
Computer Science Department

TECHNICAL REPORT

SYLLOG: A KNOWLEDGE BASED DATA
MANAGEMENT SYSTEM

by

SYLLOG: A KNOWLEDGE BASED DATA
MANAGEMENT SYSTEM

by

Adrian Walker

JUNE 1981

Report No. 03^

(c) Adrian Walker 198I All rights reserved

TMs work was supported by the National Science Foundation under
Grant No. NSF-MCS-80-0^3^9

.

A I

SYLLOG: A KNOWLEDGE BASED DATA
MANAGEMENT SYSTEM

by

Adrian Walker

JUNE 1981

Report No. 03^

(c) Adrian Walker I981 All rights reserved

This work was supported by tiie National Science Foundation under
Grant No. NSF-MCS-80-043^9

•

11

ABSTRACT

An experimental data base system, called SYLLOG , is

described. The system, which has been prototyped in the
language SETL, provides a screen-oriented English-like
language for use by non-programmers in setting up and using
a data base.

To set up a new data base, some standardized English
sentences are typed in, and are combined into syllogisms
which indicate how the data will be interpreted. Then, once
the data have been loaded, the knowledge in the syllogisms
is used for retrievals.

The knowledge is used for retrievals by a backchaining
algorithm which operates on the syllogisms alone. A tree
resulting from the backchaining controls an iterative
algorithm which searches the data base. It is shown that the
combined backch^in-iteration algorithm is correct for
schemas in which no syllogism calls itself, and that under
this restriction, the query language is at least as powerful
as the relational algebra. An extension is described to
handle recursive syllogisms, such as those which yield the
transitive closure of a relation.

Ill

CONTENTS

1

.

INTRODUCTION 1

2. THE SYLLOG LANGUAGE

2.1 Data definition - setting up a schema 3

2 . 2 Adding data 4

2.3 Querying the data base 4

2.4 Querying, adding, deleting, and changing
syllogisms 8

2.5 Further querying of the data base 9

2.6 Deleting and changing data 10

3. QUERY EVALUATION BY BACKCHAIN-ITERATION

3.1 An example 11

3.

2

Definitions 14

3.3 Correctness of backchain-iteration 17

3.4 Power of non-recursive backchain-iteration
is that of the relational algebra 18

4. BACKCHAIN-ITERATION AND RECURSIVE SYLLOGISMS

4.1 An example 22

4.2 Definition of finite backchaining
for recursion 25

4.3 Iteration for recursion 27

5

.

CONCLUSIONS 29

6

.

ACKNOWLEDGEMENTS 30

7

.

REFERENCES 31

a.e.j. L

- 1 -

1. INTRODUCTION

The relational model for data bases [4] effectively
frees a user from the details of physical access to data,
and it provides an uncluttered framework in which such
topics as normalization and the meaning of updates can be
discussed [5,7]. Yet, for people who are not programmers or
mathematicians, relational data bases can be difficult to
use, even when provided with a high level query language
such as Query-by-Example [12]. One view of this difficulty
is that, while the user knows many common sense rules about
the real world situation which a data base describes, the
data base system does not (it only has the raw data), so
there is plenty of room for misunderstandings.

In work on computer systems which can represent the
knowledge of a human expert, [9] the emphasis is on
capturing everyday rules of thumb about a particular subject
(e.g. medical diagnosis), and then using the rules to make
deductions. Very often, such rules are expressed in a form

If conjunction of premises then conclusion

and are called production rules. Such rules are chained
together to make deductions.

Clearly, both the relational model of data and the
production rule model share some features with the first
order predicate calculus [3]. A relational data base can be
viewed as a set of explicitly listed predicates (a model),
and a set of production rules can be thought of as rules of
inference for making deductions. However, logic, as a
formalism for everyday computer use, is beset by the problem
that its notation is difficult for non-specialists to learn
and use. For the computer scientist, automatic deduction in
first order logic is undecidable in general, and in
decidable subcases can consume excessive amounts of computer
time in solving quite small problems. Since data bases, can
be quite large, there is a difficulty in applying automatic
theorem proving directly for retrieval.

Yet, substantial progress is being made in bringing
techniques from logic into the realm of practical
computation. In the programming language PROLOG [8], a
program is a set of ordered sequences of logical clauses. A
clause can be a simple ground (variable-free) assertion,
which can be regarded as a row in a relation in a data base,
or it can be a conjunction of predicates containing
variables which implies a conclusion predicate, in which
case it can be regarded as a production rule. So, for small
data bases, PROLOG contains the means to store data, and to
make deductions about the data using production rules.

- 2 -

There are two drawbacks to using PROLOG directly for a

practical data base system. First, PROLOG notation, though
natural for computer scientists, is probably difficult for

most non-specialists to use. For example, an otherwise
correct retrieval program, in which the order of two clauses
is reversed, can enter an infinite loop. Second, the

execution mechanism in current implementations is a depth
first backtrack search over internal (or virtual) storage;
the problem of efficiently searching external (e.g. disk)

storage has yet to be addressed.

