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PREFACE

When the Algorithm Specification course was first given in the spring

term of 1971, Professor Schwartz asked the class for criticisms of SETL.

Here, some two years later, is my response.

I have tried to be as constructive as possible. Rather than simply

say "this is wrong" and "that is wrong", I have tried to say "here is a

better way to do it.
"

There were a few things that struck me as "wrong" in SETL right

from the beginning. This includes the SETL treatment of numbers, tuples,

sets used as maps, and the meager I/O facilities. In considering how these

facilities should be changed, I soon found myself contemplating changes to

just about every data type, operator, statement type, and syntactic con-

struction in the language. The criticism has snowballed into a complete

respecification of SETL.

In fact, since I am questioning every detail of SETL, I might as well

question its name, too. Not that SETL is so bad a name, but it seems to

me that it would be preferable for the name to reflect the true essence of

the language. The essence of SETL is that it is an executable algorithm

specification language. Since that is a bit too much, I suggest the name

Algorithm Specification Language, or ASL. The fact that SETL and ASL

achieve the objective of permitting a concise but humane specification of

algorithms in part by using sets is merely incidental. In fact, it happens
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that ASL uses sets to a greater extent than SETL does, because the SETL

data types of Boolean strings, character strings, and tuples are all sets

(maps) in ASL.

In spite of the fact that I am suggesting changes to practically every

detail of SETL, this respecification is not really that big a change. The

goals of ASL are the same as those of SETL: it remains a tool for furthering

computer science by pushing the complexity limit of what can be programmed,

a vehicle for communicating algorithms to people for the purposes of

research or classroom instruction, and a practical means of prototyping

complex software systems.

The key features that give SETL its great expressive power are

present in ASL. These features are, in my opinion, (I) the set of ordered

pairs of arbitrary objects used as a map, (2) the total absence of storage

management dictions, (3) the "value oriented" (rather than "pointer oriented")

character of SETL, (4) the nearly total absence of required declarations,

and the consequent existence of programs that operate on data structures

independently of their elemental nature, (5) the arbitrary set and tuple data

types, (6) the universal and existential predicate expressions, and (7) the

set former expression.

The syntax of ASL remains very close to SETL, in spite of the fact

that some change is suggested to just about every syntactic construction.

At the end of this paper are a few algorithms coded in both SETL and ASL,

and a glance at these reveals how similar the languages are. ASL is
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still SETL just as FORTRAN IV is still FORTRAN and Algol 68 is still

Algol.

If ASL is so similar to SETL, then why bother with this respecification?

I believe that this is worth doing just as FORTRAN IV and Algol 68 were.

This is particularly true because SETL is still young and there is not

yet any user community with an investment in the existing SETL. So if

there's anything wrong with SETL, it's much easier to change it now than

later. Section 15 summarizes what I think can be improved in SETL, and

contrasts it with ASL.

This respecification is at present very incomplete. All that is done

here is the easy work: the respecification of the data types, expressions,

statements, procedure linkage, etc. A glaring deficiency is that no work

is done here on conversational and real time aspects. This seriously

limits ASL's use for most of the largest programming projects, which is

the very area where ASL's potential is greatest.

Other major deficiencies are that no work is done here on language

extension facilities (such as user-defined data types), a preprocessor,

implementation considerations, and the intermediate language.

But incomplete as this is, it is hoped that it will be a positive con-

tribution to the development of SETL.
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0» Overview

Data Types

Numbe r

Character
Boolean
Pointer

Procedure
Set

Special Cases of Sets

Relation

Map
Array
Matrix
Vector
Character string

Boolean string

1, 1. 2, 1. 3E100, 3/5

'a 1

TRUE,



Procedures

May be invoked recursively.

May be invoked from either right-hand or left-hand sides.

Call by value; for right-hand calls no argument return.

Variable and arbitrary number of parameters is possible.

Set Formers

Enumeration
Iterative

Null set

(a, b, c}

(e(x), Vx £ S I C(x)>

te(x, y), Vx£ S, Vy £ R I C(x, y)}

te(i), 1 <Vi <n I C(i)>

le(i), Vi = 2, 4 10 I C(i)}

Vector Formers

(a, b, c)

(e(x), Vx e S I C(x)), etc.

Search Expressions

x e S : C(x)

m ^i ^n : C(i)

i> : C(i) x = 2, 5, 6 : C(x)

x = 2, 4, . . . , n : C(x)

Universal Predicates

Vx£ S : C(x)

m <Vi <n : C(i)

Vi > : C(i) Vx = 2, 5, 6 : C(x)

Vx = 2, 4, . . „ , n : C(x)

Existential Predicates

3x & S : C(x)

m <3i <n : C(i)

3i> : C(i) 3x = 2, 5, 6 : C(x)

3x = 2, 4, .... n : C(x)

Cross Sections

f(a, *) is {(x(2), y), V(x, y) B f I x(l) = a>

f(*
f a), f(a, *, b), etc. , have similar definitions.

Subarrays

f(m:n) is (f(m), f(m+l) f(n))

f(m:)
f f(:n), f(a:b, c:d), etc., have similar definitions.



IF Expressions

y = IF x > THEN x ELSE -x; Valid on left-hand side also.

DECLARE Statement

Used mainly for efficiency enhancement and machine-readable
commentary; ASL is basically declaration-free.

DECLARE (x, y) NUMERIC, S STATIC,
M MAP ((CHAR, . . . ), INTEGER),
epsilon 0. 001;

Assignment Statement

x = expr; f(x) = expr;

f(g(x)) = expr; means t = g(x); f(t) = expr; g(x) = t;

(x, y, z) = (1, 2, 3);

x = y = z = expr;

expr; means expr = TRUE; Example: xe S; means S = S U {x}.

Input/Output Statements

READ x, y, z;

READ i, a(i) FORMAT(N(5), A(12));

READ x, y, z FILE f COPY g POSITION(NL);
READ x, y STRING c;

READ x, y NAMES;
WRITE x, y+3 FORMAT(PAGE, A, N(5));

PAGE FILE f MARGIN(11, 80) AT 51 DO
WRITE PAGENUM(f) FILE f ...

FORMAT(LINE(53), X(42), N);

WRITE FILE f POSITION(PAGE);
END

FORMATCNL, A(10), 6 N 4, S, V];

Control Statements

RETURN; QUIT; CONTINUE; STOP; EXECUTE L; GO TO L;

null.



Statement Brackets and Headers

DO... END, BEGIN . . . END, (...), [. . . ]

INITIALLY DO k = 0; WRITE POSITION(PAGE); END
IF c THEN si ELSE s2

IF cl,



Elaboration Facilities

Machine readable commentary, e. g. :

DECLARE 1 ^.i ^1000 INTEGER,
f(x, y, z) ASSIGNS (x, z),

g PROCEDURE MAP(NUM, CHAR);

Debugging Facilities

DECLARE 1 <^i ^1000 INTEGER VERIFIED;
TRACE(x, y); STOP TRACE(x); (like the PL/I CHECK prefix).

Input and Listing Control Commands

EJECT; MARGIN(i, j); NEATER; (= INDENT + OVERPRINT).

Built-in Procedures

SQRT(x), SET(x), PAIR(x), POW(S), COMPILE(text), etc.



1 . Concepts

ASL is an executable algorithm specification language. It is intended

for use as a research tool for developing and experimenting with complex

algorithms, as a teaching aid in communicating algorithms to others, and

as a vehicle for constructing prototypes of large software systems.

ASL is a revision of the SETL (Set Theoretic) language developed at

New York University. It is a procedural language, and has been influenced

most strongly (aside from SETL) by PL/I, APL, and Algol '68. However,

it is somewhat closer to conventional mathematics than those languages, in

both writing style and facilities provided.

ASL is a substantially higher level language than PL/I, APL, and

Algol. As such, it makes tractable the coding of algorithms that might not

even be attempted in the lower level languages. It is less machine dependent

and hopefully will be less implementation dependent than the others.

For the most part, this paper presumes that the reader is an experienced

programmer. No knowledge of SETL, however, is assumed.

1. 1 Applications

ASL is applicable to roughly the same class of problems as PL/I

without its business oriented and multitasking features. Its field of application

is limited chiefly by its lack of efficiency: production programs will probably

not be coded in ASL until the ratio of hardware to software costs decreases

by an order of magnitude or so. For programs involving simple operations

on arrays and strings, the ASL program will probably
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execute from ten to a hundred times slower and will require about five

times more storage.

For programs involving complicated data structures, it is possible

that the ASL program will execute faster than a corresponding PL/I

program that one is likely to take the trouble to write. This is because

of techniques such as hashing that are built into ASL.

Some programming areas for which ASL is well suited are:

1. Compiler algorithms

2. Combinatorial algorithms

3. Operating systems

4. Formula manipulation

5. Numerical analysis

6. Linear programming

7. Problems involving graphs (e.g. , directed graphs)

8. Miscellaneous computer-oriented algorithms (bit-parallel

operations, pointer operations, etc. )



1 . 2 Principles of Design

ASL is constructed from as few basic ideas as is practical. This

makes the language easier to learn, and minimizes the necessity of referring

to the reference manual when coding. In keeping with this, there are only

five basic data types, one data aggregate, and a total of nineteen statement

types and statement "headers".

The full ASL character set is rather large, and there are a large

number of operators. It is hoped that this will improve the clarity of

algorithms while maintaining conciseness. Many of the operators and

statements are defined in terms of more basic ones, but no attempt is

made to rigorously isolate a "basic" subset of ASL.

The unifying concept is readability by people, rather than machines.

The readability is achieved not by wordiness but by borrowing the modern

mathematical style that has been evolving for hundreds of years. In

particular, the notations of set theory are extensively used. As an ex-

ample, if S is a set of numbers -then the set of positive numbers obtained

from S is written

[x,Vx£ S lx> 0}.

One reason for stressing readability is that ASL is an algorithm

specification language. That is, the main purpose of coding an algorithm

in ASL is to communicate the essential features of the algorithm, in a

rigorous and machine -verified manner, to people. The algorithm is

written to be read by computer science researchers, by system analysts,



by system implementors, and by students. The fact that the algorithm

can be executed by a machine is usually of secondary importance. It

is executed mainly to verify its correctness by trying it on a large number

of test cases with the unerring accuracy of which only a machine is capable.

The principle of readability has many effects on the language.

Perhaps greatest is the implication that side effects are to be minimized.

For example, in ASL a function cannot alter its arguments, in a normal

call. This rule is imposed because an algorithm is significantly easier

to understand if one knows a priori that a reference to f(x) cannot alter x.

