) is

(24) t = select(ff,gg,i);
select(f,g,t) = x; .

-192-

That is, one would want to regard the inner call to select as
2ing implicitly dexter. Our normal sinister call expansion,

«pplied mechanically, would instead give

(25) i. t = select(ff,gg,i);
ii. select(f,g,t) = x;
iii. select(ff,gg,1i) = t;

But (24) and (25) are equivalent! Indeed, since (25.ii) does not
change t, it follows that (25.i) and (25.iii) remain mutually
inverse retrieval and storage calls, so that (25.iii) is a no-opera-
tion. Aside therefore from implications concerning efficiency, the
standard sinister expansion (25) is perfectly acceptable. Note also
that an optimizer capable of detecting the fact that select does not
vary its left-hand side could automatically exploit this fact to
suppress (25.iii) as redundant.

The procedure for expanding sinister calls suggested by (6)-(7)
and (19)-(20) is thus general and unambiguous.

The reader will perceive that the conventions we have introduced-
allow wide generalization of the forms which can. appear on the left-
hand side of an assignment statement. In a subsequent section we
will extend this generalization still further, developing mechanisms
which allow arbitrary programmer-defined functions to appear in
sinister position. The details of this final generalization will,
however, be understood best after the syntactic éonventions used in
connection with function definitions and‘functibn calls have been
explained. For this reason, we postpone discussion of the use of
general programmer defined functions on the left-hand side of
assignment statements, and confine ourselves at the present time to
discussing the manner in which forms compounded of SETL primitives
can be used in sinister position. We have already noted that SETL

provides.

(26) f(al)fx; f(al,..v,an)=x; f{al,...,an}ﬁx; and f[al,...,an]=x;
as sinister forms, and provides the forms

(27) hd £ = x; tl £ = x; f(i:3) = x;

well. We use the same conventions for operation compounding on

e left as on the right-hand side of an assignment statement. Thus

-193-

(28) hd t2(£f(i:j)) = x; (£(a)){bysb,} = x;

are valid also. Note once again that the meaning of compound
sinister forms like (28) is in each case to be deduced from the
meaning of the corresponding primitive assignment (26) or (27)
by using expansion rules like (6)-(7) or (10)-(11).

Next note that- the tuple former <al,
as a multi-parameter retrieval operator, its associated storage

...,an> may be regarded

procedure being defined by the sequence of statements

(29) - a1=x(l); . ooy an_l=x(n—l); an=x(n);

Accordingly, we allow "multiple assignmeht statements" of the form
€30) <al,a2,...,an> = x;

we define the significance of (30) by (29). In accordance with the
general expansion rules applying to compound forms this basic

definition also assigns the significance of such compound forms as
(31) <<a,b>,c,<d,e>> = x;

Moreover, forms such as

(32) <f(a),g(b) ,hic)> = x;

also are valid. Note also that forms like

(33) <a,f(a)> = x;

are handled unambiguously by our expansion rules. For example,

{33) _expands as

(34) o i t = f(a);
ii. <a,t> = x:
iii. f(a) = t;

which since (ii) completely reassigns its second argument has

precisely the same effect as
(35) a=x(1); £(a) = x(2);

SETL conditional expressions (cf. section 6.2j) can also be
used on the left-hand side of assignment statements. Thus, for

example, we allow

-194-

if j gt 0 then hd f else t& g = x;

-..is has the same force as the conditional statement
if j gt 0 then hd £ = x; else t& g = Xx;;

(Additional details concerning conditional statements in SETL are
given below).

Note finally that in offering an abstract definition of the
storage-retrieval relationship we proceed along a line of thought
familiar to the hardware designer. At the hardware level, 'storage'
and 'retrieval' may involve extensive recéding, complex transfor-
mations and reshufflings, etc. However, since the abstract
storage-retrieval relationship is always maintained, none of this
affects the programmer's fixed picture of the basic logic of these
operations. The sinister call mechanism which has just been out-
lined makes a similar facility available at the programming-language
level. It deserves to be emphasized that the use of this facility
can decouple a good part of the logic of algorithms from very
extensive 'behind the scenes' operations set in motion by storage
or retrieval requests; in the same way, the hardware designer
decouples. the programmer from the details of his 'paging' opera-‘
tions. Thus other generalized assignment notions which have been
presented isolate the problem of memory-milieu definition
from the remainder of a complex programming task, and keeps
globally used data objects from propagating complexity in as

virulent a fashion as would otherwise be the case.

~-195-

Item 14. DESCRIPTION OF THE SETL LANGUAGE.
Third Part: Additional Statement and Expression Forms.

Having described the SETL assignment statement in a manner suffi-
ciently general for the moment, we now go on to describe various

other statement forms provided in SETL.

1. Labels, Go-to Statements, Iterations, and Compound Operaiors.

Control of program flow is provided in several manners; by go to
statements, by 7f statements, by flow statements, by a statement form
specifying iteration over a range of sets, by a statement form
speciinng iteration for as long as a certain boolean condition is
'valid; and by subroutine or function calls. Because they deserve
separate discussion, the <f and flow statements will be discussed
in Section 3.

A SETL statement may be labeled by prefixing it with a name,
which must be followed by a colon, and which for the sake of read-
ability may be enclosed in pointed brackets. The affixed colon

designates the name as a label. Thus
(1) label: , <label:> , <<iabel:>>
are all equivalent valid labels.
A go to statement has the form
| go to expr;

the expression occurring in such a statement may be peffeétly.
general, but must have a label as its value. .

SETL allows iterations to be specified without the explicit use
of labéls. Several statement forms serving this purpose are provided
The first, which may be called the set-theoretic iteration, has the

general appearance.
(2) (¥xee;, xzeez(xl),...,xn;en(xl,...,xn_l)[C(xl,...,xn))block;

In this general expression, X)re.., X are names, e; designates a

set-expression not containing any occurrence of these names,

=196-

eo(xl) a set expression not containing any occurrence of Xoreeo X,

id containing only free occurrences of x etc. Moreover,

ll
C(xl,...,xn) designates a boolean expression containing only free
occurrences of SRR S while block is any sequence S of valid

SETL statements and may include go to statements. The statement
(2) is executed according to the following rule: calculate the set

eqi for each of its elements x calculate the set ez(xl); for

each of these elements, calculite the set e3(xl,x2), etc. For each
n-tuple XyreeerX, obtained in this way and having the property
that the boolean expression C(xl,...,xn)' has the expression true,
perform the statements of the sequence S in order. (Note that the
occurrence in S of a go to statement with a destination label
outside S will terminate the iteration implied by the statement (2).)

The individual restrictions

(3) xj € ej(xl""’xj—l)

occurring in (2) may be called range restrictions; for use when
iteration over a range for integers is desired, a restriction having

the variant form

4A min: Ko goee X, ' < X, < max, (X, ,X.
(4A) 5 (%) jo1) & Xy < maxg(x -1

is provided. If (4A) occurs instead of (3) in an iteration (2),

then for each appropriate Xl""’xj—l the two arithmetic expres-
sions mlnj(xl,...,xj_l) and maxj(xl,...,xj_l) will be calculated,
and - iteration will be extended suitably over all xj in the numerical
range defined by these upper and lower limits.

Numerical range restrictions in the variant forms

(4B) maxj(xl,...,xj_l) > xj-z mlnj(xl""’xj—l)

(4C) minj(xl,...,xj_l) < xj < maxj(xlf...,xj_l) . etc.

are also allowed. These variant forms provide for variant orders

of iteration. Thus, (4A) implies an iteration in which successive

integers xj are treated in increasing order; (4B) implies an itera-

tion in.which suqcessive integers xj are treated in decreasing order.
Iteration over an empty set is allowed, in which case the block

statements in the scope of the iteration is not executed.

-197-

The scope of a set-theoretic iteration of the form (2) may be
indicated, in the manner shown, by .the presence of a semicolon
otherwise absent. For readability, however, several alternative

forms are provided. These are:

1. The use of the terminator
end;

2. The use of the terminator

end Vti t2 .o tk;

to close the scope of an iteration which begins
(th oo)

Here, tl't2""’t designaté the first k tokens following the

k
iteration-opening symbol VY.
A second type of iteration, which may be called the while-

" iteration, is provided in two related forms, of which the simpler is
(5) (while C) block;

Here C is any boolean expression, while block designates any
sequence S of statements. This statement perfdrms block iteratively
as long as C has the value true, but terminates as soon as C is
found to have the value false.

The outer extent of a while-iteration's scoée may be indicated,
as in (5), by the presence of a semicolon otherwise absent. For
readability, however, several alternative forms are provided.

These are the more visible terminators

end; or end while;

The latter terminator may optionally be made more explicit by "extending
it to include a number of tokens following the keyword while which
opens the iteration. This possibility is illustrated in the follow-

ing example.
(while x € s) k = k+g(x); x = f(x); end while x; .
A rather more general form of while-iteration is .as follows:

(while C doing blocka) blockb; .

-198-

Here C is any boolean expression, while blocka and blockb are
‘bitrary sequences of statements. This iteration has precisely

tne same significance as does the following simple while-iteration:
-(6) (while C) blockb blocka;

This alternative form
of the while iteration-header is provided to improve readability
by making it possible to attach loop-associated bookkeeping instruc-
tions directly to the header, rather than requiring these instructions
to be placed remotely.

The instruction
(7) quit;
occurring either within a set-theoretical iteration or within a
while-iteration is equivalent to

(8) go to L;

where L is a unique generated label occurring at a position immedi-
ately . outside ' : the scope of the iteration.

We also allow this statement in several more explicit forms. The form
quit ¥Yx;

is equivalent to (8) where L is a unique generated label occurring
at a position immediately outside - the scope
of the set-theoretical iteration whose header begins either with

(Yx e ...)
or with
(min < ¥x < min, ...)

or with some other allowed form of range restriction in which "V¥x"
appears. Note that this generalized quit statement may .cause
control to be transferred out of several nested iteration scopes
all at once. For example, ’
(¥x € a) vy = x; (while #y gt 2) (¥z € y) n = n with z;
if #n gt 10 then quit V¥x;; end Yz; end while; end ¥x;
equivalent to
(Yx ¢ a) y = x; (while #y gt 2) (¥z € y) n = n with z;
if #n gt 10 then go to L;; end ¥z;;; <L:> ...

-199-

We also permit the forms

gquit while;
and
(2) quit while tl . tn; etc.,
where tl,...,tn are the tokens which follow the keyword while in

the header of the iteration from which exit . is to be made.

The first of the above statements is equivalent tc a transfer
to a label occurring at a position immediately
outside the scope of the innermost while-iteration containing
the quit statement. The second, more explicit, quit statement has
a significance which may be defined as follows. Let W be the inner-
most while-iterating header whose scope contains the quit statement

and which begins with the sequence

(while tl t2 .o tn)

of symbols. Let L be a unique label occurring at a position
immediately outside the scope of W. Then (9) is eguivalent
to the explicit go-to statement the explicit go-to statement go to L.

The instruction
(10) continue;

is used in a very similar way. If this instruction occurs
either within a set-theoretical or a simple while iteration, it
is equivalent to the go-tb statement (8), where L is' a unique
generated label occurring within, but at the very end of, the

scbpe of the iteration. Thus, for example,

(while x gt 0) x = x - £(x); if g(x) 1t 0 then continue;
else y =y + g(x);; end while;

is equivalent to

(while x gt 0) x = x - £(x); if g(x) 1t 0 then go to L;
else y =y + g(x);; <L:> end while;

Suppose next that a simple continue statement (10) occurs within

a while~-iteration whose header is of the more complex form

(while € doing blocka) .

-200-

Then, by definition, (10) causes a transfer to a unique generated
lbel located immediately before the various statements of the block
blocka, which (cf. (6)) form a group terminating the scope of the

while-iteration. For example,
(while x € s doing x = £(x);) if g(x) 1t 0 then continue;
else y =y + g(x);; end while;
is equivalent to
(while x € s) if g(x) 1lt 0 then go to L;
else y =y + g(x);; <L:>x = f(x); end while;

We also allow more general continue statements having such forms

as
(11) continue Yx;
(12) continue while;

(13) continue while token;

This is how we define the significance of the statement (11). Let W
be the innermost iteration header whose scope contains the continue

statement (11) and which begins either with the sequence
(Yx e ...)
or with some such sequence as
(min i_Vx < max, ...) .
Let L be a unique label occurring within the séope of this iteration,
but at the very end of this scope. Then (ll) is equivalent to
go to L; .

The significance of the statements (12) and (13) may be defined in
similar fashion, and we leave it to the reader to supply the neces-
sary details. Observe, however, that if the while-iteration header
to which (12) or (13) refers contains a doing block, then (12) or
(13) will cause a transfer to a label located immediately before
the first statement in this block; note (cf. (6)) that this block
~¥ statements occurs at the very end of the scope of the while

.eration.

-201-

We now describe a type of compound operator provided in SETL
and related to the set-theoretic iterations with which we have
just been concerned, If op is any binary operator or function of
two variables, or more generally any expression having such an

operator or function as its value, then

)

(14) [gg; X; € e, X, € ez(xl),..., X, € en(xl,.,.,xn_l

| C(xl,...,xn)] S(xl,xz,...,xn)

denotes the value v which would result from the following

iteration calculation

(15) v = Q; times = 0; (¥x ee;,x,€e,(xy) /... x €€ (Xyy-ce,x ;)
|clxyseeoyx) if times eq O then times=1;
v = S(xl,...,xn); else v = v op S(xl,xz,...,xn);;

The "operator" appearing with brackets in (14) is called a compound
operator. The construction (14) is subject to the same conditions
concerning free occurrences of variables, etc., as is the iteraﬁion
(2) . In particular, numerical range restrictions of any of the
forms' (4A), (4B), (4C) are allowed. The construction (14) will
often be used when the operator op is commutative and.associative,
in which case the value of (14) is independent of the order in
which the set-theoretic iteration (15) is carried out. Note, for
example, that the availability of the construction (14) allows us

to write the ordinary mathematical formula

) max l l_J 5 (x4 /X, ,X3)

1 X,€a, xj€a,
as

[+: xjea;] [max: x,ea,]l #[u: xjea] S(xy,X5,%X3)

A resolving convention is required if the implied scope of a
compound operator is not to be ambiguous. One may ask, for example,

if the expression
[+: x € a1] f(x) + b
is to have the reading

([+: x € al] f(x))+ b

or the reading

[+: x e a,] (f(x) + b) .

1
-202-

We adopt the convention that a compound operator is to be treated

 a monadic operator; as such, it will have minimal scope (except
insofar as built-in operators producing boolean from nonboolean
quantities may have higher precedence). Thus, the first of the two
possible readings noted above is correct.

We also permit while iterators to be used within compound opera-

térs, in much the same way that set-theoretic iteration headers are
used. Thus, if C is a boolean-valued . expression and block a block

of statements, we may use
(16) [op: while C doing block] expr

to denote the value v which would result from the following itera-

tive calculation

(17) v = Q; times = 0; (while C doing block) if times eg 0
then times = 1; v = if times eq 0 then expr

else v op expr; end while;

We also permit while-iterators and set-theoretic iterators to

be intermixed in a compound operator, so that, for example,
(18) [op: x;ee;, while C doing block, x,ee,(x;)|D(x;,x,)] expr

is a legitimate expression whose value the reader will readily deduce.

2. Iterators over Tuples, Character Strings, and Bit Strings.

One will frequently wish to extend an iteration over all the
components of a tuple, character string, or bit string. For this

‘purpose, the iteration form
(1) (1 < ¥n < #tuple) x = tuple(n); block end V;

could be used. Since iterations like (1) would be used frequently,

however, we provide the abbreviated form
(2) (Vx(n) e tuple) block end ¥;

Iterators of the form (2) may also be intermixed with groups of
other iterators, used in compound operators, existential and
iversal quantifiers, set-formers, and with quit and continue

scatements; in general the conventions explained in the preceding

-203-

paragraph apply mutis mutandis to iterators of the form (2).
Note the following simple applications. To form the set of

components of a tuple (with no undefined components)
(3) set = {x, x(n) e tuplel}; .

To find the position of the first blank character in a string,

if any:

(4) pos = if Jcn) € string|c eq ' ' then n else Q;

3. If—statements, Flow Statements.

SETL provides an ALGOL-like conditional statement which may have

the form

if bool, then block, else if bool, then block,...else block ;

1 1

or may have the slightly simpler form

if bool, then block, else if bool2 then-block2 e e

1 1

... else if bool .. then block :
n-1 n-1

Here bool ...,booln are required to be boolean expressions;

1’
each of blockl

statements, which may include go to statements and additional if

,...,blockn is an arbitrary sequence of valid SETL

statements.