In section 2 of this paper, we describe a

screen-oriented, English-like language for setting up and
using a data base. The language consists of syllogisms. In

section 3, we describe a backchaining algorithm which forms
the first stage in query processing. Backchaining deals only
with intensional syllogisms, not with the extensional data
in relations, and it produces a tree as its output. In the
second stage of query p'rocessing , this tree is used to
control an iterative search of the extensional data base. It

is shown that the two-stage backchain-iteration algorithm,
applied to non-recursive syllogisms, is correct, and has the
power of the relational algebra. In section 4, the
backchain-iteration algorithm is extended to deal with
recursive syllogisms , such as those which yield the
transitive closure of a relation. Thus the SYLLOG language
becomes strictly more powerful than the relational algebra.

- 3 -

2. THE SYLLOG LANGUAGE

This section describes the SYLLOG language, from the
user's point of view, by means of an example of setting up
and using a data base.

Suppose we are interested in knowledge and data about
cities, about ways of travelling from one city to another,
and about ways of getting around inside a city. Then we will
want to know about statements such as "Greenwich Village is

in New York", "uptown is in New York", and knowledge such as
"if two places are in the same city then one can take a taxi
from one to the other".

2.1 Data Definition ; setting up: a schema

In SYLLOG, one says that a new data base will be
concerned with such facts by typirng-in

_village is in _New-York
_uptown is in _New-York

can take a taxi from _village to _uptown

and we call this a syllogism . The underlines in front of
words indicate example items. Thus the sentence

_village is in _New-York

can be read as "the data base will be concerned, amongst
other things, with something being in something else, such
as the village being in New-York". The whole syllogism can
be understood as "if a place is in a given city, and a
second place is in the same city, then one can take a taxi
from the first place to the second place".

At this stage, the system contains no data, just the
statement that it will contain two relations "...is in..."
and "can take a taxi from ... to ...", and some knowledge
about the second relation given some data in the first.

- 4 -

2.2 Adding Data

One could now type in some data like this

_village is in _newyork

uptown New-York
village New-York
white-house Washington
patent-office Washington

However, it is not necessary to type the first sentence. The
standard SYLLOG prompt to the user is of the form

Make a coiranand nsing these and other sentences:
_village is in _New-Y^urk
can take a taxi from _village to _uptown

Thus, to make the above command to add some data, one first
deletes the sentence "c:in take a taxi..." from the screen,
then types in an underline followed by the data. If the data
are in a file, one can give the command

_village is in _New-York

<file name>

which adds the contents of the file to the "is in" relation.

2.3 Querying the Data Base

At this point, the system contains some data and some
elementary knowledge about how to use the data. Suppose we
want a list of places in Washington. The SYLLOG prompt
places the prototype sentences

_village is in _New-York
can take a taxi from _village to _uptown

on the screen. We then delete the second sentence and insert
an underline to get

village is in New-York

- 5 -

This is a command to print out all places in all cities, so

before executing it we change _New-York so that the screen
reads

_village is in Washington

Note that _village is only a place holder here; the query
would have the same effect if we used _white-house or _x

instead. However, if we changed Washington to New-York, we

would have a different query.

We now indicate that the query is to be executed. Data
appear on the screen below the command like this.

_village is in Washington

patent-office Washington
white-house Washington

and we have answered the query "which places are in

Washington"

.

- _

Note that we could also have made the query

village is in Washington

i.e. "is the village in Washington ?". The resulting screen
is

village is in Washington

EMPTY ANSWER

while if we asked

white-house is in Washington

the resulting screen is the confirmation

white house is in Washington

white-house Washington

- 6 -

Now suppose we want a list of places and the cities
which they are not in. As before, SYLLOG prompts with the

standard sentences

_village is in _New-York
can take a taxi from _village to _uptown

We replace the second sentence on the screen by an

underline, and change the first sentence by inserting "not",
yielding the query

_village is not in _New-York

When the query has been executed, the screen shows

village is not in _New-York

patent-office New-York
uptown . Washington
village Washington
white-house New-York

So far, we have just queried the relation "is in" into
which we loaded some data.. Now suppose we are interested in

getting from place to place by taxi. As usual SYLLOG prompts
with the sentences

_village is in _New-York
can take a taxi from _village to _uptown

from which we can construct, on the screen, the query

can take a taxi from _village to uptown

After the query is executed, the screen shows

can take a taxi from _village to _uptown

patent-office patent-office
patent-office white-house
uptown uptown
uptown village
village uptown
village ' village
white-house patent-office
white-house white-house

The answer is correct, at least in that it reflects the data
and the syllogism

- 7 -

village is in _New-York
uptown is in New-York

can take a taxi from _village to _uptown

from which it was computed. However, the answer is lacking
in real world knowledge; people don't take taxis from a
place to the same place. This fact can be included by
changing the syllogism to

_village is in _New-York
_uptown is in _New-York
village not EQUAL uptown

can take a taxi from _village to _uptown

where EQUAL is a built-in test in SYLLOG . (We describe how a
syllogism can be changed in the next section). With the new
syllogism, the query remains t:he same, and the screen
containing the answer is

can take a taxi from village to uptown

patent-office white-house
uptown village
village uptown
white-house patent-office

Note that, for real situations, further refinement of the
syllogisms might be needed; for example, a place might have
two names

.