This restriction also keeps ASL closer to the mathematical notion of

function, it avoids such sticky issues as the meaning of "a + f(a)" if f

can change a, and it helps in the optimization of programs by a compiler.

Another common source of unpleasant side effects has been elim-

inated because in ASL, variables are not declared to be of any particular

type. Wheras in PL/I the statement "X = 1;" would cause the value of X

to be four blanks if it had been declared to be a character string of length

four, in ASL relatively few such surprises occur. The meaning of "X = 1"

is simply to make X a numeric quantity with a value of 1, regardless of

the context. Nearly all data conversions must be explicitly called for,

which is usually an advantage from the point of view of the reader.

The principle of readability also leads to keeping ASL procedures as

self-contained as is practical. That is, the reader should be able to

understand an ASL procedure in detail when he only has a vague understanding

of the procedures which call it and the procedures which it calls.



Some of the implications of the stress on readability are that the

flow of control via the "GO TO" is limited to be within the procedure,

facilities are provided to encourage a highly structured or "go-to free"

coding style, and assignments are easily visible. Pointer

variables are treated in a way that prevents their changing the value

of an ordinary variable. Assignments always involve a copy operation,

at least conceptually. That is, even if A and B are aggregates, the state-

ment "A * B" makes the value of A a copy of B; if either A or B subsequently

changes in value, it does not affect the other.

Much of the above can be summarized in the single word "simplicity".

The language features desirable for the sake of readability coincide

very nearly with the features desirable to enhance compiler optimization

possibilities.

It will be found that coding for readability will make algorithms

somewhat harder to write and less efficient than they might otherwise be.

But these drawbacks are not serious. It is still far easier to code in ASL

fjhan in PL/I or Algol. The optimization possibilities will help to compensate

for the inefficiencies brought about by such features (or lack thereof) as

the restricted "go to".

Although an attempt has been made to minimize side effects, they

have not at all been eliminated. For example, an ASL function might

return the next prime number each time it is called. Invoking such a

function then has the side effect of incrementing a kind of counter internal

to the procedure. Functions can also have side effects through input/output

activity.
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Perhaps the greatest source of side effects in ASL is due to the fact

that a procedure can share variables in a manner similar to FORTRAN

COMMON. However, such sharing is made explicit in both the calling

and the called procedures, and thus the reader is less apt to be caught

unawares than he is with many programming languages.

1 , 3 Summary of ASL

1, 3. 1 Data Type Handling

Variables in ASL are not normally declared to be of any particular

data type. A variable acquires a data type by assignment to a self-

defining value, and the data item's type and other characteristics are

passed on unaltered to other variables by assignment.

There is, however, a DECLARE statement in ASL. It provides

information about a variable that cannot be supplied in any other way,

such as the external and the static (with respect to recursion) attributes.

The DECLARE statement may also be used in a purely informative

way. For example, DECLARE K NUMERIC says that the values

taken on by K will always be numeric. It does not cause any conversions

of data types to force K to be numeric, Such a declaration has no

effect on the operation of a program. It might be included to help

the human reader's understanding of a program, and to help the optimizer

to produce efficient object code.

The data types in ASL are the number, the single character,

the truth or Boolean value, the "pointer" or reference value, the

11



procedure value, and the set. The first five are the "atomic" data

types and the last, the set, is an unordered collection of items of any

data type. From the set the familiar data types such as character

strings and arrays may be constructed. Because of the generality

of the set, one is not bound by the usual restrictions when composing

data aggregates. For example, arrays may be sparse

and they need not be homogeneous (that is, their elements need not

be of the same data type).

1. 3. 2 Storage Allocation

The set and its special cases such as arrays and strings are

assumed to be of varying size, and there is no limit to the size except

the availability of main storage. This and the possibility of recursion

imply that the ASL implementation must be based on a dynamic storage

allocator.

There are two types of storage requests. These might be handled

with different strategies for reasons of efficiency. To support recursion,

a simple stack-like allocation and freeing mechanism is needed, for the

stacking of the values of local non-static variables. For the storage

of data structures, a capability to support random allocation and

freeing requests is needed.

Both types of requests can be handled by a general capability

such as the OS/360 GETMAIN/FREEMAIN. Another reasonable im-

plementation would be to partition the dynamic storage area into two

12



areas: a "stack" and a "heap". Allocation and freeing from the stack

area simply involves moving a pointer up and down (and checking for

stack overflow). The "heap" area would be used for storing data

structures, and it could be managed in any of a variety of ways, such

as the GETMAIN/FREEMAIN strategy, the "buddy system", or a

scheme based on a garbage collector, possibly with a compaction

capability to avoid fragmentation. There is nothing inherent about

ASL, however, that requires or even particularly suggests that a

garbage collector be used.

1. 3. 3 Input /Output

The ASL I/O capabilities are modeled after PL/I, but are sim-

plified. That is, the PL/I basic modes of stream I/O are included in

ASL, but various efficiency related issues such as explicit control over

the buffering strategy and the physical block size are not included.

The file being read or written consists of a (generally very large)

character string. Conversion routines are automatically invoked to

convert portions of the character string (or "I/O stream") to and from

internal ASL format. An I/O file is normally strictly input or strictly

output. An output file is generally intended to be printed or otherwise

displayed for reading by humans, but it may be used as a "scratch" file,

for computer-to-computer transmission, or as an intermediate file

to be read by programs coded in another language. Changing from a

13



READ to a WRITE or vice versa causes the file to be closed and "rewound"

if possible.

There are three varieties of I/O: simple, name, and format

directed. In simple mode, only the item's value is written out or read

in, and it appears on the external medium in exactly the same form

as an ASL self-defining value (for example, a character string is

written out with surrounding quotes).

In name mode, data on the external medium resembles an ASL

assignment statement, with the data item's name (as known in the pro-

cedure containing the READ or WRITE statement), an assignment symbol

(=), the value as it would be written as an ASL self-defining value, and

a statement separator character (;).

In both simple and name modes, the number of characters used

in the output medium depends upon the values being written. The format

directed mode of I/O allows the programmer to explicitly control the

exact number of characters to be written. In addition, control can be

exercised over when a new line or page is begun, and certain details

of the manner of converting items between internal format and character

strings.

14



1.3.4 Compile Time Facility

The ASL compile time facility, or macro preprocessor, is

modeled after that of PL/I. Many ASL statements, such as assign-

ment, IF, GO TO, READ, WRITE, etc. , can be prefixed by a per-

cent sign (%), which causes them to be executed at compile time.

A simple assignment such as %A = '1' can be used to substitute

a string such as '1' for all occurrences of the name A that follow.

The %IF and %GO TO permit conditional compilation, i. e. , the

deletion or repetition of blocks of code. The %READ allows blocks

of code to be brought in from a file (as the PL/I %INCLUDE).

The %WRITE allows the placement of code on a file for compilation

at a later time, and the writing of diagnostics about the preprocessing

phase of compilation.

In addition, facilities are provided for the coding of preprocessor

procedures, which may be recursive. A symbol generation capability

is provided to permit the introduction of "compiler temporaries"

and generated labels. With these facilities, the programmer can,

for example, define his own loop specification and have the preprocessor

translate it into ASL.

Like the PL/I preprocessor, the ASL preprocessor is largely

ignorant about the syntax of the text it is processing. It can recognize

an ASL token and can distinguish which are identifiers (those that begin
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with a letter), but that is about all. Thus the preprocessor can be used

to some extent to process text that is not an ASL program.

1. 3. 5 Normal and Elaborated ASL

A working ASL program may be elaborated upon by adding statements

that describe certain features of the program. These elaborations

serve two purposes: to aid the human reader in comprehending a program,

and to aid the optimization possibilities. The elaborations never change

the results of a program, and thus they may be ignored if desired.

Most of the elaborations consist of DECLARE statements. One

can specify, for example, that the values taken on by a variable are

always numbers, and furthermore that they always fall within a speci-

fied range. If a variable's values are always character strings of

fixed length or of some predictable maximum length, then this may

be specified. One may specify that a procedure is free of side effects

(thus avoiding a bottom-up compilation order to have this determined

by the compiler), or that at any rate if it does have side effects, they

are inconsequential and may be ignored for program optimization

purposes (a procedure that contains statistic counters for self-analysis

would probably fall into this category).

These elaborations can also be used as a debugging aid. By

giving a variable the VERIFIED attribute, the compiler will generate

code at each assignment to the variable to verify that all information

given about the variable is satisfied, and to terminate processing if
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it is not.

The general nature of the elaborations is to merely add information

about a program. The elaborations do not explicitly state how to

implement something. This limits the possibilities of the elaboration

features to some extent, but it keeps them machine independent, at a

high level, and of positive value to the human reader. As a simple

example of this point, we do not specify "store x in a half word".

Instead, we specify that the values of x range from to 1000, or

whatever.

The elaborations may all be grouped together and inserted at

one point in a procedure. Except for this one insertion, there is no

need to modify any text in the program.

1. 3. 6 Features Not Included

There are many important features found in other programming

languages that are not included in ASL. Most of these features are

directly aimed at efficiency questions, some are aimed at making

programs easier to write at the expense of readability, and some are

oriented toward applications which are either too specialized or to

which ASL is not well suited anyway. Lastly some features are omitted

simply because to include them would be to give ASL too ambitious

a beginning.

Some of these features which are absent from ASL are:
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1. Parallel or interleaved processing, e.g., multitasking,

reentrancy, semaphors, etc.

2. Discrete event simulation language features.

3. Conversational programming features.

4. Teleprocessing capabilities.

5. Program fetching or overlays.

6. Interruption processing.

7. Complex numbers.

8. Explicit control over the precision of real numbers.

9. Explicit control over implementation details.

8. Extreme conciseness (as in APL, and to some extent Algol 68).

9. Intricateness, such as achieving brevity of expression through

the exploitation of side effects.
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1.3.7 Program Compilation

An ASL program is a collection of procedures of the function

and operator types. Procedures may contain other procedures in a

properly nested manner. Each outermost procedure may be separately

compiled. The translation of a source program into executable form

involves two intermediate languages, IL1 and IL2. Translation to IL1

is done by a "preprocessor", which is analogous to an assembly language

macro expander. The programmer may control this preprocessing

stage by means of statements written in the preprocessor's language.

This language is similar to ASL proper, and the preprocessing control

statements are identified by their beginning with a percent sign (%). A

listing of the resulting program coded in IL1 may be obtained. The

program at this point looks very much like the original source program.

In fact, an entire program could be coded directly in IL1, although

this would not normally be done.

Besides acting on programmer- supplied preprocessor control

statements, the preprocessor expands many ASL statements into more

primitive ones. For example, an iteration specification is converted

into IF statements, GO TO statements, etc.