Each statement block forming part of an if-statement, with the
exception of the last such statement block, is terminated by the
occurrence of the next following keyword else or then. The last
block is terminated by the occurrence of the semicolon explic;tly
shown as terminating the if-statement displayed above. Of course,
since the final statement of this final block is itself terminated
by a semicolon, the visible sign of an if-statement termination

will be a double semicolon. For example, we might have
if x gt 0 then set = set with x; else n = n+l;;

This style is acceptable for short blocks, but when long blocks of
statements are encompassed within if-statements scopes delimited
in this way would become confusing. For this reason, we permit a

variety of alternative conventions. These are:

-204-

1. The use of parentheses. Any block of statements may be
closed in parentheses, and remains a block of statements. Thus,

we Might write
if x gt 0 then set = set yigg X; else (n = n+l; k = k*n;);
2. The use of either
end; or end if;
or more explicitly still |

end if tl t2 t3 eee 3

where t1 t2 t3 is the string of tokens following the keyword if
in the statement being terminated. Thus, for example, one may write

either

if x gE.O then set = set with x; else n=n+l; k=k*n; énd if;
or

if x gt 0 then set = set with x; else n=n+l; k=k*n; end if x}

If-statements may »e nested, that is, an if-statement may occur
as part of a block within another if-statement.

The conventional form of if-statement which we have just
described is adequate in many situations, and by allowing if-
statemenfs to be nested within one another we significantly
enhance the expressive power of this statement form. However, when
complex sets of interlocking conditions must be dealt with, the
nested if-statement becomes inadequate. The difficulty lies in the
fact that the if-statement intermixes the controlling conditions of
a subcasing operation with the transformations to be performed
in the various subcases; such intermixture violates the fundamental
design principle of grouping by logical relation. For this reason,
SETL provides, in addition to the ALGOL-like if statement form
defined above, yet another linguistic form, designed for the
description of complex sets of conditional actions, and haQing the
interesting property of exploiting the two-dimensional nature of
paper. This statement form is introduced by the keyword flow, and
will therefore be called a "flow-statement". |

-205-

A flow statement consists of a header and a trailer. The
header consists of the keyword flow, followed by a series of.
header elements, and terminated by a semicolon.

In the simplest form of flow-statement, only test nodes and
exit-action nodes will appear, and each test node will consist
simply of a name followed by the sign "?",.while an exit-action
node will consist merely of a name followed by the sign *,"
(The comma immediately preceding the semicolon which terminates
a flow-header is by convention omitted.) The following is an

example of the somewhat unfamiliar construction we have in mind:

(1) flow nodeterm?
arelexalts? islockey?
findalt, maynext, keypres? arealts?
aresecalts? maynext, findalt, maynext,

findalt, maynext;

The semantic intent of such a header may be explained as follows.
Each test node N names a boolean expression to be evaluated. (The
evaluation of this expression may be preceded by the execution of a
block of statements, cf. below.) If this expression has the‘value A
true, then the left-hand descendant of N, i.e., the node immediately
below and to the left of N, is evaluated (or in the case of an
action node, performed; see below). If this expression has the value
false, then control passes to the right-hand descendant of N. An
action node names either a block of statements to be performed, or
names a test node occurring elsewhere in the flow header, or names
a label external to the whole flow statement text. 1In the first
case the designated block of statements is performed, and control
passes, in normal fashion, either to the next statement folloWing
the flow statement, or, in fhe presence of explicit go to commands,
to some other statement. In the second case, control "loops back"
to a prior test node; in the third case, control passes out of the
flow statement to some other labeled statement. Note that the two
dimensional "display" form of a flow header like (1) serves to make
vivid the flow of control within a sequence of tests; in
particular, it is easy to read off the collection of tests, and
their outcomes, which precede any particular test or action in the

tree.
-206-

i

o

\z

Having made these heuristic comments, we continue with a formal

scription of the structure of a flow statement, going on to
describe its second or trailer portion. This part of a flow state-
ment, which follows immediately after the header portion of the
statement, serves to define the details of the tests and actions
mentioned in the header portion of the statement. -

The trailer part of a flow statement, as well as the flow

statement itself, is terminated by the token sequence
(2) - end flow;

A flow statement trailer consists of a sequence of definitions,
each of which is prefixed by a label identical with one of the
names in the flow statement header. A label identical with one of
the names occurring in the header will be called an active label.
Each definition ektends from the active label with which it begins
up to either the next following active label or to the end of the
entire flow statement, whichever is nearer.

The definition corresponding to each action node is a block of
ordinary SETL statements. When control passes to the action node,
this block of statements is executed, and control passes on in the
manner described above. ‘

The definition corresponding to a test node is a block of
ordinary statements, to which a Boolean expression terminated by
a semicolon and prefixed by the sign "=" is prefixed, this whole

context therefore appearing as
(3) = expn;

When the teét node is invoked, all statements in the definition
corresponding to the test node are executed, following which the
terminal Boolean expreséion (3) is evaluated. If this yields the
value true, then control passes to the left-~hand descendant of
the test node; the value false transfers control to the right-hand
descendant of the test hode. ‘

Action nodes not defined in the trailer of a flow statement may

be called exit nodes; for clarity we allow such a node to be preceded

‘bv the word "to" in the case of an exit node. Consider, for

mple, the following flow statement.

-207-

flow tl?

actl, to s2;
tl:= x 1t 0;
actl: x=x+y; end flow;
sl: e
s2: . ool

When this flow statement is encountered, the expression x 1t 0
will be evaluated. If it has the value true, then the statement

X = x+y will be performed, and control will pass to the statement
labeled sl. On the other hand, if x 1t 0 has the value false,
then control will pass at once to the statement labeled s2.

The special name quit may be used in an action node; if, within
a flow statement, a node so named is executed, control will pass to
the first statement following the flow statement terminator.

The labels occurring in the trailer portion of a flow statement
are assumed to be known only within the statement. That is, one
cannot enter the tree in a nonstandard way by executing a go-to
statement. Moreover, a go-to statement occurring within a definition
in the trailer part of a flow statement must either reference a
label (necessarily inactive}, which is either part of the same
definition or which lies entirely outside the flow statement. This
rule serves td exclude "hidden" control flow, that is, control flow
between the nodes of a flow statement which is not shown explicitly
in the header part of the flow statement.

We now describe certain syntactic variations allowed within flow

statements which improve the flexibility of this type of statement.

(a) In addition to test nodes and exit-action nodes, we allow
intermediate-action nodes. Such a node consists of a name followed
by the sign "+". The node name must be identical with a label
appearing in the trailer part of the same flow statement; the
definition following this label must be a block of ordinary SETL
statements. The node will have precisely one descendant, which
may be either a test node or another action node. When, in execut-
ing a flow statement, control passes to an intermediate action

node, the code block defining this node is executed,

following which control passes to the descendant node of

the intermediate action node. (Of course, any explicit go to

-208-

B

encountered may modify this code flow.) Consider, as an illustration

the construction just explained, the following flow statement

flow tl?

actl + t2?

act3, actl, act2;
actl: eee; tl:= ...; t2:=...; act2: ...; act3d: ... ;
end flow;

If t1 has the value true, we perform actl, and then perform act3;

if ¢1 is not true we test t2 and then perform .either actl or act?2.

(b) Any action node in a flow header may be preceded by an
iteration-header. If such a prefix is attached to an action node,
it is meant that the code in the node definition is to be executed
iteratively in the manner defined by the iteration header. An
iteration prefix used in this way does not call for a terminating
semicolon. When the iteration termin.:tes, the nextAaction to be
performed (which may simply involve passage of control to a
successor node) is determined in the usual manner. For example,
we may write

flow setnonnull?
(Vs € items(cls)) doelem, printnullcase;

doelem: ...; _
printnullcase: ...;

end flow:

In this case, the code block labeled by doelem will be executed
iteratively, once for each element of the set item(ecls), following
which control will pass out of the flow statement shown above.

(c) A node in a flow statement header may be replaced by the
text which would otherwise appear in the definition corresponding
to the node. In this case, the text of the definition must appear

within parentheses. For example, we may write

flow (x gt 0) ?

(y = x+1;), (y gt 0)?
on, (z = x+y3:);

on: subr(x,y); end flow;

(d) Any code block contained in a definition in the trailer part

of a flow statement A may contain further flow-statements B, C, etc.,
-209-

but the exit transfers of these embedded flow statements must, in
accordance with the rule for go to-statements stated above, refer e
labels which are either part of the labelled definition or which

lie entirely outside the (largest) developing flow statement A.

A greater flexibility is provided by an explicit subflow option.

To use this option, we interpolate one or more header extensions

between the header of a flow statement and the trailer which follows
it. Each such header extension . consists of an extension label
corresponding to some node named either in the preceding header or
in some preceding header extension, followed by the keyword

subflow, followed by a list of distinct exit designators separated
by commas and appearing within parentheses, followed by text '
deseribing a flow structure and having precisely the structure of
the text which appears within an ordinary flow statement header.

An example of a flow statement header with extension is as follows:

flow howcompare?
seenbefore? skip,
skip, process;
howcompare:subflow (bigout,smallout) firstdefined?
seconddefined? definefirst+

firstbigger? definesecond+ - seconddefined,

bigout, smallout, firstbigger;

This example illustrates the following syntactic and semantic
points. Each header extension represents some sequence of tests
and actions whose details one chooses not to show in the main header
or preceding header extension within which this test/action sequence
is first named. The header extension H labeled with a name NN
appearing in a preceding test (or multi-test cf. below) node N is

said to give detail concerning N. When control passes to N and

the test-action sequence labeled NN is performed, the consequence
(for contfol) will either be that exit is made from the entire
enveloping flow statement, or that control passes to the subflow
node labeled with a particular exit designator. If H gives detail

concerning the node N, then the k-th exit designator in the sequ

of designators which follows the keyword subflow is understood

-210-

refer to the k-th descendant of N. That is, if control passes to N,

\d if after the series of tests and actions which ensues control
leaves H through its k-th exit designator, then it is understood
that the next node to be executed is the k-th descendant of N.

Note in this connection that we allow a header extension to
contain any number of exit designators, and accordingly allow the
test of any header or header extension to contain test nodes having
a number of descendants larger than 2. Such test nodes are called

multi-test nodes, and their presence is indicated by writing
name ? k ,

where k is the number of descendants possessed by the multi-test
node name. This number must of course be equal to.the number of
exit designators in the header extension labeled with the name name.

This type of construction is illustrated by the following example.

flow inwhatrange? 3
toosmall?. biggerunity? toolarge?
skip, biggerunity,; =~ multiply, divide, skip, multiply;

inwhatrange: subflow(lessa,middle,greaterb) isgreaterb?
greaterb, islessa?

lessa, middle;

When control reaches the above flow header, the condition
isgreaterb is first evaluated. 'If this has the value true, then
the condition toolarge is evaluated. On the other hand if
isgreaterb has the value false, then the condition 't¢slessa is
evaluated. If <islessa has the value true, then toosmall is evalu-
ated; in the contrary case, the condition biggerunity is evaluated,
etc. .

The reader is invited to transpose the flow header shown above
into some collection of nested if statements expressing the same
logic, and tocompare the clarity of text which resuits to that of

the text shown above.

-211-

4. Subroutine and Function Definitions. Initialization.

SETL provides various features intended for the definition of

subroutines and functions. A subroutine definition has the form
define name (argl, arg2, ..., argn); body end name;

Here name, argl, ..., argn are all valid names, while body is

any valid sequence of SETL statements. The final statement
end name;

in the above definition locates its end. A subroutine defined in

this conventional way is called via a statement
name (exprl,...,exprn);

in which exzpril,...,exprn are expressions defining the actual

. subroutine arguments to be used at the moment of call. Return from
a called subroutine is accomplished using a return statement having
the familiar form

return; .

Subroutines are always recursive, as are functions (see below).

Note that when a subroutine A is called recursively only the
subroutine arguments and the variables owned by the subroutine
are stacked; variables owned by other subroutines, but kﬁown
within A (cf. the discussion of name scoping and the own declara-
tion which follows) are not stacked. Thus, for example, a
subroutine may be used recursively to add elements to a single
particular external set. _ '

Functions rather than simple subroutines are defined by
writing

definef name(argl,argZ,...,argﬁ); body end name;

Return statements occurring within the body of a function definition

must have the slightly expanded form
return expr;

here expr is an expression which, evaluated immediately before a
return from the function, defines the function value.
In addition to these conventional forms of function and

subroutine definition, SETL allows one definition of functions auu

-212-

subroutines called in a manner more closely resembling the normal
TL use of infix and prefix operators. The definition of a

tunction to be called as an infix operator is written as follows:
definef argl name arg2; body end name;

Aside from the fact that it is written in a different syntactic
form, and that the function name is underlined, the above .infix
function has exactly the same semantic significance as any two
argument function name(argl,arg2).

A programmer-defined prefix or monadic operator will have only

a single argument; its definition will have the form
definef name arg; body end name; .

Infix and prefix operators, as well as functions written in ordinary
parenthetical style, may freely be used as parts of expressions.
Monadic operators always have a precedence superior to that of
any infix operators, except that built-in comparison and test
operators such as gt, €, etc. have higher precedence.

Subroutines of 1 and 2 arguments may also be written in infix
and prefix form respectively, having in this case definitions of
the form '

define argl name arg2; body end name;

and

define name arg; body end name;

respectively. Subroutines defined in one of these forms should be
called in the corresponding form.
We allow subroutines and functions to be called in a variety of

weyvs generalizing the conventional (1).

The call
f[alloo-,an]
will return the set
{f(xl,...,xn), X{ € 83/ X, € 8y, +u.y X € an} .

This is consistent with earlier usage in case f is a set of

ordered n+l-tuples. Still more generally, a call of the form
Vf(al,...,[aj],aj+l,...,[ak,ak+l,...,a2],...)

will return the value

-213-

}

)'Xjeaj’xkeak’xk+l€ak+l""

{f(al""’xj’aj+l"'°’xk'xk+l”"’xl"°'
For monadic operators we can write in very similar fashion and

with similar meaning

oplal;
For binary infix operators we can write

[a] op b, a op [bl, [a]l op [bl, etc.

We allow similar forms for subroutine calls. If f is a subroutine,
t hen the call

f{al,...,an];
is equivalent to the iteration

(¥x eal,xzeaz,...,xnean) f(xl,-.-,xn);;

1
the call

f(al,...,[a 1,a a l...);

j+l""’[ak'ak+l""’ 2

is equivalent to the iteration

(ijeaj, X, €a,)

k€3’ *k+1%%+1""""

f(al’°'”’xj’aj+l""’Xk’Xk+l""’x£"");;

Subroutines and functions are legitimate atom-types within SETL;
in particular, they may validly be elements of sets, components of
ordered pairs, arguments of other subroutines, etc. This fact
allows various powerful programming'devices to'be4used; we may,
for example, tag a set with certain functions of access and combina-
tion which are associated with it, etc. ‘

~Aside from the operation of application that naturally belongs
to subroutines and functions, the only‘built—in operations which
apply to atoms of these types are the boolean tests _g and ne of
equality and 1nequa11ty

We regard a subroutine definition as initializing a variable with
name identical to the subroutine name. The general conventions
applying to initializations are as follows.

Each statement in a block of statements occurring in the form

(1) initially block;

=214~

will be executed the first time the subroutine containing (1) is

1tered, but not subsequently. If any such statements occur
within a subroutine (or function), they must precede all other
statements of the subroutine (with the exception of declarations
associated with name-scoping; see below). This gives us a general
method for the initialization of variables.

A few extra words defining the semantics of initialization
blocks (1) somewhat more precisely are in order; precise conven-
tions are especially needed when (1) occurs within a recursive
subroutine. We take the initialization (1) to be precisely

equivalent to the statement
(2) if flag eq 0 then flag = 1; block;

where flag is a generated variable uniquely associated with the
initialization statement (1). The variable flag occurring in (2)
is taken to be external to the subroutine A in which (1) occurs
i.e., this variable is not stacked if A is entered recurisvely.

Thus the statements of block will be executed only when A is
invoked for the first time, even if A is entered recursively.

On the other hand, perfectly arbitrary statements, and even
recursive subroutine calls, may be contained in block.

In addition to the effects of eaxplicit initializations of the
form (1), the values of variables will be initialized in the
usage-defined situation described below; such implicit initializa-
tions will be made before any explicit initializations of the form
(1) are made. Implicit initialization is performed:

i. if a name labname is used as a label within a SETL routine,
then the variable of the same name will be initialized to have a
value equal to the unique label atom -corresponding to the label
labname. This initialization is useful in that it allows us to

write such expressions as
go to {<constl,labl>,<const2,lab2>,<const3,lab3>} (expr) ;

and thus to make use of "calculated go-to's" in flexible and
convenient form.

ii. certain very important initializations ‘are connected with

> use of names as procedure names (i.e., as the names of subrou-’

tines or functions). These will be explained in more detail below.

-215-

However, before taking up these points, we must explain the

general SETL namescoping rules which form their background.