- 8 -

2.4 Querying, Adding, Deleting and Changing Syllogisms

In the last section, we modified a syllogism about
taking a taxi by placing an extra condition in its premise.
SYLLOG allows syllogisms to be queried and modified.

To query the knowledge base of syllogisms, one starts,

as usual , with the prompt, which consists of the sentences
known to the system. In this case we are interested in a

rule, or rules, about taking taxis, so we just leave the

sentence

can take a taxi from _village to _uptown

on the screen. This is understood as a command to list all

of the syllogisms having r.his sentence (or one like it but
for renaming of _village and _uptown) as a conclusion.
Thus the rule

village is in _New-York
_uptown is in _New-York

can take a taxi from ^village to _uptown

appears on the screen. The syllogism is now edited, on the
screen, to its new form

village is in _New-York
_uptown is in _New-York
_village not EQUAL _uptown

can take a taxi from _village to _uptown

and replaces the old syllogism.

An entirely new syllogism can simply be typed in, while
a syllogism can be deleted by calling it up on the screeen
with a query command, and then erasing it from the screen.

Although it is easy for the user to modify the
syllogisms, this should be done with some thought, since
some data may be erased in the process. SYLLOG marks each
fact in a relation according to whether it has been asserted
in an add or change command, or has been deduced via the
syllogisms during a query. When a syllogism is added,
changed, or deleted, all of the affected deduced data is
erased. If a syllogism which contains the last mention of a
particular sentence is deleted, then that sentence is
dropped from the prompt list, unless there are facts which
have been asserted about it.

- 9 -

2.5 Further Querying of the Data Base

Suppose we now add some data and a syllogism about
travelling by train. We add the data

can go by train from _village to _Newark

village Hoboken
Hoboken Newark
Newark Washington

and the syllogism

can go by train from _village to _Hoboken
can go by train from _Hoboken to _Newark

can go by train from _village to _Newark

This syllogism is special, in that the sentence in the
conclusion also appears in the premise. We say that the
syllogism is recursive .

The SYLLOG prompt is now an invitation to make a
command using the sentences

_village is in _New-York
can take a taxi from _village to _uptown
can go by train from _village to _Newark

To ask which places we can get to by train from Hoboken, we
form the query

can go by train from Hoboken to _Newark

When the query has been made, the screen shows

can go by train from Hoboken to Newark

Hoboken Newark
Hoboken Washington

Note that Hoboken-Washington is not in the data we asserted.
It has been deduced by using the syllogism to bridge Newark
in Hoboken-Newark-Washington

.

If we now form the query

can go by train from Washington to _village

we get EMPTY ANSWER. Strictly, this is correct, since the
system only knows about trains in one direction. However, it

is not what is really wanted, so we add the syllogism

- 10 -

can go by train from _village to _Newark

can go by train from _Newark to _village

which says that any time we can go from A to B by train, we

can also go from B to A. If we now repeat the question about
which places we can go to by train from Washington, we get
the answer

can go by train from Washington to _Hoboken

Washington Hoboken
Washington Newark
Washington village
Washington Washington

which, apart from the last row, is reasonable. The last row
could be suppressed, as in the taxi example in section 2.3,
by modifying the syllogisms.

2.6 Deleting and Changing Data

Data can be deleted from a data base in SYLLOG by
simply bringing it to the screen using a query, and then
erasing it from the screen. This works directly for asserted
data. However, data which have been deduced using the
syllogisms cannot be deleted in this way, and a warning
message results.

Similarly, asserted data may be changed by first using
a query to bring it to the screen. Attempts to change
deduced data yield a warning message.

11 -

3. QUERY EVALUATION BY BACKCHAIN-ITERATION

In the last section we described SYLLOG from the point
of view of the person who uses the system. This section
describes how a query is processed by SYLLOG, in the case
that the query syllogisms are not recursive. A proof of
correctness of the query algorithm is given, and it is shown
that non-recursive collections of syllogisms have at least
the power of the relational algebra. Section 4 treats the
case in which recursion present.

3.1 An Example

Syllogisms are stored internally in SYLLOG in the form
of production rules. For example the syllogism

village is in _New-York;
_uptown is in _New-York

can take a taxi from _village to _uptown

is stored in a form corresponding to

C2(x,y) <- I, (x, z)I, (y, z

)

where C„ and I, are system-generated relation names. We
call this form a rule , and we write a rule with the
conclusion on the left for convenience in discussing
backchaining

.