The program is next translated into the other intermediate language,

IL2. In this form, the program is essentially compiled. It exists in

a highly coded form that is only slightly above the assembly language

level, but it is still machine independent. Arithmetic expressions
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have been parsed, and they appear as a series of adds, multiplies,

etc., with explicit references to "compiler temporaries". Statements

such as READ and WRITE appear as library routine calls, as do many

operations, such as the set membership test. If a procedure is to be

saved for later linking with other compiled procedures, it is generally

saved in IL2 form. A listing of the procedure in IL2 may be obtained.

At this point, the procedure may be combined with others and

translated into machine code for execution. Alternatively, a global

optimizer may be brought in. This optimizer has IL2 for both its

input and its output; it is thus capable only of machine independent

optimizations. The optimizer eliminates common subexpressions,

factors code out of loops, etc. , and produces the transformed IL2

procedure augmented with certain information about it. This information

includes a list of external variables and whether they are set or merely

used, a list of procedures called by the procedure, etc. This information

may be printed out as documentation on the program. It is also used

by the optimizer when processing higher level procedures. That is,

the greatest optimization can be achieved by compiling all procedures

in a program from the "bottom up", each time informing the optimizer

(by means of job control language statements) where the lower level

procedures reside. The optimizer cannot move code from one procedure

to another, but it can make use of knowledge of a called procedure's

side effects. If recursion is involved, it is necessary to optimize
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some procedures twice to achieve greatest optimization. For example,

if A calls B and B also calls A, then one might first compile and optimize

A. Then when B is compiled and optimized, the optimizer can use the

information about A that has been saved. Then recompiling A, allowing

the optimizer to use information that is now available about B, might

yield a more efficient procedure A.

When one procedure is contained within another, all procedures

are compiled together. The optimizer then has greater opportunities,

as it may move code from one procedure to another. This is possible

because in such a case the optimizer knows all the places a procedure

is called from (an internal procedure cannot be called from outside

the containing procedure, unless that possibility is made explicit by

means of the SHARED attribute in a declaration statement).

The ASL translation process is illustrated on the following page.
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2. Program Elements

This section discusses the structure of an ASL program, with the

emphasis on syntax rather than semantics. First the ASL character

set will be described, and a way will be given to approximate the ASL

character set with two widely used computer codes, EBCDIC and ASCII.

The manner of building characters into "tokens" will be described, as

will the terminology of the various types of tokens. Next it will be shown

how to put tokens together to form statements, how to put statements

together to form statement groups and procedures, and how to put pro-

cedures together to form a complete program.

2. 1 Character Set

2. 1. 1 Language Character Set

As with all computer languages, the ASL character set is a compromise

between the ideal world of the mathematician and the limitations of such

hardware as typewriters and keypunch machines. We prefer the ideal

world assumed by the mathematician, as a rich character set helps to

achieve clarity through conciseness. Certainly Aj + B is clearer than

A SUB 1 PLUS B; in ASL we have the usual compromise A( 1 ) + B.

For the benefit of published algorithms, the ASL character set

is larger than both EBCDIC and ASCII. The additions consist of simply

more characters, however, there being 120 in all. The "full" ASL does

not employ underlining, bold face type, italics, superscripts, etc. Hence

an ASL program written in the full character set:
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(1) can be typed on a standard typewriter with a minimum

of hand work, backspacing, etc.
,

(2) can be encoded in a direct way (for storing in a computer

or transmitting in digital form) provided at least seven

bits per character are available, and

(3) could be printed on a computer's printer if special

printing elements were made up.

The full character set cannot be accomodated by making minor alterations

to a conventional typewriter, unfortunately, because typewriters are

generally limited to about 44 printing keys and two shift positions, which

gives a maximum of 89 characters (counting the blank).

The table at the end of this section shows the full character set and

indicates briefly how each character is used. An indication of the alter-

native for EBCDIC and for ASCII is also given.

An ASL character is either an alphanumeric character or a special

character. The alphanumerics are the digits and letters, and the letters

exist in both upper case and lower case form. The special characters

are sometimes grouped according to most common usage, such as "arith-

metic operator" and "grouping symbol". The terminology and hierarchy

are given at the end of this section.

There are some symbols that might normally be considered "letters",

such as 0, |y, and possibly V, but these are defined to be special characters

in ASL. The significance of this is that these characters cannot be used

to make up names,
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The new-line character has no graphic. It indicates the beginning

of a new line, and it cannot appear in any other place in source text (not

even in comments and character string constants). It is accessible only

through the predefined variable NL and input/output operations.

The new-line character indicates that a character string, as repre-

sented on an external medium, has begun a new line. This applies to the

compiler's reading and printing of text, and to the ASL program's reading

and printing of text. If the medium for source text or data is a typewriter-

like device, NL is generated by depressing the carrier return. If the

input medium is punched cards, an NL character is inserted between

card images by the input /output control program. On printing, an NL

character in the text causes a new line to be begun (unless the device

is already at the beginning of a new line because of a hardware limitation

on line size; see section 9, Input /Output).

The characters and b are in the somewhat unusual category of

"special constant". These characters merely provide an alternate way

to denote the null set (rather than { } ) and the blank character (rather

than ' ' .

The EBCDIC and ASCII substitutions for ASL characters must always

be written without intervening blanks (for example, in .(, <=, and .V. ).

If the character being substituted for is a binary operator, then the EBCDIC

and ASCII representations usually resemble user-defined operator names (e.g.

£ becomes .IN. ). The numeric comparison operators are an exception,

however. The period-delimited notation is also used for the quantification
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symbols V and 3 , and the "such that" symbol I . If the character being

substituted for is a unary operator, then the EBCDIC or ASCII representa-

tion is a predefined function name (e. g. , 3S becomes ARB(S) or ARB S).

The special constants (0 and b) are represented by predefined variable

names (NULL and BLANK).

Variations that might be considered merely stylistic are acceptable.

For example, £ may be written & and £ may be written £.

There is no character collating sequence defined by ASL. Characters

cannot enter into numeric comparison operations, and a program that

requires a collating sequence must provide its own mapping between

characters and numbers.
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TYPES OF CHARACTERS USED IN ASL

Characters (120 in all)

Alphanumerics (62 in all)

Digits 0123456789
Letters

Upper Case ABCDEFGHIJKLMNOPQRSTUV
W X Y Z

Lower Caseabcdefghijklmnopqr stuvwxyz

Special Characters (5 8 in all)

Grouping Symbols ( ) C ] { }

Separators , ; : . blank new-line

Special Constants h
Built-in Operators

Arithmetic + - * / !

Logical -< & <£ v -U =^ =4$ = ^
Comparison

General = 4

Numeric <C ^ x> ^
Set CZQ^>^

Pointer f {r

Set # 6 £ 3 Ufl
Relation P (ft i!

Vector £ @

Quantification V 3
Miscellaneous % '

"
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2. 1. 2 Data Character Set

The data character set includes all the language characters plus

any that an installation might care to define. The additional characters

may be used in comments, character string constants, and input /output

of character strings.

There is one EBCDIC graphic, $, that is not in the EBCDIC dialect of

the language, but it would probably be in the data character set of an EBCDIC-

oriented installation. ASCII graphics in the same category are $, *— , and \ .

2. 2 Tokens

This section describes how characters are put together to form tokens,

which are the basic syntactic entities that are recognized by the ASL com-

piler' s lexical scanner. A token may be informally defined as the simplest

meaningful entity in a program: one whose meaning would be changed or

lost if it were further subdivided.

The terminology of the various token types is sometimes confusing.

There are eight basic token types distinguished in this document: identifiers,

self-defining atomic values, grouping tokens, etc. Identifiers are further

broken down into keywords and names. These are broken down further.

The table at the end of this section summarizes the hierarchy and terminology

of most of the terms used, and shows some examples. Those categories

marked by an * are lexical types. That is, they can be recognized by their

appearance alone. The other categories require contextural information
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to be distinguished; they are recognized by the ASL compiler's parser.

Tokens are delimited in the PL/I style. That is, special characters,

including the blank and new-line character, serve as delimiters. The

comment also serves as a delimiter. An arbitrary number of blanks and

comments may always be inserted between tokens. Blanks (or comments)

are frequently necessary to achieve proper delimiting. The character

string and the comment are the only entities that may contain blanks.

Examples:

log x is not equivalent to logx .

log"comment"x is (essentially) equivalent to log x.

1. OE-6 is not equivalent to 1. OE -6.

RETURN X + Y is not equivalent to RETURNX+Y.
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TYPES OF TOKENS IN ASL

* Tokens
* Identifiers

Names: x, MACK_THE_KNIFE, etc.

Variables
Named Constants

Statement Labels
Procedure Names
Declared Constants

Keywords
Statement Identifiers: IF, READ, etc.

Bracketing Keywords: BEGIN, DO, END
Separating Keywords: THEN, ELSE
Attribute Keywords: NUMERIC, STRING, etc.

Noise Keyword: STARTING
Predefined Variables: TRUE, FALSE, SQRT, etc.

* Self-defining Tokens
* Numbers: 1.0, 2E100, etc.

* Character Strings: 'a', 'XY?\ etc.

* Boolean Strings: '1011'B, etc.

* Operators
* Built-in Operators: +, -, #, etc.

* User-defined Operators: .MY+.
,
.SYMDIF. , etc.

* Grouping Symbols: ()[]{}
* Separators: colon, ellipsis, comma, stroke, equal sign, semicolon,

new-line, continuation symbol
* Special Constants: 0, fc

* Ouantifi cation Symbols: V, 3

* Compile Time Statement Symbol: °fc
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?,. ?. 1 Identifiers

There are two types of identifiers: names and keywords. Names are

made up by the programmer to refer symbolically to data and procedures.

Keyword? are identifiers that have a special meaning built into the language.

2. 2. 1. 1 Names

A name, and in fact an identifier in general, is a string of alphanumeric

and break characters such that the initial character is a letter.

The maximum number of characters permitted in a name is 100. The

input medium may further limit this maximum because of the new-line

character that the input reader inserts at the end of each line of source

text (thus the maximum is 72 or possibly 80 for programs prepared on

standard 80-column punched cards).

The reason for the limit of 100 is that the compiler may be more

efficient if it is known that an identifier's length can be packed into a small

number of bits (such as one byte). Although ASL usually does not yield

so easily to minor compiler problems, in this case there seems to be

very little value in allowing extremely long identifiers. The input medium

will usually be the limitation, and even if it were not, it's hard to imagine

a situation in which an identifier exceeding 100 characters in length improves

readability.