5. Additional examples of the use of SETL.

Various impor£ant features of the SETL language, notably
its namescoping rules, stili remain to be explained. However,
since specifications of language features are dry and ultimately
confusing if the actual use of the language is not illustrated
by examples, we pause in our systematic account of SETL to give

a few examples.

A. Elementary examples:

We begin by giving a few elementary definitions of functions
to be used later, thereby illustrating, among other things, the
definitional facilities of SETL. The functions defined in the
following section will be used in later discussion. '

The following insertion and selection-removal operators are
useful. ‘

define a in b; b = b with a; return; end in;

define x from s; X = 9s; s = s less xX; return; end from;

This last subroutine chooses an arbitrary element from a set,
removing the element from the set at the same time.

The following useful function, which we write in infix form,
assigns a specified value to a quantity if the quantity happens

to be undefined:

definef val orm val2; return if val ne Q then val else val2;

end orm;

The very general sinister call conventions described earlier
in the present section can be used to define various functions

useful in the presentation of pushdown stacks as tuples:

definef top tup; return tup(#tup); end top;

-216-

definef newtop tup;
(load) x = tup(#tup); tup=tup(l: #tup-1); return x;;

(store x) tup(#tup+l)=x; return;;
end newtop;

The following function reverses a tuple:
definef rev(tupl); return[+: #tuple>j>1ll<tupl(j)>; end rev;

If a function f is defined by a set of ordered pairs, the simple

expression rev[f] gives the inverse function.

B. Sorting.

Occasionally, given a set s and a numerical function f defined
on s, one wishes to sort the elements of s according to increasing
values of f. The following procedure assi¢ns an element of s its

position place{s) in sorted order.

place = nf%;
(¥x € s)
place(x) = #{y € s|f(y) 1t f(x) or
(f(y) eq £(x) a place(y) ne @)} + 1;
end Y;
More plausibie sorting algorithms may also be represented in SETL.

Here is the slightly better <msertion sort, which sorts a sequence

of n elements, in place, in a number of steps proportional to n2.

(1 < ¥j < #seq)
(3 > ¥k > 1)
if seq(k+l) 1t seq(k) then
<seq (k) ,seq(k+l)> = <seq(k+l),seq(k)>;
else
quit VYk;
end if;
end Yk;
end Yj;

The following algorithm defines the bubble sort, which is

ahnut as efficient as the sorting method just described.

-217-

flow attop?

‘quit, reversed?
inter+ (n=n+1;)+
atbot? - attop,

(n=n+l;)+ (n=n-1;)+
attop, attop;
attop := n eq #seq; \
reversed := seq(n+l) 1t seqg(n);
inter: <seq(n+l) ,seq(n)> = <seq(n),seq(n+l)>;
atbot := n eq 1; ‘
end .flow;

The simple insertion sort algorithm describéd above will operate i
most efficiently if presénted with data aétually in order. The
sliding insertion sort or shell sort exploits this fact, incorporating
a device which causes an array being sorted to converge rapidly
to approximate order. The algorithm is as follows. A descending
sequence M /M _qi/s...,M) of integers is chosen, with M, = 1.
Successively, for each j from n to 1, the array {ak} to be sorted

is divided into Mj subsequences

a a a
17 "M.+1’ “2M.+1’
J J

87 3y 427 FoMm 427
j i ©

Each of thése arrays is sorted using the ordinary insertion sort
algorithm. Note that when j = 1 we have'M1 = 1, so that the
ordinary insertion sort algorithm is eventually applied to the
whole array, guaranteeing that complete order is eventually obtained.
Experience shows that it is advantageous to define the sequence

MM _qreee oMy
power of 2 not exceeding the number of elements to be sorted, and

then put Mj-l = Mj/2. In SETL, all this may be written as follows:

as follows: put M, = 2k—l, where 2k is the largest

m=1; (while m le #seq) m = 2*m;; m = m-1;
(while m gt 0 doing m = m/2;) -
(1 < ¥j < #seq) k = j-m;
~ (while k gt 0 and seq(k+m) lt seq(k) doing k = k-m;)
<seq (k) ,seq(k+m)>=<sgeq(k+m) ,seq(k)>;;

end Yj; end while m;
-218-

In this method

binary tree, to whose nodes the elements to be sorted are attached,

Next we describe the so-called tree insertion sort.
1> built up by attaching successive branches. The tree is built in
such a way as to ensure that if an element x is attached to a
particular node N, then x exceeds all the elements attached to

the left-hand sub-tree of N, and is exceeded by all the elements

of the’right—hand sub-tree of N. The rule for attachment of a new
eélement x is as follows. Examine successive nodes Yy, beginning
at the tree root. If x exceeds y, move down the tree to the right;
or if y has no right descendant, make x the right descendant of y.
If y exceeds x, move down the tree to the left, or if y has no left
descendant make x the left descendant of y. When all the elements
of the array to be sorted have been attached to the nodes,

tree to an array by the following recursive rule:
the left-hand sub-tree; then take the element

tree root; then linearize

'linearize' the
first linearize
attached to the
to get the top part of the sorted array.

the right-hand sub-tree
This procedure will on

the average sort an array of n elements in a time proportional to

n log n. In SETL,it appears as follows:
r =n&; % =n&; elt=n!; ntop = newat; elt(ntop) = seq(l);
(1 < ¥j < #seq) x = seq(j); top = ntop;
flow xbigr?
isright? isleft?
down+ hangright, down+ hangleft,
xbigr, xbigr;
xbigr := x gt elt(top);
isright := (r(top) is desc) ne ;
isleft := (&(top) is desc) ne Q;
down: top = desc;
hangright: r(top) = newat; elt(r(top)) = x;
hangleft: 2 (top) = newat; elt(L(top)) = x; end flow;
end Yj; .
seq = n&; traverse ntop;

define traverse top;

/* seq, elt, &, and r are all global and owned by a procedure

external to this routine */
[continued]

-219-

if top eq © then return;; ,
traverse % (top); seq(#seq+l) = elt(top); traverse r(top);

return; end traverse;

The simple selection sort is as follows: survey the n elements
of a set to be sorted to find the minimum element; remove it from
the array; and iterate. In SETL: ‘

sorted=nf; (while set ne n%)
sorted(#sortedfl)=[gig:xesét] X is minelt; set=set less minelt;

end while;

A variant of this basic idea yields the much faster tree selec-
tion sort, which may be described as follows. First, attach the
elements of the array to be sorted as the twigs of a binary tree
of appropriate size. Next, propagate values up to the tree root,
attaching to each node the minimum of the values attached to its
immediate descendants, and causing each node to point to that
immediate descendant node to which this minimum value is attached.
When this structure is built, it becomes trivial to locate the
original array ﬁinimum, detach it from the tfee, and move it to
a workspace in which sorted array elements are accumulated. After
this removal operation, the tree is ‘repaired by redetermining a
minimum-of-descendants value for all nodes above the node just
removed; after whiéh the selection, removal, and repair process
iterates until completion. '

Adopting the convention that the minimum-of-descendants is
always found down the left-hand branch, the following shows a way

that the above algorithm may be written in SETL.
/* first build the tree */

£ = nk; r =nk; v =nk; par = n{; trees = ni;
(1 < Vj < #seq) newat is node in trees; v(node) = seq(j);:
(while (#trees) gt 1 doing trees = newtrees;) newtrees = n&;
(while (#trees) gt 1) 1ln from trees; rn from trees;
newat is nd in newtrees; par(ln) = nd; par(rn) = nd;
if v(ln) gt v(rn) then <ln,rn> = <rn,ln>;;
<%(nd), r(nd), v(nd)> = <1n, rn, v(ln)>;
end while; .
if trees ne nf then strees in newtrees;
end while;

-220-

/* now tree is built; begin main selection and repair process */
top = onewtrees; seq = n&;
vhile 2 (top) ne) node = top;
(while % (node) ne) node = %£(node);;

seq(#seqg+l) = v(node); L(par(node)) = ;
(while par(node) ne Q) node = par(node);
flow - isldesc?
isrdesc? maker +
isfpigr? fixv, fixv,

switch+ fixv;

fixv; .
isgdesc := &(node) is fdesc ne {;
isrdesc := r(node) is rdesc ne {;
isgbigr := v(fdesc) gt v(rdesc);
switch : <f&(node), r(node)> = <r(node),?(node)>;
maker : <% (node), r(node)> = <r(node),0>;
fixv : v(node) = v(&(node)); : end flow;

end while par;
end while 2 (top);

The still more femarkable heapsort remedies certain of the
deficiencies of the tree selection sort, and- provides a method
for sorting an array in place and in a number of steps bounded
by n log n. It is in essence a binary tree selection sort in
which the treepointersare implicit, the descendants of the element
at array location j being the elements at locations 2j and 2j+1.
The algorithm is as follows.

(1 < Y¥n < #seq) m = n;
(while if m le 1 then £ else seq(m/2) 1t seqg(m))
. <seq(m) , seq(m/2) ,m> = <seq(m/2) ,seq(m) ,m/2>;
end while; end ¥n; ' ‘
(#seq > Ytop > 1) <seq(l) ,seq(top)> = <seqg(top),seq(l)>; m = 1;
(while 2 * m 1t top doing m = targ;) ‘
targ = if seq(2*m) 1t seq(2*m+l) and 2*m+l 1t top
then 2*m+l else 2*m; '
if seq(m) Lt seqg(targ) then
<seq(m) ,seq(targ) >=<seq(targ) ,seq(m)>;

else quit;
end if;
end while;
end VYtop;

~221-

Quicksort is a high-speed descendant of the simple bubble sort
It operates as follows: take the first element x of an array a
and, as in the bubble sort, compare it to its successor y, inter—.
changing x and y whenever x exceeds y. However, if y exceeds x,
interchange y with the element z having the largest possible index
consistent with the assumption that x exceeds zZ. As this process
proceeds, an incieasing fegion R_ of élements known to be less
than x will build up above x, and an increasing region of elements
R, known to exceed x will build up below x. Eventually x will
come into its proper place. Then, if either R_ or R, contains just
two elements, they may be placed in order by a single interchange;
in the contrary case, the procedure just described may be used
recursively to sort R_ and R . ‘

In SETL, quicksort appears as follows:

define quicksort(a,i,j); /* sorts part of array a between a(i)
and a(j) */

flow (i ge j)?
(return;), (i eg (jJ-1))?
interchange2+ | '(lowinX = i; hyinx=j;)+
(return;), - lowinxlesshy?
nextsmaller? sortparts+
interchange+ pushup+ (return;),
lowinxlesshy, lowinxlesshy; .

interchange2 : if a(i) gt a(j) then <a(i),a(j)>=<a(j),a(i)>;;

lowinxlesshy := lowinx lt hyinx;
nextsmaller := a(lowinx) gt a(lowinx+l);
interchange : <a(lowinx), a(lowinx+l),lowinx>

= <a(lowinx+l),a(lowinx) ,lowinx+1>;
pushup : <a(hyinx) ,a(lowinx+1l) ,hyinx>
= <a(lowinx+1l) ,a(hyinx) ,hyinx-1>;
sortparts : quicksort(a,i,lowinx-1); quicksort(a,lowinx+1l,3j);
end flow;
end quicksort;
"Merging proceddres of various kinds play a central role in many
of the most important methods for sorting large arrays by using
Fast internal sorts can also be built using merge techniques. We

shall describe one such sort,, the so-called natural two-way merge.

-222-

ey

It works as follows: given an array of elements to be sorted. use
a workspace of equal size, and merge elements from the top and bottom
the array into the bottom of the workspace as long as these
c.2ments may be used to form an increasing sequence oOr run.
Naturally, if both the top and tiie bottom element can be used to
continue a run, we first use whichever is smaller. When a run
cannot be continued, we start a new run, placing it in reverse
sequence of positions at the top of the workspace, until once more
the run can no longer be continued. ‘At this point, start a new run,
storing it at the bottom of the remaining workspace area, etc. When
the whole of the original array has in this way been transformed to
the workspace, interchange the array and workspace, and repeat.
buring this process, the number of separate runs into which the total
array is divided will be cut in half each time the whole array is
combed through, and eventually complete order will result.

In SETL, this procedure appears as follows.

start: bot = 1; top=#elt; xbot=1l; xp=top; flag=-1; extra=nult;
onward: if flag eq -1 then xXtop=xp:; XxXp=xbot;
else xbot=xp; xp=xtop; end if;
flag = -flag; _
if elt(bot) le elt(top) then
extra(xp) = elt(bot); bot = bot+l;
else
extra(xp) = eit(top); top = top-1;
end if;
(while top ge bot doing xp=xp+flag;)
flow topbest?
usetop, botok?

usebot, endrun;

topbest := elt(top) ge extra(xp) and.elt(top) le elt(bot);
botok := elt(bot) ge extra(xp);
-usetop : extra(xp+flag) = elt(top); top=top-1l;

usebot : extra(xp+flag) = elt(bot); bot=bot+l;

end flow;
end while;
endrun : if top ge bot then go to onward;;
elt = extra; if xtop lt #elt then go to start;;
Distribution or pocket sorts are, in a certain sense, dual to
merging sorts. The simple pocket sort is the method used to sort

punched cards on electromechanical equipment. The algorithm is
-223- ‘

as follows. A given collection of keys is to be sorted. One
regards these keys as integers to some base p, i.e. as sequences
dl o dk of base p digits. The items to be sorted are then
distributed into p piles or pockets, according to the least signi-
ficant digit dk. Then the piles are gathered up into a single
sequence, being taken in the order 0,1,...,p-1, and the distribu-

tion process repeated, first for the digit d then, after

k-1 '

regathering, for the digit d etc. . The relative positions

_o
assigned in this method to t&ozitems during the j-th distribution
pass will not subsequently change except as required upon examina-
tion of more significant key digits during a later pass; and thus
fully sorted order must emerge when all the digits of the keys
have been processed.

We may represent this algorithm in SETL as follows.

multi = £; qg=1; pocket=nult;

(while multi doing q = g * p;) ,
seqgq=[+:x(n) € dist(seq,p,qg,multi)]x;

end while;

definef dist(seq,p,g,multi); multi = £f;

(0 S“Vn < p) pocket(h+l) = nult;;

(¥s (k) € seq) key = ((s/q) is keyhead) //p+l;
pocket (key) = pocket(key) + s ;
if keyhead ge p then multi = t;;

end Y;

return pocket; end dist;

Thg radiz exchange sort is another fast key sort. It works as
follows. Regard each item of the array to be sorted as a boolean
string. On a first pass through the array, and by performing
appropriate exchanges, place all elements whose lead bit is zero
at the bottom of the array, and all elements whose lead bit is
cne to the top of the array. Then, recursively, apply the same
procedure to the top . and bottom of the array and to the second
through last bit of each item.

In SETL, letting b be the number of bits in a key, this procedure
appears as follows (note that in this example test conditions are
directly embedded in the flow tree; cf. section 3 above):

/* to sort .'seq . use the following call: */
radsort (seq,l, #seq,b) ;
define radsort(seq,bot,top,bp);if bot ge top then return;;

i = bot; j = top; ~224

(while i 1t j) flow (seq (i) (bp))?2
(seq(j) (bp))2 (i=i+1l;),
(J=3-1;), interchange;
interchange: <seq(i),seq(j)> = <seq(j),seq(i)>;<i,j>=<i+l,j-1>;
end flow;
' end while; mid=if seq(i) (bp)then i-1 else i;
radsort (seq,bot,mid,bp-1); radsort(seq,mid+l,top,bp~1l); return;

end radsort;

The Ford-Johnson Tournament sort reduces, to a level very close
to a known lIower level, the number of comparisons required to
sort n elements. However, the number of moves required will on the
average be proportional to n2. This method is therefore of interest

~only in the unlikely but conceivable special case in which the cost
of comparing items is so high relative to the cost of moving them
that attention really does focus exclusively on comparisons.
The algorithm is as follows. : Divide the items to be

sorted into n/2 pairs, arranging each pair so that its first
element exceeds its second. Then sort the pairs according to

their first elements, using the tournament sort procedure (recursive-

ly). This produces a pair of arrays ayreeerly and bl""’bm’ where
m = n/2, where the a's are in increasing order, and where ay > bj
for all j. Finding the proper position of one new element among p

already ordered others involves g comparisons, where q is the
smallest integer such that 23—1 > p; and such a location process
is at its most efficient when p is precisely of the form 29-1. so
then

bl,al,a2 form an ordered sequence of 3 elements, into which b3
may be inserted using two comparisons;
The set of elements bl’ a, ‘and b3 in proper position are then

3 in number, and b2 may be inserted among them using

two comparisons;
The set of bl
| - position, are then seven in number, so that first b5,

,al,az,a3,a4,'together with b2 and b3 in proper

and then b, may be inserted into position using 3
comparisons.
,...,b5, together with RN Y, are then 15 elements, and thus
bll’ and then blO""b6 may be inserted into position
using 4 comparisons, ‘

and so forth. -225-

This rather complex sorting algorithm may be written in SETL as
follows; we assume a sequence ttems 1is given for sorting, on whic

a user-supplied function le (x,y) is defined, which is "true" if x<y.

definef fordj(items) ;
if(#items) eq 1 then return items;;
au = ni; bu = nf; i = 1; /* unsorted a and b sequences. */
(while i 1t #items doing i = i+2;) |
X = items(i); vy = items(i+l);
if le (x,y) then <x,y> = <y,x>;;
au(#au+l)=x; bu(#bu+l)=y; end while;
oddone = items(i); /* only exists if #items is odd. */

a = fordj(au); /* sort the half-length sequence. */

(1 < ¥j < #a) /* rearrange bu in the same way that au was */ .
dummy = 1 < 3n < #alau(n) eq a(j); . /* rearranged. */
au(n) = Q; '

b(n) = bu(j); end ¥j;

b(#b+1l) = oddone;

/* now merge the components of 'b' into 'a' using a binary search.
"sequence 'a' will grow on the left, with its lowest index (lia)
becoming negative */

lia=1; jbot=i; jtop=1; length=1;

(while jbot le #b)

(jtop > ¥3j > jbot)
/* merge b(j) into the sequence 3 (lia:j-1) */
low = lia-1; high = j; '
(while (high-low) gt 1)
mid = high+low /2;
if le(b(j),a(mid)) then high=mid; else low=mid;;
end while;
/* b(j) goes between low and high (even in the cases
where it goes on an end, as in the case of b(lL */
(lia < ¥i < low) a(i-1) = a(i);:
a(low) = b(j); 1lia = lia-1l; end Yj;
jbot = jtop+l; length = 2*length+l; jtop=(liatlength)min #b;
end while; '
return {<p(l) - lia+l, p(2)>, p € a}; /* make it l-origin */
end fordj;
-226-

6. Namescoping, Variation of references caused by recursive sub-

routine calls and returns. Initialization rules applying to

subroutine names.