As mentioned in section 2, the system stores a current
list of prompting sentences, which contains a representative
sentence for each sentence which has been used in a

syllogism or a command. If two sentences differ only by
renaming of variables, or by instantiation of variables, or

by the presence of "not", only one representative is stored
in the prompt list. The list is indexed by system-generated
relation names, such as C„ and I, above. Thus a sentence
is translated into its relation form by a simple pattern
match followed by a table lookup, and a relation is

translated into a sentence by a table lookup followed by the
substitution of the appropriate variables or constants into
the sentence. Translations between the rule and syllogism
forms are then simply made sentence by sentence or relation

- 12 -

by relation. While the English-like properties of the SYLLOG
language should be easy for people to use, it is plain that
very little computer time or space is needed to translate
between syllogisms and rules.

Suppose that only the two syllogisms

_village is in _New-York
uptown is in _New-York

can take a taxi from _village to _uptown

and

can get a taxi from _uptown to _village
can go by train from _village to _Hoboken

can go from _uptown to _Hoboken

are present, and that they are represented by the rules

C2(x,y) <- I, (x,z)I, (y, z

)

C^(x,z) <- C2<-^tY)C^{Y ,z) .

A query

can go from uptovrn to Hoboken

is translated into C .(uptown , Hoboken) , and causes the
following tree to be constructed from the rules:

C , (uptown , Hoboken

C2 (uptown,y

I, (uptown ,

z

C^ (y, Hoboken)

Il(y,z)

- 13 -

The tree is constructed using only the query and the rules,
without reference to the facts in the data base. Next, the
tree is interpreted as a query program, and executed as
follows. Each node of the tree is assigned an initially
empty set, called its extension . Then, each leaf node
extension is made equal to the set of tuples, from the
corresponding asserted data, relevant to the predicate at
the node. For example, the leftmost leaf in the tree gets
the rows from the "is in" relation which start with
"uptown". Next, the lowest level of the tree is executed, in
this case using an operation equivalent to the relational
algebra join (we write * for join) as

I, (uptown, z) * I,(y,z)

and the result

uptown uptown
uptown village

is placed in the extension of C-. Then, the upper level of
the tree is executed, placing

uptown Hoboken

in the extension of C.. Now the extension of the root has
been computed, and it is printed as the answer.

In the example, the tree represents a conjunctive
query. In general, a query may contain disjuncts, in which
two or more rules contribute to the extension of a node, and
negations, in which case a node is extended by adding tuples
which are not in the set calculated by a rule. Thus the
backchain procedure yields an and-or-not tree. Note that, in
the construction _ of the tree, selection arguments in the
query (e.g. uptown, Hoboken)• are propagated downwards.

- 14 -

3.2 Definitions

In this section, we set down the definitions which are

needed to prove the correctness of the backchain-iteration
algorithm.

We use x,...,z as individual variables, a,...,d as

constants, and x,...,z with subscripts to denote ordered
lists of variables and constants. A substitution is a

function s, from variables and constants to variables and

constants, such that s(a)=a for each constant a.

A knowledge base K is a finite set of clauses , each
of the form

A(XQ)<-B^(y^)..B^(y^)-C^(z^)..-C^(z^)

where m+n is greater or equal 0, A(Xq) and B^(y^),
i=l..m, are positive literals , (e.g P(x,y)), and
-C . (z .) , j =l..n, are negative literals (e.g. -P(x,y)).

If m+n > the clause is a rule . If m+n = 0, then the
clause in an assertion . We assume that assertions contain
no variables, and, if

A(Xq)<-

is an assertion in K, then K contains no rule with A(x„)
on the left.

Each rule is such that, if a variable appears in x^,

then it appears in some y. or z.. Also, if a variable
appears in some z . , then it also appe'ars in some y . .

Note that given a clause in which some variable appears
in a z . but not in a y., we can often replace the clause
by a set of clauses in which each -variable in a z . does
appear in a y.. For example, we can replace -^

P(x,y) <- -Q(x,y)

by the clauses

P(x,y) <- Q^(x)Q2(y)-Q(x,y)

Q^Cx) <- Q(x,y)

Q2(y) <- Q(x,y).

- 15

Let s be a substitution. We say that A{s(x„))
follows from K , written A(s(x-,)) -! K, if

(i) A(s(Xq)) <-
, or

(ii) there is a rule

A{x.)<-B, (y,) . .B (y)-C,(z,)..-C (z)

l-'l m-'m 11 nn
in K such that

a) B.(s(y.)) -! K for i = l..in, and
1 -^ 1

b) it is not the case that C.(s(z.)) -1 K
J 3

for any j in {l,..,n}.

Where K is understood, we write -! instead of -! K.

A program for A(x_) is a tree with root A{x-)
defined by the following. If there exists a rule

A(x^' X-B, (y^) . .B (y)-C,(z,)..-C (z)l-'l m-'mll nn
and a substitution s such that s (

x„
') = x-, then (using

s to rename variables which are already in the tree) add

A(Xq)
<-B"(s(yT)) . .B (s(y))-C, (s(z,)) . .-C (s(z))

1 -'I m -'m 1 1 n n

to the tree below the root. If there is a program for
B.(s(y.)) or C.(s(z.)) then add that to the tree
also. -^ -'

Note that the program tree is finite only if no rule
eventually calls itself as a program. We assume this to be
the case for now.