Names are used for variables, statement labels, procedure names,

and declared constants.
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Examples:

Valid names Invalid names

x _x

XI 2x

x_prime #table

Set x-

1

In this document, the term "name" is not used in the sense synonymous

with "address", as is frequently done.

2. 2. 1. 2 Keywords

A keyword is an identifier that has a special meaning built into the

language. Some keywords are reserved words, as indicated below. There

are six types of keywords in ASL„ Following is a partial list.

Statement and statement header identifying keywords (reserved):

DECLARE, DCL, READ, WRITE, PAGE, FORMAT, RETURN, QUIT,

CONTINUE, STOP, EXECUTE, EXEC, ENTRY, GO, TO, and IF.

Bracketing keywords (reserved): DO, BEGIN, CASE, FUNCTION,

OPERATOR, and END.

Separating keywords (reserved): THEN, ELSE, WHILE, DOING.

Attribute keywords (not reserved): STATIC, DYNAMIC, INTERNAL,

SHARED, IN, NUMERIC, NUM, CHARACTER, CHAR, BOOLEAN, BOOL,

PROCEDURE, PROC, INTEGER, INT, POINTER, PTR, SET, RELATION,

MAP, ARRAY, MATRIX, VECTOR, STRING, PAIR, DENSE, SPARSE,

REGULAR, DIMENSION, DIM, SIZE, LI, HI, LENGTH, EXACT,
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APPROXIMATE, APPROX, ASSIGNS, PRECEDENCE, PREC,

and VERIFIED.

Noise keyword (reserved): STARTING.

Predefined variables (not reserved): TRUE, FALSE, SQRT, etc.

All keywords are written in upper case. This makes them stand

out, which helps to reveal the structure of programs, and makes key-

punched ASL closer to real ASL. The break character is not used in

keywords.

2. 2. 2 Self-defining Tokens

A self-defining token is one that denotes its own value, i. e. , its

representation can be regarded as both its name and its value. It is

sometimes called a "constant", although the term "constant" is used

loosely and sometimes denotes other entities.

ASL includes numeric, character, and Boolean self-defining tokens.

2. 2. 2. 1 Numeric Self-defining Tokens (Numbers)

Numbers are written as either (1) a string of decimal digits, (2)

a period (decimal point) surrounded on both sides by a string of digits

of nonzero length, or (3) either of the above followed by an exponent part.

An exponent part is the letter E, optionally followed by a sign (+ or -),

followed by a digit string. There may be no embedded blanks. A prefix

sign is considered to be an operator.
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Examples:

Valid Numbers

123

2E100

6E-3

1.

0. 5

3. 0E-5

Invalid Numbers

2E 100

6.E-3

1.

. 5

3. 0e-5

2 E100

2E3.4

A self-defining numeric token has the attribute EXACT if it is written

without a decimal point, and APPROXIMATE if it has one. An exact number

is stored as a ratio of two arbitrarily large integers, and an approximate

number is stored in some implementation-defined format and precision

(such as decimal or binary floating point). Thus 6E-3 is stored as 6/1000,

or equivalently as 3/500.

ASL does not include a facility for expressing numeric data in a base

other than decimal.

2. 2. 2. 2 Character Self-defining Tokens

Character self-defining tokens are written with a single character

surrounded by apostrophes, or "single quotes", e.g. , 'A'. The special

symbol h is an abbreviation for ' '.

More than one character may be written between apostrophes, in
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which case it is taken to represent a string of characters, e. g. , 'abc' is

an abbreviated way to write ('a', 'b', 'c') (this anomalistic treatment follows

Algol 68). Also, two adjacent apostrophes, ", is taken to denote the null

string; it is a way to write the null set (this will be made clear in section

3, Data Elements).

The apostrophe may be indicated within a character string by doubling

up on it. Thus 'isn"t' is a representation of a string of length five, and the

single apostrophe is written "".

The new-line character may not appear in a character string self-

defining token. It may only be put into a string by referencing the predefined

variable NL, and using some operation such as concatenation.

The maximum length character string is generally limited by the

medium on which the source program is prepared.

A character string of length one may be written, for example, as

('a', ), or ONEVECTOR 'a'.

2. 2. 2. 3 Boolean Self-defining Tokens

There are cwo Boolean self-defining tokens, which are written ' l'B and

'O'B. Alternatively, one can use the predefined variables TRUE and FALSE,

which are initialized to these values, respectively.

As in the case of character data, a sequence of ones and zeros may be

written between the apostrophes, in which case it is taken to denote a Boolean

string. For example, ' 1 01' B is an abbreviated way to write ('
1

' B, 'O'B, 'l'B).
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Also, "B is allowed; it is another way to write the null set 0.

A Boolean string of length one may be written, for example, as

('l'B, ), or ONEVECTOR ' l'B.

Boolean strings are sometimes called bit strings, but in this document

the term Boolean string is used to stress the fact that they are vectors of

truth values, and not numbers ("bit" is a contraction of "binary digit").

Nevertheless, 0' s and l's are used for the self-defining tokens (rather than

'F'B, for example), because the algebra of truth values is so well expressed

in the former notation.

A Boolean string may not contain a new-line character, and thus

the maximum length is generally limited by the source program's medium.

?,. 2. 3 Operators

An operator, like a function, transforms one or more operands into

a single result. ASL includes a large number of built-in operators and

allows the programmer to define his own.

2. 2. 3. 1 Built-in Operators

The ASL built-in operators are discussed in detail in section 4,

Expressions. Here we merely list them and discuss their syntactic qualities.

There are operators of both binary and unary types, and in the unary

class there are prefix, suffix, and one "parenthesis-type" (absolute value).

The table at the end of this section shows all operators and their

precedences. These precedences may be obtained by means of the PRECE-
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DENCE predefined function, e.g., PRECEDENCE('#') is 19. A few symbols

which are not really operators are also shown in the table. These symbols

might be assigned precedences (in the order indicated by the table) to aid

in parsing, but the precedence on non-operators is not given, as it is not

available by means of the PRECEDENCE predefined function.

The precedence of the prefix + and prefix - is obtained by referencing

PRECEDENCE('P + ') (or 'P-'). The binary forms are obtained by using

'+', '-', 'B+', or r B-'. The absolute value function has no precedence;

its meaning in an expression is always unambiguous.

The placement of "juxtaposition" in the table is intended to indicate

that an expression such as t^F x is parsed as (rf'F)(x).

Binary operators with equal precedences are grouped on the left,

with the exception of exponentiation. Thus a - b + c is (a - b) + c, and

a**b**c is a**(b**c). (Exponentiation is an exception because a**b**c

is assumed to represent the mathematical a" , and because (a**b)**c

would usually be coded as a**(b*c)).

Prefix operators and juxtaposed names are grouped on the right.

Thus f-log sin x is taken to mean f(-(log(sin x))).
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2. 2. 3. 2 User-defined Operators

ASL includes a limited capability for user-defined operators. User-

defined operators are always clearly recognizable as such, from their

syntax alone, and no facility is provided for changing the meaning of a

built-in operator. Thus when one sees a "+" in a program, its meaning

is known immediately, and one need not search for a possible redefinition

of it.

A user-defined operator is a character string that begins and ends

with a period, and between the periods there can be no blank, period, or

new-line character.

Examples:

Valid operators

.+.

Invalid operators

.PARENT.

,MY *.

.cross. ,DOT PRODUCT.

User-defined operators can only be binary operators. There is no

facility for user-defined prefix, suffix, parenthesis, or any other type of

operator. There is little need for prefix type, as ASL functions of single

variables can be written without parentheses.

A precedence may be assigned to a user-defined operator by means

of the PRECEDENCE attribute in a DECLARE statement. These precedences

are numeric values that are compared to the precedences of the built-in

operators when parsing an ASL program. The precedence of a user-defined

operator need not be an integer and it need not be positive.

42



2. 2. 4 Grouping Symbols

There are three types of grouping symbols:

parentheses ( )

brackets [ J

braces
j, }

Parentheses and brackets are used in expressions and in enclosing

lists. Braces are used in forming sets, either by listing the members

(e. g. {l, ?., 3}) or by forming a set from certain members of another set

(e.g. {SQRT(x), x e S lx)o}).

Parentheses and brackets may be used interchangeably. However,

a left parenthesis must be matched by a right parenthesis, and not by a

right bracket, and vice versa. Brackets are generally used to improve

readability in an expression, for example (f(x))(y) may be expressed a

little more clearly as [f(x)] (y). Because of their interchangeability, either

brackets or parentheses may be used to denote subscripting, e, g. , A(i)

and ACO are equivalent. Since nearly any syntactic entity in ASL may

be enclosed in parentheses or brackets without changing the meaning, the

fairly common convention of enclosing labels in brackets may be used,

e.g. [LOOP]: IF i ^n THEN

Following is a complete list of the uses of parentheses and brackets:

1. Grouping of expressions, e.g. a*(b+c) .

2. Vector former, e.g. y = (1, 2, 3); f(x, y) .

3. Grouping of statements, e.g. (x = y, y=y+l).

4. Factoring of attributes, e. g. DECLARE (x, y NUMERIC) STATIC.
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Redundant parentheses and brackets may always be inserted. For

example, if x is a name, then [(x)]
,

[x], and x are always equivalent.

As a specific example, log x and log(x) are equivalent. If x is a list,

however, then the innermost parentheses cannot be removed without altering

the meaning. For example, |1, 2, 3/ is a set of three integers, whereas

[(1, 2, 3)} is a set containing one object: a vector. Also, Vi = 6, 7, 8

specifies an iteration with i = 6, then i = 7, and then i = 8. But Vi =

(6, 7, 8) specifies an iteration to be done once, with i a vector.

2. 2. 5 Separators and Miscellaneous Tokens

The "separator" tokens are the colon, ellepsis, comma, stroke,

equal sign (assignment symbol), semicolon, new-line character, and

continuation symbol.

The colon is used to separate two numeric expressions in a range spec-

ification (e.g. , STRING(3 : 5)), in the quantifier predicates, and to separate a

statement label from the statement. The ellipsis (three consecutive periods)

is used to separate the first and second expressions from the last expression in

the elided list notation, e.g., Vi = 1, 2, . . . , n; (l , 3 1 5J , etc. The comma

is used to separate items in a list. The stroke is used in its separator

role in iteration specifications, e. g. , Vx e S | x ^ 0. The stroke is also

used in the notation for absolute value.

The equal sign is used as a separator in the assignment statement

(it is also used as a relational operator). The semicolon is used to

separate statements, as is the new-line character. The continuation
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symbol (four consecutive periods) is used to cancel the effect of the next

new-line character (see section 2. 5, Statement Format).