SETL provides a family of namescoping mechanisms, which it is
hoped are sufficiently general and powerful to be convenient in
the development of very large systems of programs. Of course, only
experience not presently available can testify to the success (or
failure) of the scheme proposed. It is hoped also that the
proposed conventions will support user languages with a useful
variety of user-level namescoping conventions. Here also, more
experience is required.

We regard a namescoping system as a set of conventions which
assign a unique 'resolved name' y to each 'source name' x appearing
in a mass of text. The particular y to be assigned to each
occurrence of x depends on the location of y within a nested,
tree-1like family of scopes.

The purpose of a namescoping system is of course to balance
the conflicting pressures toward globality and protection of names.
Unrestrictedly global use of names is unacceptable, since it creates
a situation of 'name crowding' in which names once used become, in
| effect, reserved words for other program sections. ‘Hard-to-diagnose
'name overlap' bugs tend to abound in such situations. 'Globalization'
of any subcategory of names can recreate this problem. For example,
in large families of subroutines it may become difficult to avoid
conflicts between subroutine names. In sufficiently large program
packages, it will be desirable to give even major scope names a
degree of protection.

'On the other hand, a system in which names tend very strongly to
be local unless explicitly declared global can tend to force one to
incorporate large amounts of repetitive declaratory boilerplate into
almost every protected bottom level namescope or subroutine. In a
language like SETL, which aims at the compressed and natural state-
ment of algorithms, this burden is particularly irritating.

What we therefore require is a system capable of dividing a
nntentially very large collection of programs into a rationally

anized system of 'sublibraries', between which coherent cross-
referencing is possible in a manner not requiring clumsy or elabor-

ate locutions.

=227~

‘More specifically, a namescoping scheme for SETL must address
the following problems:

i. All function and subroutine calls in SETL are recursive.

If a routine is called before returns from all previous invocations
have been executed, we must know which variables should be stacked
' prior to entry. These are the variables which are said to be owned
by the routine. Conventions unambiguously determining ownership

of variables are required. These conventions must apply not only

to names used as ordinary variables within procedures, but also

to names used as procedure arguments, store-block arguments, and

as labels. Similar issues arise in connection with names used as
macros.

ii. A procedure Py will "occasionally wish to access variables
owned by a second procedure Py- Our namescoping system will there-
fore have to include rules specifying when an occurrence of a name
x in Py references the same quantity as an occurrence of x in Psy-
Moreover, P will occasionally wish to reference the x of P, using
a local name y distinct from x. For example, this will be neces-
sary if distinct variables, both initially called x, but occurring
in two distinct procedures P, and Py, are to be accessed from
within Pq- Thus our namescoping scheme will not only allow inter-
procedure references, but will also support some degree of 'name
aliasing' in connection with these references.

iii. Procedure names will normally be used in a more global
‘manner than names designating variables used within procedures.
_Rules defining the situations in which distinct names reference
a single procedure, or in which identical names occurring in differ-
ent scopes. reference distinct procedures, are required. Similar '
remarks may be made concerning scope names themselves.

iv. Since in SETL variables may have procedures as values, and
since a single variable may at different moments have different
procedures as its value, we regard each procedure definition as
a type of initialization. Our namescoping'scheme must define the
initial value of each variable occurring as a procedure name.

v. In the absence of appropriate restrictions, the degree of

freedom in referencing implied by i-iv above would make all

-228~-

too easy the introduction difficult-to-find bugs connected with
mote references. To prevent this, our namescoping scheme must
involve restrictions which make unlikely the inadvertent use of
patterns of remote reference which substantially change the
meaning of a given section of code. That meaning which a code

passage seems to have should be the meaning which it does have,

even in the presence of remote references. We shall call any
violation of a restriction forming part of the SETL namescoping

scheme a scoping error. Various types of scoping error will be

pointed out as the details of restrictions are given.

It is hoped that the namescoping scheme which will now be
presented addresses these complex issues adequately. At any rate,
since in the present section quite a number of basic semantic
matters must be treated all at once, careful exposition, and
patient attention on the reader's part, are both in order.

Certain important characteristics of the SETL name resolution
conventions are noted in the following remarks, intended as
introduction to the detailed namescoping specifications given
below.

a. We deliberately break the conventionally very close connec-
tion between . subroutine boundaries and name scopes. Thus name
scopes enclosing several subroutines are allowed; at the same time,
a single subroutine may contain several independent name scopes.

b. We regard scope boundaries as logical 'brackets' possessing
a certain power to protect names within them from identification
with names of the same spelling. located outside. For flexibility,
distinct numbered levels of bracketing are provided. We stipulate
that, within a scope, two variables with different names are differ-

ent unless an explicit declaration is made.

c. We provide mechanisms for identifying variables which appear
in the‘same scope and have different names, or appear in different
scopes. The mechanisms for identificatiom act recursively. Two
methods are provided for the identification of variables appearing
in different scopes. Variables can be identified either by being

made global within a scope s, in which case they are transmitted to

-229-

scopes included within s, or by using explicit remote references
(see the include declaration discussed below).

d. An item Z occurring in a namescope ns can only be identified
with an item j occurring in a different namescope ms if 7 becomes
'known' in ms (or, conversely, if j becomes known in ns). In the
namescoping scheme to be presented, it is actually this notion,
that of an item occurring in one namescope becoming known in
another, that is fundamental; given this notion, the rules for
identification may be defined in a somewhat corollary way.

e. Each SETL subroutine or function is taken <pso facto to be
a namescope, of level 0. Note that such a scope, like any other
scope, can both contain embedded scopes and be contained in a .
larger scope. '

We now begin to present the SETL namescoping scheme in detail.

The text of a SETL program consists of a linear sequence of

tokens, grouped into a nested family of namescopes (which for

brevity we may refer to simply as scopes). A scope is opened by

a header line having the form

(1) scope <(optional) level indicator> <scopename>;

for example
' scope 3 optimizer;

Here, <scopename> designates a simple or compound name, which
names the scope. The optional <level indicator>, if it occurs,
has simply the form

<integer> or - <integer> .

The nonoccurrence of a level indicator is logically equivalent to
the occurrence of a level indicator with a value of 1. A scope
opened by the header line (1) is closed by the occurrence of a

matching trailer line

(2) end <scopename>;

for example

end optimizer;

All the text included between (1) and the next followihg matéhihc
line (2) constitutes the body of the scope headed by (1). A lir

 -230-

(2) matching each line (1) is required; the absence of a matching
ailer constitutes a scoping error. Several other forms of
scoping error will be described in the following paragraphs; a
text is acceptable to the namescope processor only if it contains
no scoping errors.
The text comprising a scope ns falls naturally into several
portions:
(a) imbedded subscopes;
(b) scope-associated declaratory text (to be described in more
detail shortly) ;
(c) other text, which we call the proper text of the namescope us.

This proper text is of course SETL code defining various SETL
subroutines, functions, etc.

The beginning of a scope ms imbedded within another namescope
ns is marked by the occurrence of a header line of the form (1) ;
if such a header line occurs in ns, we require that a matching
trailer line (2) be present in the body of ns (condition of well-
formed nesting). In such a case, we call ms a subscope of ns.

We say that ms is directly imbedded within ns if ms is a subscope

of ns, but is not a subscope of any (proper) subscope of ns. In

this case we call ns the parent scope of ms, and call ms an

immediate descendant of ns. If several scopes have the same parent

scope, they are said to be siblings of one another.

We require that scopes have names differing from the names of
their parents and the names of each of their siblings. This allows
us to refer to each scope in a unique manner by using a sufficiently
long name string formed by concatenating the scope's immediate
name with the name of its barent, its parent's parent, and so forth.
Thus, for example, in a sufficiently large program library the

following configuration of scopes might occur:

(3) scope linearprogramming;
scope optimizer;
X = o.
end optimizer;
end linearprogramming;

[continued]

-231-

“(3) [continued] scope fortrancompiler;
scope optimizer;
X = ...

end optimizer;

end fortrancompiler;

In the discussion which follows we shall, in order to refer
unambiguously to one of the two different scopes called optimizer
use "hyperqualified" names of the form 'optimizer.fortrancompiler’
and 'optimizer. linearprogramming'. Note, in connection with
the above example, that this allows us to refer unambiguously
to two different scopes,. both called 'optimizer'.

Similarly, two distinct variables named x, occurring within
these distinct scopes, can be distinguished by using the hyper-
quélified names 'x.optimizer.fortrancompiler' and
'x. optimizer.linearprogramming' .

Within the total mass of proper text (cf. (c) above) associated
with a namescope ns, various tokens will occur. For the -purposes
of the following discussion, it will be convenient to designate
eacﬁ such occurrence of a token t by a symbol showing explicitly
the nest of scopes in which t appears. For definiteness, we will

write this symbol as
(4) t. nsy. NS,. NS3.NnSy

where NS, s.. . NSy is the nest of scopes containing t, ns, being
the smallest such scope; nsz, the parent of ns,; nsg, the parent
of ns,; etc. The final scope ns, is an 'Qutermost' scope, and
hence a scope possessing no parent. A symbol (4) will be called
an item.

The item propagation rules to be described in the following

- paragraphs will make items occurring in one scope known in other
scopes. (This is the immediate effect of the include and global
declarations to be described shortly.) Any item known in a

namescope #8 is known there under some local alias. (The rules

determining the local aliases within ns of items known there but
not occurring there will be explained below.) Identical items (-

always reference the same object; beyond this, the central problem

-232-

of any namescoping scheme is to decide when two token occurrences,

t designated by the same item symbol, reference the same object.

The present namescoping scheme uses the following fundamental rule
to make this decision: if within ns there occurs an item (4), and
if an item i' not occurring within ns becomes known within ns under

the local alias t', then (4) and i' designate the same object if

either the t of (4) is an initial part of the compound token t',
or vice versa. '
In the rule just stated we meet the important notion of 'compound

token' for the first time; of coursée, a definition of this notion

is required immediately. A simple token is an item recognized as
integral by the lexical scanner for SETL; this may be either a
special symbol, constant, simple name, underlined name, etc. A

compound token is a sequence of simple tokens connected by occur=

rences of the 'underbar' symbol. Thus
x1

is a simple token, while
x1_scopel_chapter3
is a qualified token. Similarly,
+ and- maxop
are simple tokens; J

+_scopel_chapter3
and
maxop _scopel chapter3

are compound tokens. The successive simple tokens making up a
compound token are its parts. The lexical type of a compound
token is the lexical type of its first part. With the possible
exception of its first part, every part of a qualified token must
be a simple name.

Both simple and compouﬁd tokens are allowed to designate
variables, procedures,,etc..in SETL programs. However, compound
tokens piay a specific role in connection with the SETL namescop-
ing scheme. More precisely, the local alias under which an item

becomes known in a name scope ns distinct from the scope ms in

-233-

which it occurs will always be a compound token. In the manner
defined by the fundamental rule stated above, the structure of

" this compound token will then govern the identification of the

- item (4) with an item occurring in the namescope ns. |

For example, under the rules to be explained below an item 1

may become known in a namescope ns under the local alias
(5) x_optimizer linear .

Then a reference within ns having either the form

(5') ' ' X_optimizer
or
(5") Xx_optimizer linear

or simply
(5"!) ’ X

will reference the same object as <.

It deserves to be mentioned that we use '.' to separate scope
names (as in (4)) only in the present "meta-discussion" of name-
scopes. The SETL user will employ compound names involving under-
bars only. In the present meta-discussion, the use for different
but related purposes of the two different punctuation marks '.' .
and '_' prevents ambiguities of reference that could otherwise
arise. Suppose, for example, that we wished to discuss text

containing the following lines:

(6) scope programming;
. scope optimizer linear;
X = ...
end optimizer_linear;

end programming;

scope 1inear_pngramming;
scope optimizer;
X = 4eeg
end optimizer;

end linear programming;

-234-

The first x in (6) is referenced in the present meta-discussion as
b X.optimizer linear.programming ,

and the second x in (6) as

(7") x.optimizer.linear_programming .

If two separate punctuation marks were not available, these
references would be identical.

Two principal declaratory forms, a global'declaration and an
include declaration, are provided in the SETL namescoping scheme.
The global declaration allows items to be prbpagated from one
namescope ns to other namescopes physically'inéluded within ns.

It thus achieves effects similér to those achieved by the name-
scoping schemes used in ALGOL-60 and PL/1; however, globality is
less 'automatic' in the SETL scheme than in the scheme pfovided

by either of these two languages. The includé declaration allows
items to be propagated very selectively between namescopes standing
in no particular relationship of physical proximity. In this
regard it resembles FORTRAN 'COMMON'; however, our include conven-
tions are considerably,more systematic and general than those |
" used by FORTRAN. '

The syntax of a global declaration is

(8) <global declaration> = global <token>,...,<token>;
|global <token>;
lglobal <signed integer><token>,...,<token>;
|global <signed integer><token>;

<signed integer> = <integer> | - <integer> .

Examples are:
global addroutine,xl,x2,addroutine_y;

global 3 optflag;
global -1 case_flag;

A name nm available in a given scope ns and declared global in that

scope possesses a globality level,.defined as follows: if the global

declaration in which nm appears begins with a <signed integer> k ,
+h~ value of k determines the globality level of nm. . If such a

gned integer> is absent from the global declaration in which nm

~235-

appears, then the globality level of nm is (by default) equal to
the level of the scope ns.
Suppose, for example, that the three global declarations shown

above appear in the context

scope 2 libraryl;
- global addroutine,xl,x2,addroutine y;
global 3 optflag;
global -1 case flag;

Then addroutine, x1, x2 and addroutine_y have globality level 2;
optflag has globality level 3, and case_flag has globality level -1.

An item nm designated by a name available within a scope ns
and having a given globality level n becomes known within every
scope ms directly imbedded within ns, provided-that the
level of the scope ms does not exceed n. Moreover, if =nm
'penetrates' into ms (i.e., becomes available via globality
within ms), it has default globality level »n within ms, and will
therefore become known within all imbedded subscopes of ms,
provided that the level of these subscopes does not exceed n.
This global propagation of name availability will continue through
a series of mutually imbedded scopes until either a scope of level
exceeding n or a scope containing no subscopes is encountered.
An item nm known within a namescope ns by the alias xI is known
under the same aiiaé xl1 within all scopes ms to which it is
propagated through global declarations.

As already'noted, each SETL variable will be owned by a particular
procedure; when this procedure is entered, the current value of
the variable will be stacked; the value will be unstacked on return
from the procedure. The SETL conventions .determining variable
ownership are as follows. If a variable is known only within
a single procédure (i.e., within the namescope which is coextensive
with the procedure, or within several namescopes, all embedded with
the procedure) it is owned by:the procedure. If it .is known in a

body of text more extensive than a siRgle procedure, it is owned

by a nominal 'global system procedure' (and hence not stacked on

entry to any procedure) unless this general default rule is over-

-236-

ridden by the presence of an owns declaration. Such declarations

L1 have the following syntax:
(9) owns routnamel(varnamel, varnamez, ces),
routname2(varnamek+l,varnamek+2,...), el

Here routnamez, routnamez, and so forth are tokens, possibly compound,
which must designate items 7 which are subroutines or functions

(that is, 7 must appear following either the keyword

define or the keyword definef.) Moreover, varname ,, varname, , etc.
are tokens, possibly compound, which must designate variables.