- 16 -

The extension of a program tree is defined as

follows

:

(1) Each node is assigned an empty set, called its

extension

.

(2) For each leaf Ciy^) , if C(s(yQ))<- is in K for some

substitution s, then place C(s(y^)) in the extension of

the leaf. Then mark the leaf extended.

(3) If

A(x_)<-B, (y,) . .B (y) -C, (z,) .
. -C„ (z^

:

11 nn 11 nn

is a rule in the program tree, the nodes B.(y.) anc

C.(z.) have been extended, B.(s(y.)) is in the
3 3 11

extension of B.(y.) and C.(s(z.)) is not in the11 D D

extension of C.(z.), then place A(s(x_)) in the

extension of A(x_). When all such placings have been made,

mark A(Xp.) extended .

(4) Repeat (3^ until the root of the tree is marked

extended.

- 17 -

3.3 Correctness of Backchain-Iteration

The definitions in the last section allow us to prove
that an answer tuple is in the output from a query if, and
only if, it follows from the knowledge base. Formally, this
is stated as

:

Theorem 1 Let T be an extended program tree with
root A(x_), and let s be a substitution. Then A(s(x_))
is in the extension of the root of T iff A(s(x^))-!.

Proof Without loss of generality, assume that there
is just one clause at the root of the tree, and let it be

A(x_ X-Bt (y^) . .B (y) -C-, (z,) . . -C (z)

l-'l n-'n 11 nn
Case m+n=0 ; The extension of A(x„) is defined as

{A(x„') ! there exists a substitution s such
that s(Xq)=Xq' and A(Xq')<-}

so, from the definition of -!, A(x_') is in the extension
of A(X|^) at the root of the tree iff A{x_')-!.

Case m+n>0 : Suppose A(s(x^)) is in the extension of the
root of T, for some s. Then, by definition of the extension
of T, B.(s(y.)) is in the extension of the node marked

i i,B.{y.), and "C . (s (z .)) is not in the extension of the
i i i inode marked C-:(z.)r As an inductive hypothesis, assume

that the presence of B.{s(y.)) in the extension of the
node marked B.(y.) implies that B.(s(y.))-!, and
that the absence or C.(s{z.)) from the extension of the
node marked C.(z.) implies -^that it is not the case that

C.(s(z.))-!. Then, from the definition of -!,
3 3

A(s(x_))-!

.

A similar argument establishes that if A(s(x_))-!
then A(s(x„)) is in the extension of the root of T. []

The theorem applies to the case in which no rule calls
itself, i.e. in which the set of rules is such that it is

not possible for a literal to be repeated along a path in a

program tree. A more general case is discussed in section 4.

- 18 -

3.4 Power of Non-Recursive Backchain-Iteration is that of

the Relational Algebra

This section shows that if a query can be written in the
relational algebra [5], then it can also be written in

SYLLOG. (We shall sometimes refer to the relational algebra
simply as the algebra). Since algebra expressions are
(tacitly) formulated to be non-recursive, we shall see that
the corresponding sets of syllogisms are also free of

recursion. Thus SYLLOG, without recursive syllogisms, has at

least the power of the algebra.

Following [9], we take the five operations union,
set difference, cartesian product, project, and select
to define the algebra. So SYLLOG is as powerful as the
algebra if it can be shown to simulate any inductive
combination of these five operations. However it would be
quite inconvenient in practice to use only SYLLOG
equivalents of these, so wc also show how the relational
algebra operations natural join, intersection, and
quotient can be written in SYLLOG.

Theorem 2 If a query can be written in the
relational algebra, then it can also be written in SYLLOG.

Proof We shall use the internal rule form, since the
translation between this and the syllogism form is

straightforward. For each of the algebra operations, we show
an equivalent rule, or set of rules.

1. Union In the algebra,

R = R^ U R2 = { Xj^ ! R^(Xj^) V R2(Xj^) }

In rules

R(x,) <- R^ (X,)

k 1 k

R(x,) <- R-(x,) .

k 2 k

2. Set difference

R=R-[^-R2=Uj^!R^(Xj^) and not R (x,) }

R(x,) <- R, (X,) -R_(x,)

k Ik 2 k

3. Cartesian product

R=R, X R„={<x ,x.>!R- (x,) and R^(x.)

R(x, ,x .)<-Rj^(Xj^)R2 (X .)

- 19 -

4. Project

R = PROJ . . R^ =

{ <x. , . . , X . > !

1, 1
1 m

there exists <yi,..fy > in R,
-'I 'n 1

such that X. =y. for j=l..m }
1 .

-^ 1 .
-

3 3

where x. , y, and y. are domain variables
1 . -'k -^ 1 .

3 3

[10].

R(x^ ,..,x^) <- R-^iy-^,. . ,Y^) .

1 m

5. Select

R = SEL„ R, (x,)
=

P 1 k

{ Xj^ ! R(x,) and P(x,) }

where P is a predicate defined in terms of:

(i) operands that are constants or variables,

(ii) lexical or arithmetic comparison operators

<,=,>,< or =, *, >or=,

(iii) logical operators and, or, not.