The remaining tokens in ASL are the special constants (null set)

and h (blank character), the quantification symbols V (universal) and j

(existential), and the compile time symbol % (percent sign).

As was mentioned in section 2. 1. 1, the character is merely an

abbreviation for {}, and h is merely an abbreviation for ' ' (one space

between single quotes).

The V symbol is used in iteration "for- specifications" (e. g. , Vx 6 S,

1 ^TVi^Cn, etc. ), and in a predicate expression such as IF Vx : C(x) THEN.

The 3 symbol is used only in predicates, as IF jx : C(x) THEN. . . .

The compile time symbol is used to denote those statements that are

to be executed at compile time, as in %IF DEBUG = 'ON' THEN WRITE

x, y, z. (The use of % follows the use of % in PL/I; in the preceding ex-

ample, the scope of the %ends with the word THEN).

2. 3 Comments

Comments are written between quotation marks (or "double quotes").

This notation was chosen because it is concise and because quotation marks

are frequently used when expressing one type of language in another. ASL

uses the quotation mark to escape to English, and the apostrophe to escape

to a lower level language (a character string to be taken literally);

hence the apostrophe is frequently called a "single quote mark". It is
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convenient to have a comment delimited by a single character (rather than

the PL/I /* . . . */ or the Algol comment ... ;), so that the comment may-

be written and read as easily as possible.

A comment may not contain a (double) quotation mark, as this would

be taken as closing the comment. It may contain semicolons and new-line

characters.

The fact that the comment opener and closer are the same symbol

introduces the problem that inadvertently omitting one will cause an unsophis-

ticated compiler to interchange what it attempts to compile and what it skips

over. However, this is not a serious problem for a language that is primarily

meant to be read. It is preferable to have comment delimiters concise and

unobtrusive.

A comment may be inserted in a program wherever a blank can, with

the exception of a character string self-defining token. Here the "comment",

with its quotation marks, would be taken as characters in the string.

Examples of comments are given in section 2. 8. Sample Procedures.

2. 4 Statements

Section 5 describes in detail how each type of statement is formed from

tokens. Here we describe certain properties common to all statement types,

or to a class of statement types.

2. 4. 1 Simple Statements

There are fourteen types of simple statements in ASL: DECLARE,
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assignment, READ, WRITE, PAGE, FORMAT, RETURN, QUIT, CONTINUE,

STOP, EXECUTE, ENTRY, GO TO, and null. Most (twelve) of these start with

an identifying reserved word (DECLARE, READ, etc. ). The assignment state-

ment does not have a reserved 'word associated with it; it is characterized by

having one or more assignment symbols (a rigorous definition would be some-

what involved and is not given here). The null statement is simply nothing at

all except possibly blanks and comments, written between statement separator

characters.

The statement separator characters are the semicolon and the new-

line character.

Examples:

DECLARE (x, y) NUMERIC

READ x, y; WRITE z;

z = x + y "Add x and y,
"

There are five statements in the above. First is a declaration, which

is terminated by a new-line character. Next is a READ, which is terminated

by a semicolon. This is followed by a WRITE, which is also terminated

by a semicolon. There is a null statement between the semicolon and the

next new-line character. This is followed by an assignment statement, which

has a comment embedded in it. The statement terminator is considered

to be a part of the statement.

Null statements have no effect on an ASL program. They are not

even counted when the compiler generates "statement numbers".
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2. 4. 2 Statement Groups

Statements may be grouped for control purposes by enclosing them in

parentheses, brackets, the words DO and END, or the words BEGIN and

END. The word END may be followed by other tokens as explained in the

next section. Statement groups must be properly nested.

Examples:

(x = y; READ y)

DO IF S 4 <h THEN x = 3S

t = x(3:5) END

In any context where a single statement normally appears, a statement

group may instead be written. Enclosing a single statement in parentheses

has no effect.

The ASL statement group is similar to the PL/I simple DO group.

Unlike PL/I, however, the ASL group is not used to specify iteration.

ASL also does not include anything similar to the PL/I BEGIN , . . END,

with its name- scoping effects.

The grouping keywords (DO, BEGIN, and END) do not require state-

ment separator symbols, although supplying them simply introduces a null

statement. For example, the following two lines of code are equivalent

(null statements are not counted in the assignment of statement numbers to

labels).

IFaU THEN DO x = 0; y = END

IFa/b THEN DO; x = 0; y = 0; END;
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Similarly, the placement of statement separators with respect to

parentheses and brackets is immaterial. For example, the following are

equivalent:

(x = 0; y = 0;)

(x = 0; y = 0);

2. 4. 3 Compound Statements

A compound statement is a statement or statement group preceded

by a statement header. There are six types of statement headers: IF,

CASE, iteration header, INITIALLY, FUNCTION, and OPERATOR. The

IF and CASE are collectively referred to as the conditional headers, and

the FUNCTION and OPERATOR are collectively referred to as the procedure

headers.

The IF, iteration header, and INITIALLY header apply to a single

statement or statement group. This applies to both the THEN and the ELSE

clauses of the IF. (The "decision table IF", however, is a more complicated

construction; see section 6. 3).

Some examples:

IF x <0 THEN x = 0; ELSE x = 1

IF c i \ ' THEN (c = '. '; ERRORSW = TRUE)

( Vx t S ) y = y + x

(Vx e S ) (sum = sum + x; sumsq = sumsq + x* =;: 2)

INITIALLY x =

INITIALLY DO x = 0; S = END
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If the statement group is delimited by DO „ „ . END, then foilowing

the word END may be written a series of tokens obtained from the header

as follows:

IF: The word IF or ELSE, for the THEN or ELSE clause,

respectively, followed by the first n^ tokens obtained

from the conditional expression in the header.

Iteration header: A series of the first n"> tokens obtained

from the header.

INITIALLY: The word INITIALLY.

Examples:

IF x> THEN DO

y = SQRT(x)

z =

END IF x^

ELSE DO

y = SQRT(-x)

z = 1

END ELSE x^

Vx £ S DO

sum = sum + x

sumsq = sumsq + x**2

END Vx

INITIALLY DO x = 0; S = END INITIALLY
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The CASE, FUNCTION, and OPERATOR headers are "openers"

in themselves (act like a left parenthesis) and must be closed with an END.

The END may be followed by a series of tokens from the header, starting optionally

with the word CASE, FUNCTION, or OPERATOR. In the case of FUNCTION

and OPERATOR, either all formal parameters must be displayed or none

at all.

Some examples:

CASE i

1: x = a + b

2: x = 2*a + b

3: x = a + 2*b

END CASE i

FUNCTION REVERSE(X)

1 <Vi<#X/2 DO j = #X + 1 - i; [X(i),X(j)] = [X(j),X(i)] END

RETURN X

END FUNCTION REVERSE(X)

2. 4. 4 Statement Labels

Most statements can be labelled. A statement label is an expression

that precedes the statement it labels and is separated from it (or from

other labels) by a colon. Like expressions in general, labels may be

enclosed in parentheses or brackets.

Statements in the range of a CASE must be labelled and the label
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must be a value producing expression. In other cases, a label is optional

and it is a value receiving expression.

Some examples:

L: x = y

L(3): LABEL(n, 'a'): EXECUTE LBL

CASE c(i)

'(': '[': n = n + 1

')': ']': n = n - 1

'I': (n = n + stroke_switch; stroke_switch = - stroke_switch)

END CASE c(i)

Labels are used for the CASE header and as a target of the EXECUTE

and GO TO statements, A label is mandatory on all statements in a CASE

group, but cannot appear on a FUNCTION or OPERATOR header. Except

for these restrictions, labels are optional. They may, for example, be

used as follows:

IF x <0 THEN L: x = -x

(WHILE x(i) > 0) L: i = i + 1

D: DECLARE X STRING(CHARACTER) LENGTH ^10

Labels such as the L's in the above examples cannot be referenced by a

GO TO from outside the THEN or WHILE group, but they can be referenced

by an EXECUTE (provided they label the whole group) and by debugging and

elaboration features of ASL, Labels such as these are also sometimes

useful in connection with documenting a program.

When a non-executable statement (DECLARE or FORMAT) is referenced
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by an EXECUTE or GO TO, it acts as a null statement (no-operation).

A label applies to an entire statement group, in general, and thus

has a range associated -with it. When a label is referenced in an EXECUTE

statement, the entire labeled group is executed. For example, in:

LI: x = 0-, y =

L2: (x = 0; y = 0)

(L3: x = 0; y = 0)

the statement EXECUTE LI sets x = (only), EXECUTE L2 sets x and y

to zero, EXECUTE L3 is invalid (from outside the group containing L3).

2. 5 Statement Format

The statement format of ASL is a cross between the FORTRAN record-

oriented approach and the PL/I and Algol stream-oriented approach. It

is recognized that the stream approach offers greater flexibilily and is

easier to deal with in a precompiler, but in view of the fact that programs

are nearly always seen on some medium that has lines, such as the printed

page, it seems rather extreme to completely ignor the natural boundaries

that the lines provide.

Statements are delimited by either of two characters: the semicolon

or the new-line (NL) character. These characters are not equivalent,

however. The NL character may be effectively canceled by preceding

it with a statement continuation symbol, which is four consecutive periods.

Between the continuation symbol and the NL character, only blanks and

comments may appear (these may be inserted between any two tokens).
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The continuation symbol is not effective in a comment or character string

self-defining value. The continuation symbol may not split any token, such

as a character string, or a variable name, number, etc.

The NL character may split a comment, but it may not split any oth

token, including a character string and Boolean string.

er
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2. 6 Procedures

2. 6. 1 Defining Procedures

ASL statements and statement groups are put together to form

procedures, of which there are two varieties: functions and operators.

Procedures begin with a heading statement and end with an END statement.

The heading begins with one of the keywords FUNCTION or OPERATOR,

followed by the variable names to be used for the formal parameters. The

END statement may optionally include the procedure name with or without

its formal parameter display. Following are two complete procedures.

FUNCTION SYMDIF(R, S)

RETURN R-S U S-R
END SYMDIF(R, S)

OPERATOR R .-. S

RETURN R-S U S-R
END R .-. S

An ASL procedure is in many ways a self-contained unit. It is invalid

to refer to a statement in a procedure by a GO TO or EXECUTE from outside

the procedure. A procedure can only be entered at its heading and can

only exit by a RETURN or STOP (it may, however, call other procedures).

Every variable is considered to be "owned" by a particular procedure.