Here 1s an example:

(10) scope treerouts; global nodes, &, r;
owns walk (nodes) ;
define walk(tree); nodes = n{&; walkfrom(tree) ;

return nodes; end walk;

define walkfrom(top):; /* a recursive routine */
top in nodes; ' : '
if 2(top) is newt ne § then walkfrom(newt);
if r(top) is newt ne 9 then walkfrom(newt) ;
return; -
end walkfrom;

end treerouts;

In this example, the set nodes is stacked on entry to the routine
walk, but not on entry to the (recursive) routine walkfrom. This
allows walkfrom to collect items in a set external to itself.
The items 7 and r are not stacked on entry to either routine. The
variable newt is stacked on each entry to walkfrom (though, as a
matter of faét, this is not essential to the logic of the above
programs) . '

. Note as an ekception to the above that -label items, i.e., items

designating labels (see below for details) are always owned by the
nominal global 'default' procedure and hence never stacked.
We now turn to describe the SETL include declaration. This
‘laration can be used when a scope.item ms {(more precisely, a

..—.le designating a scope item) is known within a scope ns (for

-237-

example, ms may denote a sibling scope of ns); use of this
declaration identifies one or more items known within ms with
items known within =ns.

In preparation for a discussion of the semantics of include
statements, we discuss their syntax. An include statement has
the form .

(11) include <list>, <list>, ..., <list>;
or, if only one <list> occurs, the simpler form

include <list>;

the syntax of <list> is as follows:

(12) <list> = <aliased name>|<aliased name> (-<token>,...,<token>)
|<aliased name>(<list>,...,<list>)| <aliased name>*
<aliased name> = <token> | <token> [<token>] .

Suppose that an include declaration of the syntax (11)-(12)
occurs within a namescope ns. As will be indicated in more
detail below, '-' is used to indicate that all items except
those designated by a list of tokens are to become known within
ns; a parenthesized list without a '-' indicates that precisely
the items listed become available within ns; while '*' is used
to indicate that ebery item known within some other scope also
becomes available within ns. Finally, square brackets are used
to achieve user control overNthe local alias under which items
become available.

The use of the include statement will be grasped most readily

through examples. First consider the following include statement.
(13) include optimizer (routs3(output(xl))):;

The semantic force of this declaration may be described as follows.
We assume that the declaration appears in a namescope xns in which

a scope item i, with alias optimizer is known. Within il , a scope

item i2 is assimed known under the name routss. Similarly, within
i3 an item i, with alias output is known and is a scope item.
Finally within i4 an item i5 is known with alias xzl1. Under thes
assumptions, the declaration (13) causes the item i5 to be made

available within ns under the alias xl1_output_routs3_optimizer.

-238-

Next consider the example (14) which uses more of the power of

2 include declaration.-

(14) include optimizer (routsl*,routs2(-flowtrace),
routs3 (input*,output)) ;

include output(x1l,x2);

Suppose that these include statements occur within a scope‘ns.
Suppose also that the name optimizer is the alias of a scope item
known in ns. An item i, known in optimizer as routsl is made
available in ns under the alias routsl_optimizer. In addition, the
'*!' appearing in (12) signifies that all items known in routsI
are to be incluaed in ns. If x is the alias of an item in routsli,
its alias in ns is x_routsl optimizer. All of the items in routs2,
less the item known therein as flowtrace, are propagated into ns;
this is the semantic force of the o appearing in (12). Input
denotes a scope item available in routs3. ‘As indicated by the
second '*' in (12) , all of the items known in Zinput including the
scope item itself aﬁe propagated into ns. If y is the alias of
an item in Znput, its alias in #xns is y_ input routs3_optimizer.
Next, an item with alias output routs3_optimizer 1is included.

This last item, which in accordance with our general conventions
may be referenced simply as output, is in faét referenced in the
second include statement contained in (14). This makes available
items il and i2'which are referenced in ns by the aliases
x1_output and x2 output.

The reader can verify that the effect of the two declarations
(14) is the same as that of the following more complicated single

statement.

(15) include optimizer (routsl,routs2(-flowtrace),

routs3 (input*,output (x1l,x2)));

We can supply an additional example concerning the use of the
sign '*' in an include declaration by making reference to the
earlier example (10). The names known in the scope treerouts

of (10) are nodes, 1, r, walk, and walkfrom. By writing

include treerouts*;

in a scope ns we make all these quantities available under local
aliases nodes_treerouts, % treerouts, r_treerouts, walk_treerout
etc. This allows the use of walk and walkfrom as routine names
and will normally be used to identify the 7 of treerouts with a
similarly named variable occurring in ns, etc.

The above examples do not illustrate the alias-modification
feature provided by the syntax (and semantics) of the inelude
statement. The use of this feature is shown in the following

example:

(16) include graphops(transitivity_ routines
(connectedness[cr] (flagl),

strong_connectedness|[] (flagl([scflag],flag2))):;

Suppose that (16) occurs within a namescope ns, and that the scope
name graphops (more precisely, the scope item designated by this
name) is available within ns. Then the include statement shown
above makes available within ns items the identities of which

are determined as if the brackets ('[]') were not present.

The brackets determine the alias under which each item is known

in ns. Specifically the item 7 whose alias is flagl in the scope
designated as connectedness_transitivity_ routines in (16) is aliased

in ns as
flagl cr_transitivity_routines_graphops;

this is because 'cr' ‘appears in the brackets following 'connected-
ness' and is substituted for 'connectedness' when the alias of <
is calculated. For much the same reason the items aliased as

flagl and flag2 in the scope strong connectedness are aliased in

8 as

scflag transitivity_ routines_graphops
and

flag2_transitivity_routines_graphops

The null string appearing in the brackets following 'strong_connect-
edness' in (16) is substituted for 'strong_connectedness';

two underbars coalesce to one. As above, these compound tokens

can be abbreviated in ns as scflag and flag2 so long as no ambig Yy

results.

~-240-

The above remarks concerning the include and global features
ovided in our name-scoping scheme should make the general use
and action of these features reasonably plain. Additional details
will be given below; the conventions which apply in logically
marginal cases can be deduced from an examination of the name-scope
routines themselves, SETL code for which is given later in the
present manuscript.

Various additional semantic rules and restrictions govern the
manner in which our namescoping rules apply.to procedures, procedure
arguments, store block arguments, labels in procedures, and to
macros. Some of these rules are deliberately restrictive, and
intended to avoid errors which might easily and inadvertently
creep in if over-free use of our very general declarations,
especially the include declaration, were allowed. We shall now
present these rules, thereby bringing our account of the SETL
namescoping conventions to a certain level of completeness.

1. By making items il’iz’ etc. occurring within the proper text
of one namescope ns known within another namescope ms, the SETL
namescoping scheme allows these items to be identified with
items jl’j2 occurring within ms, and then recursively with items
kl,k2 occurring within a third namescope ms'’, etc. A first restric-
tion on the use of the SETL namescoping conventions may be stated
as follows. We require that no identification made in consequence
of the transmission of items between namescopes lead to the
identification of two distinct items both occurring within a
single scope. (The explicit alias declaration described in a
later section allows this restriction to be relaxed.)

As an example of this rule, note that the following text is

illegal:

(17) vscoEe routl;
ceeou=0; v=1; ...
end routl;
scope rout; global y, routl;
scope rout2;
include u_routl{yl; ...
end rout2;

[continued]

~241-

scope rout3
include v_routllyl; ...
end rout3;

end rout;

Indeed, the declarations occurring in (17) would imply that
u.routl and v.routl were identical, and the rule just stated
excludes such identifications.

2. An item
(18) t.nsl. s+ eDSp

(cf. (4)) occurring in a scope statement of the form (1) is called
a scope item. Similarly,
2'. An item (18) occurring as a procedure name in a define or

definef statement is called a procedure item;
2". An item (18) occurring as a subroutine argument in a define or

definef statement is called an argument item.

2", An item (18) occurring in the context
(19) o ... (store t) ...

withih an explicit store block (cf. the section Supplementary
Discussion of Generalized Assignments below) is calied a store
block argument item.

2iv. An item (18) occurring as a label, i.e., occurring in a

context such as

is called a label item.

v
2 . An item (18) occurring as a macro name in a macro defini-

tion (see the fdllowing section for a discussion of the conventions
applying to macros) is called a macro-name item.

3. An item (18) which is either a scope item, a procedure

item, an argument item, a store block argument .item, or a macro

name item is said to be of definite initial designation. Other items

in a total SETL text are said to be of indefinite initial

designation.
A second restriction on the use of the SETL namescoping

conventions may be stated as follows. We require that no identi

cation made in consequence of the transmission of items between

-242-

namescopes identify two distinct items of definite initial

signation. On the other hand, our rules do allow an item of
definite initial designation to be identified with an item of
indefinite designation, and do allow two items il and i2 of
indefinite initial designation to be identified (provided,
however, that these two items do not occur in the same namescope;
cf. remark 1, above). '

The rule just stated makes it impossible to identify an item
designating a subroutine label with an item designating a
subroutine or namescope, etc. Thus, for example, the following

usage is illegal.

(20) scope all;

scope ab;
scope aj;

end a;

scope b;

end b;
end ab;

scope aj;

end a;
end all;

Indeed, the text (20) would lead to the identification (within scope

ab) of the items a.ab.all and a.all, which are distinct items both
having definite initial designation (since both are scope items).

Note however that the following usage is legal:

(21) define f(x);: ...
x = 0;
labela: y = 0;
end f;
define g(x); include labela flyl:
end g;

-243-

Note that in the context (21) the variable y.g references
precisely the same item as does labela.f. This rather artificia
but nevertheless legal text makes the label-atom i designated by
labela.f available within the subroutine g (which is also a name-
scope). Note however that SETL does not allow direct transfer
from g to this label. However, some other label atom might
- conceivably be tested within g for identity with i; other ways
of using this sort of construction will appear in examples
given below. h '

4. A procedure item (18) is also a valid SETL variable, whose
value is initialized (at compile time) to the procedure atom p
created by compiling the unique define (or definef) statement in

the namescope nest ns;.ns,.nsy within the compound token ¢
appears as procedure name. Similarly, a label item (18) is also a
valid SETL variable, whose value is initialized to the label atom whicl
corresponds to the unique use of ¢t as a label within the namescope
nest nsl.nszf +-+ DS .

This rule validates the normal SETL use of procedures and labels.
The following examples will illustrate other usages governed by

this rule. First consider

(22) scope routs; global forg;
definef f(x); ...; end £f;
definef g(x); ...; end g;

define switch(x); forg = if x gt 0 then f else g;
return;
end switch;

end routs;
Suppose that in the presence of (22) we also have
(23) scope more; include'routs*} ...; end more;

Then forg and switch are available within more. Before a first
call to switeh, forg will have the value Q. After calling

switch(-1), forg(x) will return the same value as g(x); after a

call to switch(+1l), forg(x) will return the same value as f(x).
We give a similar example of the use of label-valued variable-
Consider

-244-

(24)

labzero:

labone:

scope example2; globél lab, labzero, labone;
defihef ff(x); go to lab;

return 0; : -
return 1;

end ff;

define switch2(x);

lab = if x gt 0 then labzero else labone;
return; '

end switch2;

end example?2;

In this example, ff will return 0 immediately after a call to

switch2(~-1), and 1 immediately after a call to switch2(l).

5. Items (18) which are either scope itéms Oor macro-name

items will be called passive items. We impose the restriction

that no passive item, and no item which comes to have the same

reference as a passive item, can be used as a SETL variable.

Note for example that this rule makes the following usage illegal.

(25)

Note on the other

(26)

scope yy; global yy:
define f£(x); ...

yy = 0; ...

end f;

end vy

hand that the usage

scope yy; global yy:

scope inner;
scope moreinner;

end moreinner;
end inner;

end yy:

is legal. This usage makes the scope yy known within the scope

moreinner; the same effect would be obtained if the declaration

(27)

include yy_inner;

‘e present in moreinner.

-245-

6. As has been noted, each procedure body is at the same time
a namescope (of level zero). Each procedure item is therefore
also a scope item. However, we deliberately forbid either a
procedure item or an item which comes to have the same reference
as a procedure item to appear in include declarations, except in

terminal position. That is, such an item may not be followed in

an include declaration either by a parenthesized list of <token>s,
by a parenthesized list of <token>s preceded by the sign '-', or
by an asterisk. Note for example that this rule makes the follow-

ing usage illegal:

(28) definef f(x); ...
y = y+l; ...
end £; .
definef g(x); include f(y); ...
end g(x);

The referencing effect that (28) would attain (were it not illegal)

can be achieved by writing the somewhat clumsier

(29) scope auxil; global y: owns f(y);
definef f(x); ...
y = y+1l; ...
end f;

end auxil; '
definef g(x); include auxil(y):;

end g(x);

The restriction which has just been stated is imposed so as to
ensure that no variable used in a procedure can be referenced
remotely unless a visible declaration of intent to do so appears
in some relationship of physical proximity to the body of the
procedure. This restriction is mild; to abandon it would be to
invite trouble. '

The SETL concept of ownership of variables, which determines
the manner in which variable-value references will be changed by
recursive subroutine.calls and returns, was mentioned occasionally
in the preceding pages. We shall now give additional detail

concerning the semantic conventions relevant to this notion.

-246-

Every variable in a SETL program is 'owned' by some procedure,

e., 1s treated at SETL's basic level of semantic interpretation
as the k-th variable of some j-th subroutine. It is possible that
j should be zero; j = 0 corresponds fo a nominal 'default' procedure,
which owns certain classes of variables (such as those corresponding
to labels and procedure names) which are never either stacked or
unstacked. In regard to stacking and unstacking, subroutine argu-
ments are treated in much the same way as other variables: if the
j-th subroutine has m arguments, these will be its 1lst,2nd,...,mth
variables. That additional argument,often hidden, parameter of
functions which may become explicit as a store block parameter
if the subroutine is called in sinister moae (cf. the section
Supplementary Discussion of Generalized Assignments below) 1is
its m+lst variable.

When a procedure is entered, values are established for its
arguments, following which one begins to interpret the code
constituting the subroutine body. If the procedure is re-entered
recursively, then the value of each variable which it owns is
stacked before new values are established for its arguments. At
this same time, the value Q is established for each non-argument
. variable owned by the procedure. When return is made from the
procedure, an unstacking action returns all variables owned by
the procedure to their previous condition.

Significantly different rules apply to ’basé—level' and to
'recursive' entry to a prbcedure. An invocation counter, initially
set to 0, is maintained for each procedure; this counter is
incremented by 1 each time the procédure'is entered, and decre-
mented by 1 each time return is made from the procedure. A base-
level entry to the procedure is one which moves its invocation
counter from 0 to 1l; other entries are said to be recursive. When
base-level entry is made to a procedure, values are established
for its arguments, but all other variables owned by.the procedure,
rather than being set to {2, retain their pre-entry values. These
will generally be the values which they had at the last prior
return from the same procedure. Note also that, at the end of

npilation, but immediately before execution begins, the value

or each subroutine item will be initialized to an appropriate

-247-

subroutine atom, and the value of each label item will be
initialized to an appropriate label atom. The initial value @
will be established for all other variables.

Suppose that an item i in a procedure f has the same reference
as an item j in a procedure g. Suppose also that i is owned by g,
so that the value which it designates changes as recursive entries
to and returns from f are made. Then j always references the
current value of i; so that the value designated by j also changes
as calls to and returns from f are made. The following example,

which the reader is asked to ponder, illustrates this point.

(30) global y,z} owns procl(y):

define procl;

proc2; y = 1; proc2;

if z eq Q then z = 1; y = y+l1; procl;
else return; end if;

y = y+l; proc2; return;

end procl;

define proc2; print y;

end proc2;

proc2; procl;

The code (30) will cause. proc2 to be entered six times; thus six
values of y will be printed. On the first entry to proec2, y will
have its immediate post-compilation value Q; thus @ will be printed.
This value will be printed again when proec2 is entered immediately
after a base level call to procl. When proc2 is next called, y
will have been changed to 1, and 1 will be printed. Next, procl
will call itself recursively. On the recursive entry to procil,

the value Q will be established for y, and Q will be printed.
Following this, 1 will be printed. Recursive return from procl
will then restore y to its previous value of 2, which will be
incremented once more before proc2 is again entered, causing 3

to be printed. All in all, the output sequence produced by the
code (30) is

QI QI l, Q’ l, 3..