We give some examples of translation of select
expressions into SYLLOG . Using these, it is straightforward
to inductively decompose, then translate, an arbitrary
select. Let @ and % be comparison operators.

R(x,y) = SELj^gy R^(x,y) =

{<x,y> ! R (x,y) and x@y}

R(x,y) <- R^(x,y) ia(x,y)

R(x,y) = SEL „ JO R. (x,y) =
-^ xiay and x%y 1 -^

{<x,y>! R (x,y) and x(ay and x%y}

R(x,y)<-R^(x,y)(a {x,y)%(x,y)

- 20 -

R(x,y) = SEL^^y
^^ ^^y Ri(x,y) =

{<x,y>! R,(x,y) and (x@y or x%y)}

R(x,y) <- R(x,y) (a(x,y)

R(x,y) <- R(x,y) %(x,y)

R(x) = SEL ,
, ^ .R, (x) =

not(x(ac) 1

{ X ! R, (x) and not x§c }

R(x) <- R^(x) -@ (x,c)

The above five operations are sufficient to define a

basis for the relational algebra [10], and it is clear that
the translation of any algebraic expression into a set of
SYLLOG rules can be constructed in a straightforward way
using the indicated* translations for individual operations.
It follows easily from Theorem 1 that the constructed SYLLOG
rules will yield the same result as the relational algebra
expression. This completes the proof of Theorem 2. []

We now give examples of how to write the algebra
operators natural join, intersection, and quotient as
SYLLOG rules (and hence as syllogisms).

The natural join

R = R^ * R2 =

{<x,y,z> ! R,(x,y) and R^(x,z)}

is written as the SYLLOG rule

R{x,y,z) <- R,(x,y) R (x,z)

The intersection

R = R, & R2 =

{ X ! R^(Xj^) and R (x) }

is written

R(x,) <-R, (X,)R2(X,)

- 21 -

The quotient

T = R/S

which is defined by

{ X ! y in S implies <x,y> in R }

yields the set of rules

T(x) <- R^(x) -R2(x)

R^(x) <- R(x,y)

R2(x) <- R^(x) S(y) -R(x,y)

Thus, not only is non-recursive SYLLOG formally as powerful
as the relational algebra, but all of the algebra operators
except division have simple transliterations in SYLLOG.
Since the quotient operator is not widely used, its indirect
expression in SYLLOG is a minor disadvantage.

- 22 -

4. BACKCHAIN- ITERATION and RECURSIVE SYLLOGISMS

In section 2 . 5 we used a syllogism

can go by train from _village to _ Hoboken
can go by train from _Hoboken to _Newark

can go by train from _village to _Newark

Stated as a rule, this is

C(x,z) <- C(x,y) C(y,z)

and it is clearly recursive. In fact, the rule expresses the
transitive closure of the asserted tuples in C, an operation
which cannot be expressed in the relational algebra [1].

Thus, if we allow such rules, SYLLOG is strictly more
powerful than the relational algebra. This section describes
a technique for extending the definitions of section 3.2 to

cover the recursive case.

4.1 An Example

Suppose we have a knowledge base containing the rule
shown above, and we relax our constraint that a predicate
should not be both the subject of an assertion and the left
side of a rule. Then we can also assert that some tuples are
in C. Suppose we assert that the tuples

a b
b c
c d
d e
e f

are in C, so that the knowledge base contains the assertions
C(a,b)<-, ..., C(e,f)<-, together with the rule mentioned
above

.

If we now ask the question

can go by train from a to f

SYLLOG will proceed to backchain from C(a,f). Rather than
producing an infinite tree, the backchain produces
the program tree

- 23 -

C(a,f

)

C(y,f)

C(a,u) C(u,y) C(y,v) C(v,f

)

In growing the tree downwards, the stopping criterion is to
not add to the tree a rule which is isomorphic (in a sense
to be defined in section 4.2) to a rule above it.

Next, we do the iteration part of backchain-iteration

,

as described in section 3.2. Writing the extensions next to
the tree gives

{ac} {df

}

C(a,u)
{ab, . ,

}

C(u,y)
{ be , . . }

C(y,v)
{de,..}

C(v,f

)

{ef ,..}

where {} denotes the empty set. Now suppose that, each time
a tuple is placed in the extension of a node, it is also
placed in the set of tuples of C. Then, after the first
iteration, C contains the extra rows

a c
d f

It is easy to see that, if we now repeat the computation of
the extension, the root extension will be made to contain
the tuple a f, yielding the required positive answer.

So, a method of dealing with a recursive rule is to
compute the extension of a finite tree not once, as in the
non-recursive case, but repeatedly, until it is noted that
no change occurs in the extension of any node. Clearly,
there are ways of refining this to make it more efficient,
but the principle is straightforward.

Note that, in this example, backchain-iteration
instantiates to a program which is a two-sided graph search
with specified end nodes. Thus if the graph of the relation
C contains subgraphs which are not connected to the end
nodes a or f, then the corresponding subrelations are
not searched.