A variable is normally known only within its owning procedure, but this

can be modified by the SHARED and external attributes. Unlike PL/I and

Algol, variables are not automatically known to contained procedures.

Procedures may be separately compiled, provided they are outermost

(see section 2. 7).
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2. 6. 2 Invoking Procedures

Function-procedures are invoked, or "called", by writing their name

followed by a vector containing the procedure's arguments, e. g. F(x, y, z).

If a procedure has only one argument, the parentheses need not be written,

for example, if x is a variable name, then log(x) and log x are equivalent.

This follows from the fact that x and (x) are equivalent. Occasionally one

defines procedures that take no arguments, for example the system routine

TIME (which returns the current time in seconds since midnight GMT

January 1, 1900). This may be invoked as TIME( ) (undefined argument).

Juxtaposition of names and self-defining tokens denotes functional

application. In an expression such as TIME + x, TIME is a variable (or

a declared constant) whose current value must be numeric.

User-defined operators are invoked by writing the operator name,

including its periods, between the two operands. For example:

x .OP. y

User-defined operators are always binary, and both operands must be

present.

A user-defined operator may not appear in any context other than

as an operator and in a DECLARE statement. For example, the expressions

y = .OP. ,
{.OP.j , and .OP. £ S are invalid. On the other hand, if P is

a function name, then the expressions y = P, (P/ , and Pe S are valid;

their meaning is discussed in section 3. 1.4.

Procedures of both types may be invoked recursively; that is, a

procedure may call itself either directly or as a result of calling another
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procedure. However, such concepts as multitasking and reentrancy, and

parallel processing in general, are not included in ASL.

Procedures of both types may also be invoked in a "sinister call",

that is, they may be invoked in a value receiving context such as the left

side of an assignment statement. With suitable definitions of F and ,OP.
,

expressions such as:

x ,OP, y = z;

and V F(x) = 1, 2, .... n

may be valid. The meaning of sinister calls is discussed in section 7.

2. 7 Programs

A program is a set of procedures that is a complete executable unit.

A program includes steps to read input data (if any), perform calculations,

and print or otherwise make available the results.

ASL procedures can be nested, that ia, a procedure can be contained

in another. If a procedure B is contained in a procedure A, then B is said

to be "owned" by A. The purpose of nesting procedures is simply to limit

the scope of the procedure's name (nesting procedures may also enhance

the compiler's optimization possibilities). A procedure is known to its

immediate parent (its owner), and to all descendents of the parent. The

outermost procedures are assumed to be contained in a single routine

that is supplied by the ASL compiler; thus these outermost procedure

names are known everywhere. As an example, consider a set of procedures

structured as follows:
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B:

C:

D:

F:

Here A and D are known everywhere. B is known to A, B, and C. C is

known to B and C. E and F are known to themselves, each other, and to D.

A procedure may call any procedure whose name is known to it. That

is, it may call its immediate descendents and the immediate descendents

of any of its ancestors. In the above situation, A may call A, B, and D.

B may call A, B, C, and D. C may also call A, B, C, and D. D may call

A, D, E, and F. E and F may call A, D, themselves, and each other.

Note the lack of symmetry: B may call D but D may not (normally) call B.

Either E or F could have the same name as B (this is part of the purpose

of nesting procedures), and any call can be resolved without ambiguity.

The above situation is the normal state of affairs; it can be modified

by means of the external and shared attributes. For example, D could call

B if (1) D declared B to be the B that is known within A (e. g. DECLARE

B IN A), and (2) A declared B to be shared with D (e.g. DECLARE B

SHARED(D)). See sections 5. 1 and 8 for further details.

Predefined procedures, such as SQRT, are outermost and hence are

known everywhere.
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An internal procedure cannot be placed directly in the line of program

flow. This is taken to be equivalent to an attempt to enter a procedure by

means of a GO TO, which is invalid.

2. 8 Sample Procedures

FUNCTION TOPSORT(P, S)

"This function returns a regular vector containing the members of

set S sorted according to the partial ordering P. P is a set of pairs

of members of S. The procedure repeatedly selects a member of S

that has no predecessor, appends it to a vector V, and deletes the

member from S. Pairs beginning with the member are also deleted

from P. This continues until S is null. "

V =

WHILE S/0DO
y = x e S : -,(3p e P : p(2) = x)

V(#V+1) = y
S =S -{y}
P = P - {p e P

I
p(l) = y}

END WHILE
RETURN V
END TOPSORT

Since parameters are passed by value with no return of parameters,

TOPSORT does not modify the caller's arguments. The statement

V(#V+1) = y could be coded V = V £ (y, ), or V - V £ ONEVECTOR(y), if

desired.
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FUNCTION PERMUTE(SEQ)

" This function maps s given sequence of numbers into the

next permutation of the sequence, in lexicographic order. For
each permutation, the last possible element is increased by the

least possible amount. When used with a statement such as
'seq = PERMUTE(seq)' , successive permutations are generated
on each call. For example, if the first value of SEQ is (1, 2, 3, 4),

then successive values are (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2),

(1, 4, 2, 3), ... , (4, 3, 2, 1), (1, 2, 3, 4), etc. SEQ must be a string

(regular vector) of numbers.
The globally shared variable FIRSTPERM is set to TRUE

when PERMUTE returns with the first sequence (i. e. , a sequence
in monotonic ascending order). "

DECLARE FIRSTPERM SHARED

FIRSTPERM = TRUE "Initialize."

n = HI(SEQ) "Highest index of input sequence."
n > Vj > 1 DO

"Find last (rightmost) point of increase. "

IF SEQ(j)2>SEQ(j + l) THEN CONTINUE Vj

" Found a point of increase, SEQ(j) < SEQ(j + l ). Find last

(rightmost) SEQ(k) that exceeds SEQ(j), and swap."
n^?Vk>j IF SEQ(k)>SEQ(j) THEN QUIT Vk
[SEQ(j), SEQ(k)] = CSEQ(k), SEQ(j)]

FIRSTPERM = FALSE
QUIT Vj

END Vj

IF FIRSTPERM THEN "No point of increase was found (SEQ is

in reverse order). Force rearrangement below to work for

this special case.

"

j =

" Now rearrange elements after SEQ(j) into ascending order
(they are now in monotonic descending order). "

j = j + 1

WHILE j < n DO
LSEQ(j), SEQ(n)] = [SEQ(n), SEQ(j)]

j = j + 1; n = n - 1 END

RETURN SEQ
END PERMUTE(SEQ)
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3. Data Elements

ASL includes five atomic data types and one data aggregate, the

set. The atomic data types (those that cannot be subdivided) are:

Numeric (real numbers)

Character (a single character)

Boolean (a single truth-value)

Pointer (or "reference")

Procedure

All data structures consist of sets, which contain atoms, sets of

atoms, etc. Although structures of arbitrary complexity can be built

up, several simple structures occur so frequently in practice that they

are given names that are part of the ASL. language, and several built-in

operators exist that can only be applied to these special structures.

For example, atoms can be formed into vectors and arrays, and vectors

can be combined by the concatenation operator £ .

3. 1 Atomic Data

3. 1. 1 Numeric Data

ASL includes only one kind of numeric data, and it represents

an attempt to implement a reasonable approximation to the mathematical

idea of a real number. There is no facility for complex numbers.

The usual distinctions between types of numeric data, such as

floating point versus fixed point, decimal versus binary, etc. , are not

used.
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Numbers are stored internally in two forms: exact and approximate.

An exact number is stored as a ratio of two arbitrarily large integers.

An approximate number is handled as in APDs.360: numbers are stored

in some approximate form convenient for the machine, such as binary

floating point. For comparison tests and when an integer is required

by context, a "tolerance" is applied. For machines such as the IBM

- 1 3
System/360 and the CDC 6600, the APL tolerance value of about 10

is reasonable. On the System/360, the long form floating point format

(64 bits total) is suggested.

The mode of a number (exact or approximate) is determined

by how it is written, if it is a self-defining value, and by the operations

and operands that created it, if it is the current value of a variable.

A self-defining numeric value is exact if written without a decimal

point, and approximate if it has one. Thus 1 is exact, and 1. is

approximate.

The operations of addition, subtraction, multiplication, and division

produce an exact result if both operands are exact, and an approximate

result if either operand is approximate. Exponentiation produces an

exact result only if both operands are exact and the exponent is an

integer. Thus (2/3)**~3 is 27/8; l**(l/3)is 1.0. Factorial always

produces an exact result or an undefined result. Its argument must

be a non-negative integer. If the argument is approximate, it is converted

to an exact integer (if possible) by applying the tolerance, as is explained

below. The absolute value function and unary minus produce results

in the same mode as their argument. The # function (number of members
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of a set) always produces an exact result.

The transcendental and irrational predefined functions, such as

LOG, SIN, SQRT, etc. , always produce an approximate result. Functions

that always have integer values, such as FLOOR and CEILING, produce

exact results. Functions that select numbers, such as MAX and MIN,

have their result in the same mode as the number selected.

Numbers may be converted from exact to approximate by using

the predefined function APPROXIMATE (abbreviated APPROX). There

is no predefined function for converting in the other direction, except

for FLOOR and CEILING. For example, x = FLOOR(100*x + 0. 5)/ 100

converts x from approximate to exact, with a resolution of 1/100.

Approximate numbers are not expected to exceed some large but

implementation dependent maximum (on the System/360 it would be

about 7. 2 X 10 7 ^). If this limit is exceeded, an "overflow" condition

occurs, and the result is undefined (but execution continues). The limit

could be exceeded by:

1. An arithmetic operation or predefined function reference.

2. Conversion from exact to approximate mode.

3. Conversion from external to internal form (e.g., attempting

to read in the number "3. 4E100" in a System/360 implemen-

tation; having such a number in the program text is invalid).

Exactly which arithmetic operations can cause overflow is implemen-

tation dependent. For example, the absolute value operation might in

some implementations cause overflow, but never in others. Division by
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zero, including the 0/0 case, is considered to be an overflow condition,

and the result is undefined.

If an approximate mode result is extremely small or zero (underflow

or significance exceptions on the System/360), then no exceptional

condition occurs: the result is made zero.

3. 1. 1. 1 Numeric Tolerance

The tolerance is used when an approximate number appears in

one of the following contexts:

1. Equality test.

2. Explicit conversion to an integer (FLOOR and CEILING).

3. Implied conversion to an integer (n ! ).

4. The limits in a counting iteration (the m and n in m^Vi^n).

These limits need not be integers, but if they are close

to an integer, they are treated as such.