-248-

7. Macros

No language is ideally adapted to all possible application areas,
and for this reason it is desirable for languages to be modifiable
and extensible. To specify maximally powerful extension mechanisms
is a complex task. We shall evade this task at the present point,
and shall in fact confine ourselves to describing a relatively
simple SETL macro-processor feature. Note that macroprocessors are
relatively straightforward mechanisms allowing a programming
language to be modestly 'perturbed' in ways which a user can find
quite convenient. While generally not permitting the extensive
linguistic variation- made possible by more elaborate syntax modi-
fication schemes, they are generally easier to use than full-fledged
extensibility schemes: a rélatively light tool well adapted to
light usage. |

The SETL macro-system to be described will basically be conven-
tional and straightforward. However, some complications will arise
because of our desire to have the macroprocessor conform to the
namescoping conventions that have just been described. Note in this
connection that many of the general remarks concerning names and
namescoping made at the beginning of the preceding section also
apply to the use of names as the names of macros. 1In dealing with
large masses of text, it is important that the scope within which
a name has macro-name status be limited. If this is not the case,
macro names will steadily accumulate, and, given a sufficiently
large mass of program text containing macros, will become difficult
t0 manage. The scopes within which one desires to use a given
library of macro definitions will not always be physicélly contiguous;
thus a way of transmitting macros by something akin to an include
declaration is desirable. Finally, since program clarity should be
the exclusive factor controlling the order in which one arranges the
parts of a total text, it is best to avoid restrictions which force
macro definitions to appear in some fixed physical relationship to
invocations of the macros which they define.

The SETL macro-scheme which we now begin to describe satisfies
++~ first two of these desiderata, but not the third. This scheme

ows names to be used as macro names within specified namescopes,

-249- ‘

and to be transmitted between scopes, in the same fashion as
other names, by global and by include declarations. However,
in order to-avoid the problems of definition and of implementation
which would otherwise result, we require that macro-definitions
physically precede invocations of the macros they define. The
precise conventions which apply will be stated below.

pefore entering into a detailed discussion of these
name-scope related issues, we describe the more basic rules which
apply to macros and macro-invocations within a single namescope.

A macro-definition has one of the following forms

{la) macro name; text endm name;

(1b) macro name(argl,..;,argk); text endm name;
(lc) macro name(argl,...,argk;genargl,...,genargm); text endm name;
(1d) macro name(;genargl,...,genargm); text endm name;

In each of the definitions (la)-(1d), name is a (possibly
compound) token, which the definition designates as a macro name;
text is any string of tokens, constituting the so-called body
of the macro. Note however that in (la)-(1ld) text cannot contain
the token

(2) name

except under restrictions to be stated shortly.

A definition of the form (1b) involves user-supplied macro
arguments; (lc) involves both macro arguments and generated
macroarguments. Definitions of the form (la) involve neither

arguments nor generated arguments, and are consequently simplest:
we shall explain the argumentless macros of this form before going
on to discuss the somewhat more complicated cases (1lb)-(14d).

'~ The definition (la) causes each following occurrence of name

(other than those preceded by one of the keywords macro or end)

to be replaced by the text which appears in (la). In the presence
of several macrodefinitions, repeated substitution will be carried
out. Thus, for example, every occurrence of a following the

definitions

-250-

(3) macro a; b c; endm a;
macro b; d e; endm b;
macro c; £ g; endm c;
is replaced by an instance of the four-token sequence

(4) de fg

The body one one macro can contain the definition of another.
In this case, the imbedded macro-definition becomes active when
the macro containing it is invoked. For example, following the

definition

(5) macro a; macro b; ¢ d; endm b; endm a;

the token sequence b a b is replaced by the sequence b c d. Note
that b is only replaced by c d after the definition (5) is invoked
(by an occurrence of a). '

Note in connection with all of this that a macro definition is
not allowed to cross a namescope boundary, except when propagated
in the manner explained below. A

Macros with arguments, having definitions of the form (lb),
allow additional flexibility. If name 1is a macro-name with the
definition (1b), then it is invoked by the occurrence of any token

sequence of the form
(6) name (textq,...,text,)

In (6), téxtj denotes any sequence of tokens not containing a comma
which is not included within parentheses. An invocation (6) of the
macro (1lb) is replaced by an occurrence of the text body of (1b),
but within this text each occurrence of the j-th argument token
arg, is replaced by an occurrence of the corresponding jth actual
argument textj appearing in the invocation (6). The text of a macro
with arguments may contain imbedded macro-definitions; these defini-
tions become active when the macro is invoked. Macro expansion is
recursive, and outside-in. ‘ . ‘
A macro (lc) with generatéd arguments is invoked in precisely
the same way as the corresponding macro (lb), i.e., has the invoca--
tion (6). ' The effect of the generated macroarguments appearing in

') may be described as follows. Immediately prior to the expansion

-251-~

17 Py of

a reserved form are generated by the macroprocessor. These are tt

of the macro-invocation (6), a set of m unique names n

treated during macro-expansion as additional macro arguments; that
is, each occurrence of the j-th generated macroargument token
gendrgj is replaced during macro-expansion by an occurrence of

the freshly generatgd name nj. As is well known, this feature is
convenient for generating text required to contain unique variable
names, labels, etc.

A Formula (1d) shows the manner in which a macro with several
generated macroarguments but with no usef—supplied arguments is
defined.

Note that the second of two definitions of a macro with a given
name replaces the first. That is, expansion will be made according
to the first definition only until the second definition occurs,
after which expansion will be made according to the second defini—
tion. '

A name may be dropped from macro-status by writing the degenerate

definition
(7) ' macro name end;

In many cases tuples of fixed length will be used to store some
group of object attributes; in such cases the particular order of
components is irrelevant, though of course some order must be imposed
since each component has a significance distinct from all the
others. 1In such situations, it is desirable to avoid numerical
reference to particular components, since the use of numerical
references infests a text with semantically meaningless encodings,
always a thing best avoided for clarity and for modifiability. Of
course, the use of macros can alleviate this situation. If, e.g.,
we deal with objects represented by triples whose successive
components represent size, weight, and price, then, instead of
systematically writing obj(l), obj(2), and obj(3) for these three
attributes we can introduce the following three macros and write

size(obj), weight(obj), and price(obj):

. {8) macro size(x); x(1l) endm size;
macro weight(x); x(2) endm weight;

macro price(x); x(3) endm price;

-252-

However, since situations of this kind are quite common, and since
e avoidance of numerical references is much to be encouraged,
we provide an easy-to-use special macro form replacing patterns

such as (8). This is the definition form

(9) macro namel,namez,...,namek; endm;

The form (9) has precisely the same force as

(10) macro namel(x); Xx(l) endm name, ;
macro namez(x); x(2) endm name, ;

macro namek(x); x (k) endm name, ;

We now turn to describe the conventions which relate macros to
namescopes and govern the transmission of macros between scopes.
Macro names may be declared global and may appear within include
statements. (However, a macro-name may appear in an include
statement only in terminal position (cf. the preceding section,
paragraph immediately preceding formula (28)). That is, such
an item may not be followed in an include declaration either by
a parenthesized list of <token>s, a parenthesized list of <token’s
preceded by the sign '-', or by an asterisk.) Macro-definitions
‘are processed and macro-expansion performed during an initial,
advancing pass over SETL source text; in this pass, scope
boundaries are established, the items forming part of the proper
text of each namescope collected, and the processing of global
and include statements begins.

If a macro-name is declared global within a namescope ns, it
is propagated into every. scope physically included within ns, and
is then treated as a macro from the point at which its macro-
definition occurs, and thereafter either to the end of the scope
- ne or to the next following macro-redefinition of the macro name.
The comments in the following example show some of the implica-

tions of this statement.’

(11) _ scope withamacro; global mname;
' mname=mname+1; /* this is 1legal, since
mname has not yet.been defined to be
a macro. no expansion yet */

[éontinued]

-253~

macrd mname (x) ; Xx=x+1 endm mname;
mname (t) ; /* expands as t=t+l; */
scope inner;
mname(n); /* expands as n=n+l; */
macro mname(x); x=x-1 endm mname;
mname (v) ; /* expands as v=v-1 */
macro mname endm; /* dropping mname
from macro status */
mname = mname+l; /* this is again legal,
since mname has been dropped from macro
étatus, and is not expanded */
end inner;
mname = mname+l; /* still legal;
mname 1s still not a macro */

end ‘withamacro;

If a macro-name mn appears in an include statement within a
namescope ns, it is propagated into ns, and is treated as a macro
from the point at which the include statement occurs, and there-
after either throughout the proper text of ns, or to the next
following macro-redefinition of the macro name in ns. Note however
that for mn to become known as a macro name the first line of the
namescope ns' from which the include statement propagates mn into ns
must physically precede the end of ns, and mn must be known as a
macro name within ns'; its macro-definition must also precede the end

of ns physically. Comments in the following extended example
illustrate this rule.

(12) scope early; include next (mname) ;
mname=mname+l; /* this is legal, since the
scope next within which mname is known as
a macro has not yet been encountered */
end early}
scope next;
macro mname(x); X = x+1 endm mname;
mname (t) ; /* expands as t = t+l; */
end next; A
scope later; include next(mname) ;
mname(n); /* expands as n=n+l */
[continued]
-254-~

/* now we redefine mname */

macro mname (x); x=x-1 endm mname; .

mname (v) ; /* expands as v=v-1 */

end later;

scope latest; include next (mname),
later (mname [newn]) ;

mname (w) ; /* expands as w=w+l; */

newm(z); /* expands as z=z-1l; */
end latest;

end early;

The last few lines of the preceding example illustrate the
following rules. The final macro-status within a namescope #ns
of a name mn is that macro-definition (if any) which applies
at the moment that the scope-closing end statement is encountered.
If mn is transmitted from ns via an include statement to another
namescope ns' (which follows ns physically) then witﬁin ns', mn
will have what was its final macro-status within ns. As is shown
by the last few lines of the preceding example, this rule applies

uniformly.

8e Input and output.

Input/output conventions sufficiently substantial to allow SETL
to make use of~externally stored files will be described later.
Here, however, we shall describe only a rather rudimentary set of
input/output facilities, beginning with a basic method for handling
cnaracter strings in an essentially 'unformatted' way.

The allowable characters in a character string are all the
normal members of a standard character set, plus one additional
character designated er (end record). 1If s is an ordered pair
<st,n> consisting of a character string st and an integer n refer-
encing one of its characters, the system function record may be

called from within any expression, in the form
(1) record s .

-

> value v of this function is the segment of the string s¢, begin-
wang at its n-th character, and including all characters of s up to

but not including the first occurrence of the character er; when

-255-

record is called, it incréments the second component, n, of its
argument by # v + 1.

If the n-th character of s is er, then record returns the value
nulc and increments n by 1. If n exceeds the length of the string
S, fhen record returns the value Q, and does not increment its
argument n; this fact can be used to perform the SETL analog of
the normal 'end-of-file' test.

All this describes an action appropriate for an input reader.
Note in connection with the above that the ordinary analog in SETL
of a 'file' is a pair s = <st,n> consisting of a character string
and an integer referencing one of its characters. That is, the
basic SETL file system is providéd simply hy allowing very long
character strings to reside on an external medium, and by ensuring
that both the function (1), and the primitive which appends one
character string to another, are supported in a reasonably efficient
manner.

The function

(2) open str

is used.to link' SETL to an operating system for input/output
purposes. It acts as follows: 'str' is a character string, giving
the name under which some possibly very long character string s

is known to the operating system. The operation (2) requests this
string from the operating system; morever, the value of the

expression (2) is the string s itself. Thus, by writing

(3) X = open str;
or perhaps
(4) y = <open str,l1>;

we make the string s available within SETL as the value of the vari-
able x (or as the body of the 'file valued' variable y).
The body of a file is returned to the operating system by writing

(5) close (x,str) ;

Here, x is a SETL variable whose value is the body s of the file
to be returned, and str is a character string, giving the name

under which s is to be known to the operating system.

-256-

If a character string is returned to the operating system as
.nt output, the following conventions will apply. Each occur-
' rence in the output stream of the character er will terminate the
current print line with a period, followed by as many blanks as
are necessary to fill out the line. Lines not containing an
occurrence of the character er will always be terminated with a
blank, followed by a period. This convention allows character
strings of arbitrary lengtﬁ to be transmitted to the output
medium, and to be represented there unambiguously.

- Next, we describe two SETL statements giving a rudimentary
formatted input/output facility for use in connection with standard

form input and output files.. These have the form

(6) f print expr,,expr,,...,expr_,
and : ‘
(7) . f read namel,namez,...,namen;

‘respectively, where f is an expression having as value an ordered
pair <st,n> consisting of a character string and an integer. If in
(6) or (7) the prefix f is omitted, the variable name <Input is
understood in case (7); and the variable name output is understood
in case (6).

The form in which a set will be printed is determined by the
following recursive conventions. An 1nteger will appear in decimal
form, possibly preceded by a minus s1gn

A character string will appear enclosed within quote marks in
its normal external form, quote marks themselves being represented
by double quotes. Bit strings will appear either in "binary" forms
such as 01100101...01B, in octal form 0770070, or in a combined
"binary-octal" form, in which a binary prefix precedes the letter B
and an octal suffix follows it, the total bit-string being the
concatenation of these two separately represented parts. Note for
example that the strings 10111000B and 10B70 are identicaly; and
that either form may be used in a SETL program to represent a

bit-string constant. Real numbers will appear either in a decimal

form such as 90., 0.9, or .99, or in an exponential form such as
T -5, '
(£ al,.{.,an are the elements of a set s, and rl,...,rn are
the printed representatives of al,,..}an respectively, then the set

- -257-

{al,...,an}
will generally appear printed as the character string
{rl1,...,rn}

a similar convention applying to n-tuples. These simple recursive
rules will be used as long as the length of the character strings
it produces does not exceed two printed lines, and the level of
parenthesis nesting néeded within these character strings does not
exceed 4. When these limits are exceeded, subsets or tuples of a
composite structure which is to be printed will be assigned
abbreviating designators consisting of an integer followed by a
colon, and the significance of such abbreviations will be indicated
on separate printed lines, indentation being used appropriately

to improve the readability of the resulting text. Thus, for

example, a set that might have been printed as
(8) {{{{5,10,15,<20,[21,22,23,{{24,<25,8>},9}1>,3}}}}
will actually appear as
(9) {{{{5,10,15,1:,3}}}}
l: <20,([21,22,23,{{24,2:},91>
2: <25,8> .

The whole external representation of a set will be terminated
by a slash, i.e., by the sign / . This is a symbol
that is not allowed, unquoted, in a file to be read, and is used
during reads to check for possible misparenthesization or other
malformation of read input. The SETL read statement (7) will accept,
from a specified file, sets represented in the manner illustrated by
(8), and convert them into the abstract structures which they represent,
assigning the set thereby obtained as the value of the variable
name occurringvin (7). The number of characters of the <nput
string digested during such a read operation is determined by
the following rule: blank characters, up to a first non-blank
character, will be ignored.. If the first nonblank character is
either <, or { a 'balanced parenthesis' section of input, never

including an occurrence of the sign /, will be digested. If

-258-

the first nonblank character is /, it will be ignored. If the
trst nonblank character is anything else (but not a comma, >,
or }) it will be read, and returned as the result of the read
operation. Blanks (except quoted blanks) will be ignored, and
single characters er (but not double characters er) will be

ignored also.

-259-

Item 15. A LIBRARY OF EXAMPLES SHOWING THE USE OF SETL

1. Algorithms for lists and trees.

A unilateral list may be regarded as a set of items, supplemented
by a function next(item) such that next(item) = @ for the last item.
In addition, a pointer first locating the first item in the list must
be given. The basic list operations are insertion after a given
position and deletion of the next item after a given position.

Note that the set of items in the list is the union of the domain

and range of next, so that the list is completely specified once

next 1s given. The following insertion and deletion routines insert
or delete the first element if called with Q as parameter;
otherwise they insert or delete after whatever list position their

parameter specifies.

define item insafter prev; /* next and first are assumed to be global*

if prev ne i then

<next(item) ,next (prev)> = <next(prev) ,item>;
else

<next(item) ,first> = <first,item>;
end if;
return;

end insafter;
define delafter item; /* next and first are assumed to be global */

if item ne @ then

nx = next(item); if nx eg Q@ then return;;
next(item) = next(nx); next(nx) = ;
else

oldfirst=first; first=next(first); next(oldfirst)= Q;
end if;
return;

end delafter;

A bilateral, circularly linked list may be regarded as a set
of items with functions next(item), prev(item) defining the
successor and predecessor of a given item; the last item is
considered to be the predeéessor of the first item, and the first

-260-

the successor of the last. The first item on the list is designa-
1 by first. Note that the three objects next, prev, and first

together specify the list. The basic operations are insertion of

an item after a given position and deletion of a given item. These

procedures may be written as follows.