- 25 -

4.2 Definition of Finite Backchaininq for Recursion

In our example, we mentioned that backchaininq is
halted when we are about to add to the proqram tree a rule
which would be isomorphic to one above it. Our workinq
definition of isomorphic is as follows:

Let Rule 1

A(x„ X-B, (y,) . .B (y)-Ct(z,)..-C (z„)l-'l n-'n 11 nN
be part of the tree, and let Rule 2, which we are decidinq
whether or not to add, be

A' (x„' X-
B'^(y^')..B'^(y^')-C-,(z^-)..-C'^(z^-)

If A±=A', B^±B^', or 0.4=0." for some i and j

(i.e. if the rules cannot be arranqed, preservinq neqation,
to have the same predicate names in the same left to riqht
order), then the rules are not isomorphic. If the rules do
have the same sequence of predicate names, but there is no
substitution s such that s(x_')=x„, s(y.')=y., and
s(z.')=z. for all i and j, then the rules are st'ill not
isomorphic. If there is such an s, let

c = CARD{ X ! s(x)=x, x is a constant}

and

V = CARD{<x,b> ! s(x)=b, x is a variable
and b is a constant},

where CARD denotes the cardinality of a set, and say that
the rules are isomorphic unless c is qreater equal 1 and v
is qreater equal 1.

- 26 -

To see how this definition works in halting the
backtrack in the example in section 4.1, suppose we are at a

stage when the program tree contains only

C(a,f) <- C(a,y) C(y,f) (Rule 1)

and that we are considering whether or not to add some
instance of

C(x,z) <- C(x,u) C(a,z)

below C(a,y). Clearly, the required instance is

C(a,z) <- C{a,u) C(u,z) (Rule 2).

Rules 1 and 2 become identical under the substitution
s(a)=a, s(z)=f, s(u)-y. This substitution has c greater
equal 1 by reason of s(a) = a and v greater equal 1 by reason
of s(z) = f, so the two rules are not isomorphic, and Rule 2

is added to the tree.

Next, suppose that Rule 2 is in the tree, and that we
are considering whether to add

C(a,v) <- C(a,w) C(w,v) (Rule 3)

below the C(a,u) in Rule 2. Rule 3 and Rule 2 become
identical under the substitution s(a)=a, s(v)=z, s(w)=u. For
this s, c is greater equal 1, but v is less than 1, so Rules
2 and 3 are isomorphic, and Rule 3 is not added to the
program tree.

- 27 -

4.3 Iteration for Recursion

the

of the
since

In the present, experimental, version of SYLLOG

,

program tree extension iteration is repeated until no
extension is changed in a full bottom to top scan
tree. This is wasteful in the absence of recursion,
twice as much computation may be done as is needed; a first
scan is made to get the answer, and a second scan is made to
check that it is indeed the whole answer. Theorem 1 assures
us that, if we detect, at backchain time, that there is no
recursion, then a single extension scan is sufficient. On
the other hand, if recursion is present, it is easy to adapt
the example in section 4,1 to show that we cannot limit the
number of extension scans in advance.

The repeated scan of the whole tree, each rule at each
level being executed once at each scan, can actually be
incorrect if both recursion and negation are present,
(although there is a simple way making it correct). To see
this, consider the rules

T(x,z) <- R(x,z) -S(x,z)

S(X, z) <- S(x,y) S(y, z

)

together with the data R(a,d), S(a,b), S(b,c), S(c,d). The
correct answer to the query T(x,z) is EMPTY, but the first
scan of the program tree

T(X, z)

R(X, z)

S(x,y) S(y,z)

- 28 -

will place the tuple a d in the extension of the root, and
subsequent scans will not remove it. One way of correcting
this is to repeatedly extend the S subtree before extending
the root of the tree.

It can also be necessary, in some cases, to repeatedly
scan a local subtree. For example, if the rules are

A{x, z) <- B(x,y) A(y, z

)

B (X , z) < - A (x , y) B f y , z)

and the data are A(a,b), A(c,d), B(b,c), B(d,e), then the
tree

B(x,z)

B(y,z

B(x,u) A(u,y

)

must be scanned twice to determine that B(a,e). If this tree
is a subtree, and its root is the subject of negation higher
in the main tree, then the local repeated scan must be made
before scanning higher.

Since it is not easy to find real examples of data base
retrievals which require recursion beyond the simple form

R(X, z) <- R(x,y) R(y, z

)

needed for transitive closure, a good compromise between
generality and computational cost appears to be to reject
backchain trees which contain more complicated recursions,
and to execute the admissible ones by repeated local
scanning only.

- 29 -

CONCLUSIONS

The SYLLOG system, which has been prototyped in SETL,
provides a simple, English-like language in which a
non-programmer can set up and use a data base. The language
prompts the user by showing a set of standardized English
sentences on the screen, and the user makes a command by
choosing one of these sentences and modifying it. The
language is designed for interactive use at a screen, and
would be most suitable for use with a light pen plus
occasional key strokes. So far, the language has been
implemented using a line editor, and separately using a

visual editor. The number of key strokes needed is quite
small

.