5. As a subscript (e. g. , A(i)).
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The numerical equality test works as follows. If both numbers

are exact, the result is TRUE if (and only if) both numbers are precisely

the same. If one number is exact and the other is approximate, the

exact number is converted to approximate mode, and they are considered

to be equal if |x - y|^T, where T is the tolerance. If both numbers

are approximate, they are considered to be equal if |x - y|^2T. Neither

number is actually altered by the equality test. Thus two numbers may

compare equal, but their difference may be nonzero.

FLOOR(x) is defined to be the greatest integer less than or equal

to x + T, if x is approximate. Similarly, CEILING(x) is the least

integer greater than or equal to x - T.

For n ! and m <CVi S^n, m and n are first tested to see if there is

an integer k such that m-T ^k ^m+T, and similarly for n. If there

is, the integer is used for the factorial or for the limits of the counting

iteration. An iteration such as m<Vi<n is treated similarly. Thus

if m = 0. 999. . . , then i starts out at 2 (not 1).

The handling of subscripts is to some extent a special case of

the equality test. To evaluate A(i), the set A is searched for a pair

beginning with i, so the equality test is used there. This is the formal

definition of the meaning of A(i). The way it is actually implemented

might depart from this slightly. The subscript i might be converted

to an integer k such that i-T ^k^i+T, if possible, and then an indexing

operation might be done, using k.
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A set may at times be tested to see if it is a vector. To be a

vector, the set must be a map and its domain must consist of integers.

The tolerance is used in determining if its domain consists of integers.

If the set is a vector, then its domain may be altered so that it consists

of integers in exact mode. This is done so that the vector can be stored

the way vectors normally are stored. However, it introduces a side

effect to set building. Suppose V is null and i = (1. 0/3)*6 = 1. 999. . . .

Then after V(i) = object (any ASL object), (i, object) = 3V, i may be 2

and may be exact, or it may be 1. 999. . . . Which value is obtained

may depend on the implementation, the type of optimization selected,

and the declaration, if any, of V. These remarks apply to arrays in

general.

This treatment of numbers is quite informal, but it allows the

programmer to deal with them as easily as we do in everyday life. The

success of APL attests to its utility.

One could make a case for having the tolerance be multiplicative

rather than additive. That is, perhaps two numbers a and b should be

considered equal if l-6.<c|a/b| ^ 1 + e, where e is small (compared to 1).

This more closely expresses the fact that approximate numbers are

represented to a fixed total number of digits, rather than a fixed number

of digits after the radix point, and it would work better for very large

or very small numbers, in some cases.

However, the usual case of concern is when one is dealing with

66



numbers that are not terribly large, and after subtraction of two such

numbers, the result should be zero but it turns out to be some small

= 15number such as 10 . In such a case the multiplicative tolerance will

not treat the 10" as equivalent to zero, but the additive tolerance will.

Perhaps best for ASL would be something more sophisticated, such

as interval arithmetic (maintaining upper and lower bounds on all numbers).

But it seems reasonable at this point to employ the tolerance in a way

that is simple and of proven utility.

3. 1. 2 Character Data

Following APL and Algol 68, the atomic character datum is the

single character. A character self-defining value is written between apos-

trophes, e.g., 'a'. Zero or two or more characters between apostrophes denotes

a character string, as discussed in section 2. 2. 2. 2. An item of character data

must be in the data character set (see section 2. 1. 2).

Character data may not enter into numeric operations, including the

inequality tests <, <^, ^>, and^.. The only operations that may be applied

to character data are those operations that can be applied to any objects:

assignment, the equality test, referencing (|), and the set operations.

There is no character collating sequence built into ASL.
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3. 1. 3 Boolean Data

The atomic Boolean datum is the single truth value. They may be

obtained by referencing the predefined variables TRUE and FALSE. Boolean

string self-defining data may be written, for example, as '101'B (see section

2. 2. 2. 3), similarly to character items and strings.

Boolean data may not enter into numeric operations, including the

numeric comparison operations <, <, >, and ^„ Atomic Boolean data and

Boolean vectors may be operated on with the not (-«), and (£), or (v/),

and other Boolean operators. These are explained in section 4. 1. 5.

The atomic Boolean datum is used as the result of a conditional

expression, as occurs in an IF statement, the set former, etc.

3. 1. 4 Pointer Data

A pointer datum is an indirect reference to another object. It is

generated by applying the up arrow prefix operator to a value, e. g. \x

or T2. Pointers may be assigned to variables, put into sets, etc. ,
but

besides these operations (which apply to all objects), the only operator

that may be applied to a pointer datum is the down arrow, or dereference
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operator. The value of tp is the object that p points to.

Pointer data may enter into the equality test, and pointers are

considered to be equal only if they reference the exact same copy of

an object.

3.1.5 Procedure Data

A procedure of the FUNCTION type can be treated as data and

assigned to variables. If F is a function name, then after y = F, F

can be invoked by the expression y(x). The name F is considered to

be a constant, and it cannot appear in a value receiving context.

Assignment of procedure names is different from other assignments

in that a new copy of the value (the procedure) is not created. After

y = F, if F should somehow be altered, then the alteration is reflected

in references to F via y. In this way, procedure variables are similar

to pointer variables.

Procedure data cannot enter into any operations other than those

that apply to all data types.
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3. 2 Set Data

A set is an unordered collection of objects, which in ASL are always

finite in number. The same value may not appear twice in a set. Two

sets are considered equal if they have the same number of members

and each member of one is a member of the other.

If it is attempted to add an object to a set, and the object is already

in the set, then the new object is not added. The equality test is used to

determine whether or not the object is already in the set, and hence the

numeric tolerance is involved. This subject is discussed in section 3. 2. 3.

Some rudimentary set operations will be described here. A more

complete discussion of set operations will be found in section 4.

If a, b, and c are expressions, then {a, b, c} denotes the set containing

the current values of a, b, and c. If any of a, b, and c happen to have

equal values, then the set will have fewer than three members. The set

containing a single object a is denoted {a}, and it is distinct from a itself.

There is no limit to the number of members that may be formed into a

set in this way. It may be zero: {} denotes the null set. The special

character also denotes this value.

If S is a set, c is a conditional expression, and e is any expression,

then {e(x), VxeS
I
c(x)} denotes the set formed by selecting members (x)

from S, testing to see if the condition c(x) is satisfied, and if so, adding

e(x) to the set being formed. For example, if S = {-1, 0, 1, 2, 3} , and

R = [ x**2, VxeS
| x<2} , then R is [l, 0, 4}. For the purposes of this section,

70



we may assume that there are no side effects in evaluating c and e.

The following abbreviations are permitted:

(e(x), VxeS} denotes (e(x), VxeS I TRUE)

{VxfSlc(x)} denotes [x, VxeSlc(x)}

Thus {VxeS} is simply S itself.

The "membership test" is written xfcS, where x is an expression

and S is a set expression. The value of xfS is TRUE j.f the current

value of x is a member of the current value of S, and FALSE otherwise.

Sets may be formed into the usual programming structures such as

arrays and strings. Below is given a definition of the structures that are

formally recognized in ASL. These structures are discussed in more

detail in the subsequent sections. By "formally recognized in ASL"

we mean:

(1) there may be certain built-in operators and predefined functions

that can be applied to the structure, but not to a set in general,

(2) there is a keyword corresponding to the structure, that may

be used in a DECLARE statement, and

(3) the structure may be implemented in a way particularly efficient

to it, although not suitable for sets in general.

A regular vector is a set (possibly null) all of whose members (if

any) are regular vectors of two components with the first component

a unique integer, such that all integers from 1 to n are used, where

n is the number of members in the set. A regular vector is denoted by
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(a, b, c, . . . ), where there must be at least one comma present.

This definition is circular, and hence in a sense we never "really"

know what a regular vector is. This definition is the key to much that is

smooth in the ASL treatment of data structures, but it is also the source

of a few rough edges. For example, an object that is thought of as a set

will print as a vector in an unformatted write operation, if the value happens

to be such that it looks like a vector.

Thus we have

(a,b) = {(l,a), (2,b)> = {{(1, 1), (2, a)}, [(1,2), (2,b)}>=...

provided a and b are defined.

The notation for a vector involves one or more commas within parenthe-

ses or brackets. Parentheses (or brackets) without commas denote only

grouping; (a) is a itself. Some other degenerate cases:

( ) denotes no value: the state of being undefined.

(a, ) denotes the one-vector containing a, which may also be

written ONE VECTOR(a).

(, ) denotes the null vector, or null set, as does (a, b) if

a and b are undefined.

A variable may be made undefined by the assignment x =
( ); as well

as x = ;. The preference is a matter of taste.

A pair is a regular vector of two components.

A string is a regular vector; the two terms may be used interchangeably.

We not define several more general structures in terms of the regular

vector, or string. We start with the most general, the relation, and end

with the vector, which is a slight generalization of the regular vector.
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A relation is a set of regular vectors, all of the same number of com-

ponents, the number being two or more. A binary relation is a set of pairs.

There is no special notation for relations, or for the other structures which

are defined below. A self-defining relation is written as a set of regular

vectors. For example, a finite subset of the relation "a divides b" may

be •written:

{(2,2), (2,4), (2,6), (3,6)}.

Of course in ASL we can only deal with a finite subset of the mathematical

relation between integers.

An itemized map is a binary relation in which the first component

of each pair is unique, A procedure map is a procedure that is free of

side effects. It may be of either the function or operator type. A map

is an itemized map or a procedure map. In this document the term

"map" is sometimes used to denote one of the two types of maps; the

context should make it clear when the word "itemized" or "procedure"

has been dropped. An itemized map is sometimes called a set map .

We use the term "function" loosely; at times it means a map in

general, and at times it means a procedure of the function type, which

may have side effects, and may even give different values for f(x) each

time it is invoked (with the same value of x).

We use the terms domain , range , and inverse in a slightly more

general sense than the usual mathematical meaning: these terms may

be applied to binary relations, which form a superset of the itemized maps.
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If R is a binary relation, then the domain, range, and inverse are defined

as follows:

p(R) = [x, V(x,y)fR}

R(R) = (y, V(x,y)£R}

^;'(R) = {(y,x), V(x,y)*R}

An array is an itemized map whose domain consists of strings of

integers, all of the same length. The length is the dimension of the

array. A matrix is a two-dimensional array,

A vector is an itemized map whose domain consists of integers.

Our definitions allow arrays, matrices, and vectors to be sparse and

not necessarily one-origined. However, the elements in the domain of an

array (or matrix) must be dense and one-origined.

A one-dimensional array is not a vector. The elements in the domain

of a one-dimensional array are one-vectors of integers, whereas those in

the domain of a vector are simply integers.