/* in the two following routines next, prev, and first
are assumed to be global */

define item insbilat prec;

pre = prec; /* to avoid changing argument */

if pre eq 2 then /* empty list or insertion at head of list */
if first eq 9 then /* initialize empty list */ ‘

<next(item) ,prev(item) ,first>=<item,item,item>; return;

else <pre,first> = <prev(first);item>;; /* insertion at head */

eﬁd if pre; /* now pre indicates the point of insertion */

<next(item), next(pre), prev(item), prev(next(pre))> =

<next(pre), item, pre, item>; '
return;

end insbilat;

define delbilat item;
<next (prev(item)), prev(next(item))> =
<next (item), prev(item)>;
if item eq first then
first = if next(item) is x ne item then x else Q;
end if;

next(item) = Q; prev(item) = Q;
return;
end delbilat;

A binary tree is a set of nodes '‘and two descendant functions
r and & (right and left descendants); a given top node ntop must
also be specified. The tree is then entirely defined by these
two functions and the specified top node. It is often necessary
to traverse a tree in some standard order. We take as an example
- left-top-right traversal order, and generate the sequence
or nodes in the order traversed. Note that seq must be owned by

some routine other than ¢raverse.
-261-

/* in the following seq, I, and r are assumed to be global */
seg=nult; traverse ntop;

define traverse top;

if top eq Q then return;;

traverse 2(top); seq(#seg+l) = top; traverse r(top);
return;

end traverse;

An ordered tree is a set of nodes with a descendant function
desc(node,j) defined for j in some finite (possibly null) range.
Ordered and binary trees stand in an interesting 1-1 relationship.
Given an ordered tree, it may be converted to a binary tree by
designating the first descendant of a node N as N's left descendant;
and by designating desc(n,j+1) as the right descendant of desc(n,j).
In SETL:

L

r

{<n,desc(n,1)>, n € tree | desc(n,l) ne Q};
{<desc(n,j) ,desc(n,j+1)>, n € tree, 1 < j < #desc{nl}};

To invert the above transformation, one takes a binary tree and
makes (n) and the successive right descendants of (n) in a binary
tree as the successive descendants of n in the corresponding ordered

tree. 1In SETL we have:

desc = n&;
(Yn € tree)
k=1; d= 2(n);
(while d ne @ doing k = k+1; d = r(d);)
desc(n,k) = d;;

end Yn;

To form an isomorphic copy of a binary tree, the following procedure
may be used. Note that a similar procedure will serve to form an

i somorphic copy of any structured object:

copy = {<n, newat>, n € tree}
2 = & + {<copy(n),copy(&(n))>, n € tree | &(n) ne Q};
r = r + {<copy(n),copy(r(n))>, n € tree | r(n) ne Q};

-262-

A threaded tree is represented by a set tree on which two
nctions r(node) and £ (node) are defined, each for all but
one node. The values of each of these functions are ordered
pairs. We have r(node) = <node',flag>, where node' 1is either
the right descendant of node or its successor in left-top-right
traversal order, depending on whether flag eq t or flag eq f.
Similarly, 2(node) = <node',flag>, where node’ is either the
left descendant or the traversal-order predecessor of node.
The following example, showing flagged pointers as dotted

arrows, illustrates the notion of a threaded tree.

Fig. 1. A threaded tree

To traverse a threaded tree in left-top-right order we may use

the following code:

seq=nult; node = top;

flow isldef?
islflag? add+
down+ add+ isdone?
isldef, isdone, . quit, down+
- isrflag?
isldef, add+
isdones;
- [continued].

-263-

isldef := f(node) is desc ne ;

islflag :=desc(2) eq t;

down: node = hd desc;

add: seqg(#segt+l) = node;

isdone := r(node) is desc eq {;

isrflag := desc(2) eq t; end flow;

The following code inserts'an element into a threaded tree, as

the right descendant of a node nod:

define elt putright nod;
/* 1 and r are assumed to be global */
<r(elt),%(elt), r(nod)> = <r(nod),<nod,f>,<elt,t>>;
if r(elt) (2) /* so that elt has an actual right descendant */ then
desc = r(elt) (1); /* now descend to the left to repair
the thread */
(while % (desc)(2)) desc = L(desc);;
2 (desc) = <elt,f>; /* elt is the traversal-order
_ ' ' predecessor of desc */
end if;
return;

end putright;

These processes are illustrated by the following figure, which
shows the changes necessary to insert a node x as the right
descendant of the fourth node in the threaded tree of Fig. 1.

Only changed 'thread pointefs' are shown.

Fig. 2. Adding a left descendant in a threaded tree.

-264-

To thread an unthreaded tree, we first let seq be its nodes in

ft-node-right traversal order, as defined by a previous algorithm.
Then we use the following straightforward code, in which tree
denotes the set of all nodes in the tree:

suc={<seq(n) ,seq(n+l)>, 1 < n < #seql;
pred = {<x(2),x(1)>, x € suc};
(Vn€ tree) £(n) = if 2(n) ne Q then <&(n),t>
else if pred(n) ne @ then <pred(n) ,f> else Q;
r(n) = if r(n) ne 9 then <r(n),t> |
else if suc(n) ne @ then <suc(n),f> .else Q;

end Yn;

It is simpler to convert a threaded tree to an unthreaded one,
as follows:

if(if 2(n) is thdesc eq © then f else thdesc(2))
then thdesc(l) else {;
if (if r(n) is thdesc eg @ then f else thdesc(2))
then thdesc(l) else Q;

(VYn € tree) 2(n)

r(n)

end VYn;

SETL cannot be used to express machine level optimizations.
However, it can be used to express optimizations at an "abstract"
or "algorithmic" level. Here, for example, is a parsimonious
method, due to Schorr and Waite, for traversing a binary tree;
in distinction to the methods given earlier, it avoids the use
of a recursion stack. The idea is this: as one descends down a
chain of branches to traverse the tree, one reverses the pointers,
to get a chain of pointers allowing subsequent ascent. During
ascent, the pointers are repaired. We mark those nodes n such
that r(n) is the parent of n; in a machine-level implementation,

at most one bit is needed for this mark.

-265-

seq = nult; mark = nf; node = top; par = Q;

flow : isldesc?
dleft+ - notenode+
isldesc, isrdesc?
dright+ hasparent?
isldesc, ismarked? done,
upright+ upleft+
hasparent, notenode+
‘ isrdeéc;
isldesc: = %(node) ne Q;

dleft: <2 (node) ,node,par> = <par,ﬁ(node),node>;
notenode: seq(#seg+l) = node;
isrdesc: = r(node) ne Q;

dright: <r(node),ndde,par> = <par,r(node) ,node>;

mark (par) = t;
hasparent := par ne {;
ismarked := mark (par) ne Q;

upright: <node,r(par),par$ = <par,node, r(par) >;
upleft: <node, & (par) ,par> = <par,node,f (par) >;
end flow;

<done:> ...

-266-

2. A lexical scanner algorithm.
In the following pages we will use SETL to describe a number

of algorithmic processes basic to the compilation of programming
languages. We begin by describing a class of lexical scanners.
These are programs, normally belonging to the very first stages
of a compilation process, which accept an input string and break
it up into separate tokens, i.e., strings of one or more characters
representing words of a language. As it is calculated, each
token is classified according to type (e.g., name, integer,
character constant, boolean constant, etc.). Basic input
conversions, as for example the conversion of a character string
representing an integer to the internal form of the integer, may
" also be performed during'leXical scan.

Because of its significant influence on the overall efficiency
of the first stages of processing, one ﬁormally desires a lexical
scanner to be quite fast. For this reason, lexical scanning is
customarily performed by a programmed finite-state automaton which,
driven by an incoming sequence of characters, undergoeé a sequence
of state transitions until a 'token end' state is reached; then
any necessary conversions are performed and a token is emitted.

We shall describe a lexical analyzer of this kind. The following
background facts should be borne in mind.

i. The states of the automaton correspond to states of
uncertainty concerning the nature of the token being constructed.
When a new token is started, the scanner is in a state of complete
uncertainty; this state is called nxt¢t in the formal algorithm
below. As characters are received, the state of uncertainty will
change, always diminishing; when a token-end state is reached,
the type of the token is entirely known, and is determined by the
final condition of the automaton.

ii. The whole alphabet of characters belonging to a language
may for the purposes of lexical scanning be regarded as consisting
of a relatively small number of character classes (e.g. alphabetics,
numerics, separators, alphabetics having special significance, etc).
A function type(character) is therefore employed by the lexical

nner, which uses the value of this function and its own state

-267-

to find an action table entry which describes the action to be
taken next. In the following algorithm, allowed standard actions
are as follows: .

a. end - end the present token without adding any additional
characters to it, and return a triple defining the token itself
and its lexical type.

b. cont (continue) - add the current character to the token
under construction, and advance to the next input character;

c. skip - advance to next input character;

d. go (change state) - change to a specified state and
then continue as in (b); '

e. do (perform auxiliary process) - perform a specified
seguence of operations including the execution of auxiliary code
blocks supplied by the programmer. This code may examine and
modify the token under construction, the state of the finite state
automaton, the action parameter (see below) which the lexical
scanner uses, any of its pointers, etc. If this code is some sort
of conversion routine, it may supply token-associated data to
the lexical scanner. In the algorithm which follows, auxiliary
routines to be executed are all taken to be part of a common

programmer-supplied auxiliary process package called rpak.

The lexical scahner routine which follows is called nextoken.
It is written as a function which when called will break one
additional token out of a given character string, returning as
function value this token and its lexical type.

The forms assumed for the action table entries used in
nextoken are as follows.

An entry may be:

aa. one of the keywords end, skip, and cont; or

bb. an ordered pair <go,statename>, where statename is the
name of a lexical analyzer state; or

cc. an n-tuple <do,routname,...>, where routname is the name
of an auxiliary routine, and where subsequent components are
either end, cont, go followed by statename, or do followed by
routname. |

The detailed form of our lexical analyzer is as follows.

.—268-

definef nextoken;

/* the tables 'type' and 'table', and the code block 'rpak'
are produced by the routine 'setup' given later in
this section */

initially tokbegin = 1;

<nxt, end, go, skip, cont, do> = <'nxt','end',k6'go', 'skip',
'cont','do’'>;

/* we assume for simpliéity (but somewhat unrealistically)
that the entire input string is read in before lexical
scan begins. Note that the input string is broken into
successive records, and terminated by a double end record */

/* we assume that the file input has been opened for reading
by a prior instruction */

/* do read-in operation until double end record */

this = @; c¢string = nulc;

(while this ne nulc)
this = record(input);
cstring = cstring + this + er;

end while;

end initially;

state = nxt; curpointer = tokbegin-1l; data = Q; token = nulc;

loop: curpointer=curpointer+l;

action = table(state, type(cstring(curpointer)));
switch: go to {<end,endc>,<go,goc>,<skip,loop>,<cont,contc>,
<do,doc>} (if(type action) eq tupl then
hd action else action);

. goc: state = action(2);
contc: token = token + cstring(curpointer); go to loop:;
endc: tokbegin = curpointer; return<state,token>;
doc: rout = action(2); action = action(3:); rpak(rout);

go to if action eq @ then loop else switch;

end nextoken;

This routine is simple enough; as we shall soon see, the routine
:up which supplies the tables needed by nextoken is rather more

complex. Coneerning sétup, we have made the following assumptions.

-269-

i. It finds the information needed to define the character
type function type, the action table table, and the comprehensive
package rpak of auxiliary processes at the head of the étring
input, all represented in a form which can be read using the SETL
read statement. This information is réad, checked for accuracy,
and converted appropriately to produce the required tables.

ii. In more detail, the information supplied to setup is as
follows. First, a string ihcluding every valid character other

than er is given. For SETL,this would be
'abcde fghijkimnopgrstuvwxyz0123456789 () [1{},*+-/=2"<><>Q#¥3:|."

Note that a double.quote within quote marks represents a quoted
single quote.
After this string, there follows a tuple

<ctypel,...,ctypen>

in external form (i.e., in a form suitable for ingestion by a
read statement), defining the full collection of character types
with which the lexical scanner will be concerned.

Suppose, for example, that we consider a hypothetical language
lexically somewhat like FORTRAN,in which the allowed lexical
types are as follows. ,

a. Integer: any sequence of digits, embedded blanks allowed.

b. Real number: an integer, followed by a decimal point,
and optionally followed by a second integer.

c. Name: any string of nonspecial characters beginning with
an alphabetic; no embedded blanks allowed. |

d. Special character: any character other than blank or period..

e. Period delimited operator: any string of nonspecial
characters, beginning with an alphabetic, containing no blanks,
and delimited fore-and-aft with a period. Examples would be:
.ge. , .shift. .

f. Hollerith constant: any number of digits, followed by the
letter h, followed by an arbitrary character string of the length
specified by those digits. An example would be: 5hhocha. We
suppose for simplicityAthat er fﬁnctions as an end-of-statement

signal, no continuation-card feature being provided.

-270-

For such a language, the relevant charactsr types could be

xlared to setup in the following form
(1) <a,h,'1l',+,.,b%,er> .

Here 'a' is used to designate the type of the typical alphabetic
(which is to say alphabetics not equal to h, since h plays a
special role in hollerith constants); 1 to designate the type

of a numeric; + to designate the type of a special symbol other
than '.', etc. We use 'er' to designate the type of an end record

symbol, 'bf' to designate the type of a blank.

iii. Next there follows a set of tuples, which together define
the lexical type of every possible character. These n-tuples

have the form
<type,cstringl,cstring2,... >

where type is a previously declared lexical type, and cstringj
is a string of characters, all of which are declared to have this

'er' is however reserved to

type. The special character string
represent the SETL ‘end record character er.

In the case of our hypothetical FORTRAN-like language (which
however is assumed to include the full SETL character set) we

would have
(2) {<a, abcdefgijklmnopqgrstuvwxyz>,<'l','0123456789"'>,
<, 120 [1{I*4=/=<><>088Y 3: | " €'>, "
<.,'.'>,<h,h>,<er,'er'>,<bs," '>} .
iv. Next there must follow a set of ordered pairs serving to

define the action table of the lexical processor. Each of these

pairs has the form
<state, <aentl,aent2,...,aentk>} .

Here, state is a state 6f the lexicalvscanher, while .each aent

is an action table entry, having one of the allowed forms described

above. The number of gent terms shown in the sequence displayed

above must equal the number of character types declared; the j-th
't term will be consulted when a character of the j-th type is

encountered ‘and the lexical scanner is in the specified state.

-271-

In the case of our hypothetical FORTRAN-like language, we might
employ the following lexical states (which, as have already bee
noted, correspond to the various states of uncertainty which could

arise as we progressively scanned a token from left to right):

nxt - a new token is just starting;
nm - a name is being scanned;
irh - an integer, a real number, or a hollerith constant

is being scanned, but we are still hot sure which;
ir - having encountered a blank in a string of digits/,

we are sure that an integer or a real is being scanned;
dip ~-. having encountered a period, we are scanning either

a real or an integer followed by a period delimited

operator;
r - definitely scanning a real number;
pd - definitely scanning a period-delimited operator.

In the case under consideration, our action table would be described
as follows, recalling that corresponding character types are
<a,h,'l',+,.,b%,er3);

(3) {<nxt,<<go,nm>,<go,nm>,<go,irh>,<do,spend,end>,
<go,pd>, skip, <do,erend,end>> ,
<nm,<cont,cont,cont,end,end,end,end>>,
<irh,<end,<do,holcon,end>,cont,end,<go,dip>,<go,ir>,end>>,
<ir,<end,end,cont,end,<go,dip>, skip,end>>,
<dip,<<do,back,end>,<do,back,end>,<go,r>,end,end,<go,r>,end>>,
<r ,<end,end,cont,end,end,skip,end>>,

<pd,<cont,cont,cont,end,end,end,end>>} .

v. Next must follow text defining every auxiliary process
mentioned in the state table. This text is supplied as a set of

ordered pairs, each having the form
<rname, text> ,

where rname 1is the process name, and text 1is its body. This
collection of pairs is converted to a complete body of code having
the form

' rname, : textl return;

rname2: text2 return;

-272-

together with a calculated go-to statement which, supplied with
identifier, invokes an appropriate auxiliary process.

The auxiliary routines may refer to the lexical analyzer's
'beginning of present token' pointer tokbegin, to its 'current
symbol' pointer curpointer; to token, the token being formed;
and to the scar state state. ©Note that nextoken returns state,
and token to the main program upon encountering an end
commanc

The value of state when the lexical action end is executed
therefore defines the lexical type of token to the main program.
In certain cases where an end is to be executed forthwith, our
auxiliary routines may therefore set state to values not appearing
in the action table. This is merely to inform the main program
that some very special situation, such as an end-of-record, has
been detected. When nextoken is called again, state will always
be set to nxt. Note as an example of this that in the package

'er' indicates

of auxiliary procedures which follows, the state

end of current record reached, and 'ef' indicates end-of-file.
Considering our hypothetical FORTRAN-like language once more,

and noting the occurrences of auxiliary process names in tﬂe

action table description given above, we would supply the following

auxiliary processes.