The standardized English-like sentences are grouped
into syllogisms, which function as a way of encoding
knowledge about a particular domain,- e.g travel, dentistry
etc.,- for use in query processing. A query is a single
sentence, and it triggers a search of the domain knowledge,
followed by a search of a relational data base. Thus the
domain knowledge mediates between the user and the data
base.

The order in which syllogisms are made known to SYLLOG
has no effect on the result of a query, so that the language
may fairly be said to be non-procedural. Recursive
syllogisms are allowed, hence the power of SYLLOG exceeds
that of the relational algebra (and of the relational
calculus), yet there is no possibility for an inexperienced
user to take the system into an infinite loop.

The two preprocessing stages for a SYLLOG query, namely
the translation from English to predicate form followed by
the construction of a program tree, are reasonably
straightforward, and require little space or time in the
computer. Once a program tree has been constructed, the
computer resources needed for its execution are similar to
those needed for any relational data base system.

We note that a method for converting recursive rules in

a data base intension into iterative programs over the
extension has also been suggested in [2]. In that method,
relations are partitioned into those which are derived and
those which are asserted, whereas we find it useful to mark
individual tuples as either derived or asserted. Also, in

[2], a rule must be regular, in the sense that the premise
may contain at most one derived relation; hence either the
user must be restricted to only declare regular rules, or a

general method must be found to convert irregular rules into
regular ones. As stated in [2], "finding a good program from
a recursive query (graph) is a fruitful area of research".
Our finite backchain algorithm appears to be a step in this
direction.

- 30 -

Although the knowledge contained in a set of syllogisms
greatly simplifies matters for the user, this paper has only
described the use of the knowledge for query processing.
Syllogisms can also be used for type-checking, and to

express constraints which can be automatically enforced
whenever an update is made. The use of syllogisms to express
constraints is discussed in [11]. The related matter of

updates into syllogistically defined views of a data base
remains as an interesting topic for future work.

6. ACKNOWLEDGEMENTS

It is a pleasure to acknowledge many friendly
conversations with the SETL group at New York University.
The SETL language allowed the experimental version of SYLLOG
to be developed with far less time spent on programming and
debugging than would have been needed in other languages.
The particular features of SETL which seem to have helped
the most are

(1) the primitive, nestable data types tuple,
and (of course!) set,

(2) the non-procedural such that notation for
defining tuples and sets, and

(3) the provision of the omega value undefined,
which was very useful in debugging.

Special thanks go to J. Schwartz for timely advice, and
to D. Shields for providing some SETL tools and plenty of in

depth knowledge about the VAX implementation of SETL.

- 31 -

REFERENCES

[I] Aho, A. v., and Ullman, J.D. Universality of data
retrieval languages. Proc. 6th Annual Symp. Princ.
Prog. Lang., 1979,110-119.

[2] Chang, C.L. On evaluation of queries containing
derived relations in a relational data base. Advances
in Data Base Theory , Vol 1, Eds H. Gallaire, J.

Minker, J.M. Nicolas, Plenum, New York, 1981, 235-260.

[3] Chang, C.L. and Lee, C.T. Symbolic Logic and
Mechanical Theorem Proving . Academic Press, 1973.

[4] Codd, E.F. A relational model of data for large shared
data banks. CACM 13, 6, 1970, 377-387.

[5] Codd, E.F. Further normalization of the data base
relational model. Courant Computer Science Symposium
6: Data Base Systems, Prentice-Hall, Englewood Cliffs,
New Jersey, 1971, 33-64.

[6] Codd, E.F. Relational completeness of data base
sublanguages, ibid, 65-98.

[7] Fagin, R. Multivalued dependencies and a new normal
form for relational data bases. ACM TODS 2:3, 1977,
262-278.

[8] Kowalski, R. Logic for Problem Solving , Elsevier
•North Holland, New York, 1979.

[9] Shortliffe, E. Computer Based Medical Consultations:
MYCIN , American Elsevier, New York, 1976.

[10] Ullman, J.D. Principles of Data Base Systems .

Computer Science Press, Potomac, Maryland, 1980.

[II] Walker, A.D., and Salveter S. A transaction scheme
transform which preserves data base integrity without
undoing updates. Report, Computer Science Department,
SUNY at Stony Brook, NY, July 1981.

[12] Zloof, M.M. Query-by-Example: a data base language.
IBM Systems Journal, 16:4, 324,343.

NYU
ComP- ci. Dept.
TR-034
Walker
SYLLOG: a knowledge based
data management system.

c.l

NYU
Comp. Sci.-iDept,

c.l

SYLLOG: a knowledge based

data management system.

DATE DUE BORROWERS NAME

ti^s
.1 A m M \/ gaM.

LI

This book may be kepi

FOURTEEN DAYS
V. d for each Jay the book is

Vxptovertixne.

A fine wiU be charged for each „

OAVl-OXD 142