(4) {<spend, 'token=cstring(curpointer) ; curpointer=curpointer+l}'>,

<erend,'if cstring(curpointer+l) eq er then

curpointer curpointer+2; state = "ef"; token=er+er;
else state = "er"; end if;'>,

<back, 'curpoiﬁter = curpointer-1;'>,

<holcon, 'n=dec token; curpointer=curpointer+l;

if 0 < 3j < n|estring(curpointer+j). eq er then

token = cstring (curpointer:j); curpointer=curpointer+j;

else token = cstring (curpointer:n); curpointer=curpointer+n;

end if;’'>}

~273-

Note that (1), (2), (3), and (4) together constitute a complete
description of a FORTRAN-like lexical scan. Of course, from anot
point of view,‘the text of nextoken and of the associated routine
setup must also be reckoned as part of fhis description.

After ail these preliminaries, we shall now give the SETL code
for the lexical setup routine. This code has, in a miniature way,
many of the features associated with larger compilers. It is in
fact a compiler of sorts’, transforming tables like those shown above
into tables directly interpretable by the rather simple nextoken
algorithm. Typically enough for programs of this kind, much of
setup is concerned with verification of the correctness of the data
presented to it, and with the printing of diagnostics where required.
Aside from this and from some rather straightforwgrd transfo mation
of table form, the principal responsibility of setup is to build
up text for the routine rpak. The assumed form for the rpak text

is as follows.

aefine rpak (numrout) ;

go to {<l,rout.>, <2,rout,>, ...} (numrout):

1 2

routl: textl return;
rout, : teXt2 return;

end rpak;

Here, Poutj is the j-th auxiliary procedure name supplied by the
programmer, and textj is the text defining this procedure.

The detailed setup code is as follows:

/* we begin with some simple auxiliary macros */

macro readcheck(x); /* check that read ok */

if X eq Q then print 'run terminated by illformed input’';

exit;; endm readcheck;

macro setype(c); /* adds additional type specification for
character */

typef{c} = typef{cl with type; return; endm setype;

-274-

macro e; /* error procedure */ errors=errors+l; endm e;

finef htf x; return x(2); end htf;

definef pair x; return if type x ne tupl then f

~else (#x) eq 2; end pair;

define setup(typ,table,rpak,cstring); /* main setup routine*/

nxt = 'nxt'; errors=0; read allch; readcheck(allch);
allc = {allch(n), 1 < n < #allch} with er;
read ctypes; readcheck(ctypes); typef = n&;

(Ytup € ctypes) <type,cstring> = tup;

if cstring = 'er' then setype(er);
else (1 < ¥j < #cstring) setype(cstring(j)):;

end if:

end Ytup;
read seqtypes; readcheck (segtypes);

types = {t, t(n) € seqgtypes}; types2 = htlltypefl];

/*
if

if

/*
if

if

typ

/*A

check that types and types2 agree */
types —'typeSZ is ers ne nf& then
print 'types specified but not used are:', ers; e;;
types2 - types is ers ne n then .
print 'unspecified types are uséd; these are:', ers; e;;
check that all characters have unique type specified */
{c € allc | typefi{c} eq n&} is ers ne n& then
print 'type unspecified for following characters:', ers; e;;
{c € allc | (#typef{c}) gt 1} is ers ne n& then
print 'type multiply specified for following characters:',
ers; ej; _
= typef; read rawtable; readcheck(rawtable);
statesused = hd[rawtable];
check that 'nxt' belongs to statesused, and that there are

no repetitions */

if n('nxt' € statesused)then

if

/*

print 'required state 'nxt' omitted from table'; e;;

{st € statesused | (#rawtable{st}) gt 1} is ers ne n{ then
print 'multiply defined states:', ers; e;
force to single valued function */

(Vx € ers) rawtable(x) = srawtable{x};;

| 1f;

~-275-

/* check that right number of terms in all sequences */
if{st€statesused| (#rawtable(x)) ne #seqtypesl} is ers ne nf& then
print 'states defined with wrong number of type entries:',ers,<,,
/* convert to two dimensional table */
table = {<state, stp(j), rawtable(state) () >,
state € statesused,stp(j) € seqtypel;
/* check that all non-tuple entries are either end, skip, or cont*/
"if{<x,y,table(x,y)>, x € statesused, y € types |
type table(x,y) is tent ne tupl and n tent € {'end','skip','cont'}
or(type tent eq tupl and (n (hd table(x,y))€{'go’','do"'}}
or ((hd tent) eqg 'go' and (#tent) ne 2)))}is ers ne nf
then print 'illegal entries in following positions of table:',
ers; .e;;
/* check that all go-to entries are well-formed */
if {<x,y, table(x,y)>, x € statesused, y € types |
(hd table(x,y)) eg 'go' and(type table(x,y)) eq tuple and
n htf table(x,y) € statesused}) is ers ne nf& then
print 'illformed go-to entries in following positions of table:',ers;
/* now prepare to check wellformedness of all call-type entries*/
read routset; readcheck (routset); routs = hd [routset];
routscalled = nf&;
/* check that all routines are uniquely defined */
if {rt € routs| (#routset{rt}) ne 1} is ers ne nf then
print 'illdefined or multiply defined routines:', ers; e;;
/* the routine 'callék' used in the next statement is given below.
it builds up the set 'routscalled' */
if {<x,y,table(xvy)>, x € statesused, y € types |
pair table(x,y) and (hd table(x,y)) eq 'do'

and n callok table(x,y)} is ers ne n%

then print 'illegal call-type entries in following positions:',ers;e;
/* check that all routines called are defined */
if {rt € routscalled | n rt € routs} is ers ne n& then
print 'routines used but not defined:', -ers; e;;
/* give warning diagnostic on superfluous definitions */
if {rt € routs|n rt € routscalled} is ers ne nf then
print 'warning *-*-*- routines defined butnot used:', ers;;

/* number routines */

rnums = n&; (Yr € routs) rnums(r) = #rnums+l;;

-276-

/* set up rpak */

ktext = 'define rpak(numrout);'+
'go to {' + [+: rout € routs] ('<'+ dec rnums(rout)+ ',' +rout+'>"'
+if rnums (rout) ne #rnums then ',' else'!l (numrout);')

+[+: rout € routs] (rout+':'+ routset(rout)+'return;')
+ 'end rpak;'; .
/* now replace rout names in action table by corresponding index
in rpak */ .
(Yx € statesused, y € types | (hd table(x,y)) eq 'do')

(Yop(j) € table(x,y))
if op eq 'do' then
table(x,y) (j+1) = rnums(table(x,y) (j+1));
end if;
end Vop;

end ¥Yx;

/* now rpak has been constructed, typef supplied and table constructed*/

return;

end setup;

/* here follows the auxiliary routine callok, used above.

" this routine checks for illformed 'go'- and 'call'-type
entries in the lexical scan action table, and builds up
the set routscalled */ | '

definef callok entry; ok=t;

(Yword(n) € entry) flow

(entry(n-1) eq 'do')?

putin, (entry(n-1) eq 'go')?
(- word € statsused)? . shortkeyword? .
cont, notok, cont, longkeyword?
tooshort? er,
er, cont;

putin: word in routscalled;

shortkeyword := word € {'énd','skip','cont'};
. longkeyword :=. word € {'go', 'call'};
tooshort := (#entry) eq n;

1't: continue;

-277-

er: return £f;
notok: ok = f; end flow;

‘end Yword; return ok;

end callok;

3. Miscellaneous combinatorial algorithms.

In the next few paragraphs, we will write out various algorithms"
of a rather mathematical flavor, diversely related to combinatorial
stiuvations of theoretical interest. These algorithms are intended
to demonstrate the ease with which SETL adapts itself to a variety
of combinatorial structures and situations. Our first example is
simple but famous: Cantor's 'diagonalizer',vwhich, given a set s
and a multivalued map f: s + s, produces a set which is not of the
form f{s}. It is

diagset = {x € s | n x € £{x}};

the reader may supply the proof.

~ Next we present some useful. "closure" algorithms. If as and bs
are subsets of a set s, and f is a (possibly multivalued) map on s ,
the following sets are often of interest. The set close(f,as)
consists of ‘all points obtained by repeated applications of f to as;
the set <c¢losure(f,as,bs), consists of all points obtained by
repeated application of f to as, taking only images in bs. The

corresponding SETL algorithms are as follows.

definef close(f,as);
im = flas)l; n = 0;
(while n 1t #im) n = #im; im= im+f([im]);;
return im;
end close;
definef closure(f,as,bs);
im = f[aé] *:bs;
fp={g€f| (g(1) € bs and g (2)€bs) };
n=0; ‘
(while n 1t #im) n = #im; im=im ¥.fp[im];;

return im; end closure;

-278-

Given a map £, the following algorithm returns f' such that

(x) = close(f,{x}):

definef closef (f,set);
fp = £;
(VYx € set) n = 0;
(while n 1t #fp{x})
n = #fpi{x}; fpixl= fpix}+ fp [fp{x}];
end whiie;
end V¥x;
return fp;

end closef;

It should be noted that the above algorithms are deliberately
given .in simple short forms, even though considerably more
efficient though more complex forms are available for some of them.

Next we give an algoritnm related to the problem of maximum

network flow, which turns out to be central to an interesting groug

of combinatorial algorithms, some of which at first sight seem to
have no contact with this problem. By a network we mean a collec-
tion N of points p, such that for each pair <p,q> of distinct
points iﬁ N a non-negative capacity c(p,q) is defined. We may
think of c(p,q) as representing the maximum 'fluid carrying
capacity' of a 'pipe' connecting p and g, and oriented from p to q.
A 'pipe' from p to g is 'absent' whenever c(p,q) = 0. Note that
the values c(p,q) and c(q,p) are independent; in effect, therefore,
networks are ortented. A flow in the network is a function f(p,q)
which assigns to each pair of distinct points a value satisfying
0 < f(p,q) < c(p,q). If merely f£(p,q) > 0, but the condition
c(p,q) > f(p,q) can be violated for some p,q, then we call f an
overflow. The net f-outflow from a point p is the sum over all
q # p of f(p,q) - f(g,p); the f-inflow to p is the negative of
this quantity. Given two distinct points x,y 6f N, we say that £
is a flow from x to y if the net f-outflow from each point other
than x and y is zero and the net f-outflow from x is nonnegative.
We define the motion of an overflow from x to y similarly. It is

. hard to see that in a flow (or overflow) from x to y the net

_ _nflow to y must equal the net f-outflow from x. This common

=279~

value is called the value (or transport value) of the flow f.
The maximum flow problem is the problem of finding a flow of
maximum transport value from x to y in a network, given the
capacities c(p,q).

We attack this problem as follows. 'Let f be a flow from x
to y. If both f(p,q) and f(qg,p) are positive, let m be their minimum
and put f(p,q) = f(p,q) - m, f(q,p) = f(q,p) - m. It is clear that
f is still a flow from x to y; we call f the reduction of £, and
observe that f and f have the same transport value. Next, let
PgrPyre-+ Py be a sequence of points of N, the first element Py
of the sequence being identical with x, the last P, being identical
with y. We call such a sequence_an Xx,y-path. Designating such

n
a path by m, we put £ (p,q) =) (p,q) , where

£)
=1 P3'P541

(1) f(u V)(p,q) =1 if <u,v> = <p,qg>,)(p,q) = 0 otherwise.

f(u,v
It is clear that fTT is an overflow from x to y, and that its
value is 1. Let a flow f from x to y be given, and let its value
be V. If there exists a positive constant y such that the reduc-
tion g of the sum f + YfTT is a flow (necessarily from x to y),
then it is clear that the value of g is V + ¥ ; g is therefore
a flow from x to y having value larger than that of f. The
condition that such a path m and number y > 0 should exist may
clearly be formulated as follows: there must exist an x,y-path
PgrPyr--- 1Py such that for each 0 < i < n wé have either
f(pi+l’pi) > 0 or f(pi,pi+1) < c(pi,pi+l). Call such a path an
f-augmenting path from x to y; we restate the observation just
made, as follows: given an f-augmenting x,y-path we can at once
produce a flow from x to y having value larger than that of f.
Conversely, suppose that no augmenting path from x to y exists.
Then let X be the set of all points which can be reached along
an f-augmenting path starting at x. Let X be the complement of X.
Clearly y € X, and clearly f(p,q) = c(p,q) and f(g,p) = 0 if
p € X and g € X. It is easy to see from this that the value
V of f is equal to the sum
(2) ! _ clpq) .

PEX,gEX

-280-

Since, as easily established, no flow from x to y can have a value
rger than (2), it follows that f is a flow of maximum value.

The above remarks prove the following theorem.

Max-Flow Min-Cut Theorem. Given a network defined by a set
of capacities c(p,q), and given two points X,y in the network,
the maximum value which any flow f from x to y can have is at
the same time the minimum value of the expression (2), where in

(2) X ranges over all sets containing x but not y.

Our argument also gives us the following algorithm for construct-
ing a flow of maximum value, at least in case the capacities c(p,q)
are all integral. We start with the 'trivial' flow f, for which
f(p,g) is identically zero. If there exits -an f-augmenting
Xx,y-path m, we replace f by the reduction g of f + Yfﬁ, taking y to
be as large as possible subject to the requirement that g be a flow.
Note that since all the capacities c(p,q) are assumed to be integral,
vy will be an integer, and g will have a value exceeding that of f by
at least 1. Hence, iterating our construction a finite number of
times, we will eventually obtain a flow from x to y having maximum
value. |

We shall now give a SETL code representing the procedure just
outlined. The following remarks will aid the reader in following
this code. The main routine which appears is maxflow, which takes
as arguments a set of pairs called graph and an integer-valued
capacity function c(p,q) defined for <p,g> € graph and p ¥ qg.

The set nodes is the set of all points appearing in a pair
belonging to graph; since in practical situations c(p,q) will be
zero except for a relatively small set of pairs <p,qg>, we prefer
to work from graph rather than from nodes.

The routine path, given two points x,y and a flow £, constructs
and returns an f-augmenting path from x to y if possible. If this

is impossible, path returns the value Q.

-231-

Note also that the binary function a orm b returns a

unless a¢ is £, in which case it returns b.

definef r(e); /* reversed edge */ return <e(2),e(l)>; end r;
definef maxflow(x,y,graph,c); /* main routine */
gr = graph + r[graph]j;
nodes = {e(l), e € gr};
f = {<e,0>, e € gr};
(while path(x,y) is p ne Q)
auxflowv = [min: e € p] cap(e,f.c);
(Ve € p)
f(e) = f(e) + auxflowv;
redund = f(e) min f(r(e));
f(e) = f(e) - redund; f(r(e))=£f(r(e))-redund;
end Ye; '
end while;
return f;

end maxflow;

definef cap(e,f,c);
return f(r(e)) max (c(e)orm.0 - f(e));

-end cap;

- definef path(x,y); /* constructs f-augmenting path if possible */
/* we assume in this routine that gr, f, and ¢ are global */
new ={yl}; set = new;
next = nf; /* next will point along the nodes of a path */
(while new ne nf doing new = newer;)
newer = ng;
(Yv € new)
priérﬁ{uegr{v}lu n € set and cap(<u,v>,f,c) gt 0};
(Yu € prior)<u,v> in next;
if u eq x then go to done;;
u in set; u in newer;
' end Yu;
‘ énd Yv;

end while;

-282-

dc

/* loop fallout means path is impossible */ return Q;
pth = n&; pt = x; /* now loop to build up path */
(while next(pt) ne Q doing pt = next(pt);)

<pt, next(pt)> in pth;
end while;
return pth;

end path;

Next we consider the so-called combinatorial "matching" or
"marriage" problem, and an algorithm solving it. The problem is
this: given a multivalued map from a set s to a disjoint set t,
when can we find a one-to-one map g defined on s such that g(x)€h{x}?
The necessary and sufficient condition is that #h[t] ge #t for
each subset t of s. More generally, we may ask: what is the
maximum number of points in a subset s of s on which there exists
a one-to-one g such that g(x) € h{x}? Answer: #s equals the total
number of points in s, minus the maximum m of #5- #h[§], s ranging

over all subsets of s. ' This is the so-called matching theorem.

To prove it, note that a single valued g with g(x) € h{x} must fail
to be defined on at least #s - #h[g] points of S, and hence on at
least m points of s. To prove conversely that g may be defined

on all but m points of s, we make use of the max-flow min-cut
theorem, in the following way. Introduée two points x and y
distinct from all the points p of the union of s and t. Now define
1l if p € s
and g € h{p}; cl(gq,y) = 1 if g € t; c(p,gq) = 0 in all other cases.