3. 2. 1 Relations and Maps

ASL concentrates on the set theoretic idea of a map , or a transformation

of one object into another according to a specified rule. The image of an

object x under a map f is denoted by the familiar f(x), or simply f x.

The same notation is used whether f is an itemized map or a procedure

map. In fact, if this is the only way a map is used, then the procedure

that uses f is independent of whether f is a set or a procedure.
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As an example of an itemized map, let

f = {('a', 1), ('b',2), ('c ! ,3)}.

Then f('a') is 1, and so forth.

A binary relation is a map with the uniqueness condition dropped:

it can be thought of as a "multiple valued" map. However, if R is merely

a relation (binary or otherwise), then the notation R(a) is not permitted.

Instead, if one wishes to form the set of all images of a one must 'write

{y, V(x, y) g R | x = a}. Alternatively, a binary relation may be converted into a

map by grouping its multiple values into sets. For example, the relation

"a divides b", mentioned in the previous section, may be structured as:

D = {(2, {2,4,6}), (3, [6})}.

Then D(2) is [2,4,6], etc.

The relation is just barely a recognized structure in ASL. The only

built-in operators that apply to relations but not to sets in general are ft,

p , and Jt (range, domain, and inverse), and these are restricted to binary

relations. A variable may be declared to be a relation, which helps

readability. Finally, relations may be implemented in a particularly

efficient way. This might amount to merely storing the length of a

relation's elements only once, along with the "dope vector" of the set

itself. Alternatively, if it is known (through the elaboration language)

that a relation is of high density, then the relation can be compactly

stored as (1) a map of the objects into small integers, and (2) a bit array

of dimensionality equal to the "order" of the relation. For example,
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the relation {(a, b), (a, c), (a,d), (b,b), (c, a), (d, a), (d, c)} could be stored

as {(a, 1), (b, 2), (c, 3), (d, 4)}, together with the array:

12 3 4
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whether V is a procedure, itemized map, vector, or string.

A vector may be "shifted" by means of the @ operator, and this operator

is used to write self-defining vectors that are other than one-origined. For

example, the expression

(a, b, c)@-l

is the set {(- 1 , a), (0,b), (l,c)}. A vector that is not one-origined is "irregular"

.

That is, it is not a string. Sparse vectors are also irregular. Some other

examples of irregular vectors:

(a,,b) = {(l,a), (3,b)}

(,a) = [(2, a)}

The vector (a, ) is the set {(1, a)} , which is ONEVECTOR a, and is regular.

That is, elements may be dropped from the right end of a string, and it

remains a string.

With the @ operator, any vector can be written as a "constant", or

self-defining value. In fact, this is a general property of ASL: any structure

that can be created at execution time can be expressed as a self-defining

value, either in a procedure or in an I/O stream.

There are three predefined procedures that operate on vectors. The

lowest index of a vector, LI(v), is the least integer in the domain of v, if v is

a non-null vector. The highest index of a non-null vector, HI(v), is the greatest

such integer. We somewhat arbitrarily define LI(0) = 1 and HI(0) = 0, as these

definitions are convenient when working with variable length one-origined vectors.

The length of a vector, LENGTH(v), is HI(v) - LI(v) + 1; thus LENGTH(0) = 0.

The size operator, fv, gives the number of members of the set v,

which is the number of defined components of the vector v.
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Here are some examples of various operations on vectors.

LI

HI
LENGTH
#

(a,b, , c)



be obtained. For example, A(l, *) is f(l,a), (2,b)l = (a,b). Cross sections

are discussed in section 4, as are subarrays, subvectors, and substrings.

The vector operations discussed above are generalized to arrays.

The @ operator and the LI, HI, and LENGTH predefined functions operate

on arrays by using strings to represent the array's extents. For the

A above, A@(2, 3) is:

{((2, 3), a), ((2,4),b), ((3,3),e), ((3,4),d)}.

For the original A, LI(A) is (1, 1), HI(A) is (2, 2), LENGTH(A) is (2, 2),

and #A is 4. The number of dimensions of an array is LENGTH(LENGTH(A)),

or #LENGTH(A), if preferred.

A matrix is a two-dimensional array. There are several operations

unique to matrices: these are discussed in section 4.

In a language that includes vectors, but does not include arrays,

it is common practice to represent a matrix as a vector of its rows (which

are vectors), and similarly for higher order arrays. One may of course

have vectors of vectors in ASL, but they are not at all the same as arrays.

To emphasize this, let M be the 2x2 matrix mentioned above, and let

V be its vector counterpart, i.e., V = ((a, b), (c,d)). Then:

M(l, 1) = a V(l, 1) is undefined ([V(i)](l) = a)

M(l) is undefined V(l) =
(a ,b)

LI(M) = (1, 1) LI(V) = 1

£>(M) = {(1, 1), (1, 2), (2, 1), (2, 2)} p\V) = [l, 2}

£(M) = /a,b,c,d} £(V) = £(a,b), (c,d)J

,i'(M)(a) = (1, 1) J(V)(a)is undefined
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Some structures that are similar and are sometimes treated as in-

distinguishable in mathematics, but which are distinct in ASL, are:

V = (a,b, c) = {(l,a), (2,b), (3, c)>

51 = ft(l,),a), ((2, ), b), ((3, ),c)}

52 = {((, 1), a), ((,2),b), ((, 3), c)}

Ml = {((1, 1), a), ((l,2),b), ((1, 3),c)}

M2 = f((l, l),a), ((2, l),b), ((3, 1), c)}

Structures such as Ml and M2 will be called "row matrices" and "column

matrices", respectively.
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3. 2. 3 Numeric Tolerance of Sot Members

There are a few side effects associated with forming sets (and

vectors) of numbers. These will not usually be troublesome, as they

involve numbers that are very close together (within the tolerance of

- 1 3

»

about 10 ), and the fact that two such numbers are considered to be

equal in ASL.

First, consider a simple set of numbers. If x is any approximate

number, suppose the set S = fx} is formed, and then the numbers x-2T

and x+2T (where T is the tolerance) are put into the set S. Then the

equality test will judge that x-2T and x+2T are already in S, and S will

not be altered; #S is one. But if first the set S = {x-2T} were formed,

and then x and x+2T were added to it, then the final S would be

|_x-2T, X+2TJ- ; #S is two. The result of building a set may depend upon

the order in which it is built.

Suppose x, y, and z are clearly distinct approximate numbers, and

suppose the map M = /(x, a), (y, b), (z,c)} is formed. Then M maps all

exact numbers between x-T and x+T into a, and it maps all approximate

numbers from x-2T to x+2T into a. If an attempt were made to add a

new pair (r, a) to the map, with r = x according to the equality test, then

the new pair would not be added.

At any point in time, the map M may be inspected to see if x, y, and

z are approximate and within the tolerance of being integers. If they are,

then they may be changed to integers in exact mode. This alters the
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mapping done by M: it now maps an exact number precisely equal to x

into a, and an approximate number from x-T to x+T into a.

The reason for the change is that if M were built up precisely as

specified, then it might be something like the set

{(0. 9999999999999, a), (2. 0000000000001, b), (2. 9999999999999, c)}.

If the domain of such a map consists of approximate numbers, then the

implementation is free to assume that round off errors have occurred,

and that what was intended was the vector (a, b, c). The map may then

be changed to (a, b, c), thus acquiring obvious benefits of compact repre-

sentation and efficiency of accessing via indexing.

A reasonable algorithm for an implementation to use is to inspect

an object when it is put into a set, and if it is of the form ((a, b, c, . . . ), d),

and if a, b, c, . . . are all integers (with the tolerance being used for those

numbers that are approximate), then the object could be changed to

((i, j, k, . . . ), a), with i, j, k, ... exact integers.

Consider the comparison of the two sets S^ = £x} and S
2

= [x-2T, x+2T|,

where x is an approximate number. If the set equality test merely required

that each member of Sj be in S
2 , and vice versa, for the sets to be equal,

then Sj and S
2
would be judged equal. That is why we stated in the beginning

of section 3. 2 that two sets are equal if they have the same number of

members, and each member of one is a member of the other.
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4. Expressions

The forming and evaluation of expressions is largely conventional.

Expressions may be arbitrarily long and arbitrarily deeply nested.

The order of evaluation is determined by parentheses and operator

precedences, which are given in section 2. 2. 3. 1. When necessary

to impose an arbitrary ordering, it is usually taken to be left-to-right,

but it may be unspecified. For example, A - B + C is taken to be (A - B)

+ C, but the optimizer is free to evaluate A + B + C in any order it wishes

(provided no side effects are involved).

These aspects of ASL expressions are not entirely conventional:

1. Suffix, as well as prefix, monadic operators are included.

2. There is one "parentheses type" operator, absolute value.

3. The user may define his own operators.

4. There is one triadic operator, the ellipsis.

5. Compiler temporaries are freely used to minimize side effects,

or rather to treat them in a way that is "natural".

6. An expression such as A <^B <^C is allowed, as an abbreviation

for A <B & B <C.

We shall first discuss the manner of writing and the meaning of all

valid expressions, with little or no regard for side effects. The meaning

in the presence of side effects will then be clarified in section 4. 10, Ex-

pression Evaluation.
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An expression is any of the following:

1. A self-defining value.

2. A name (variable, label, procedure name, or declared constant).

3. Two juxtaposed expressions (a functional application).

4. An expression enclosed in parentheses or brackets.

5. An expression preceded by a prefix operator or followed by

a suffix operator.

6. Two expressions connected by an infix binary operator.

7. Three expressions connected by the ellipsis.

8. A vector former or set former expression (see section 4. 3).

9. A search expression or quantifier predicate (see section 4. 4).

There are no implicit data conversions done during expression

evaluation.

All operations fall into three classes as determined by their outcome:

1. Normal
2. Undefined
3. Invalid

The normal operations are those that produce a "useable" result. By

"undefined" operations we mean that no result is produced, but execution

continues. The "invalid" operations are those that cause program termination.

An operation is undefined, i. e. , it produces an undefined result,

if it is valid but the result cannot be expressed for one reason or another.

Generally speaking, an undefined result signifies that the operands were

of reasonable and compatible forms, but their values were such that the
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operation could not be done. For example, an undefined result is produced

when an arithmetic overflow occurs (signifying that an approximate number is

out of range for the machine) and when it is attempted to invert a singular

matrix, or a matrix that is sufficiently close to singular so that the ASL

built-in routines cannot invert it. Division by zero also produces an

undefined result, even if the divisor is an exact zero.

Arithmetic overflow applies only to approximate numbers. An

attempt to produce extremely large exact numbers is a different situation,

and it results in termination due to insufficient storage. For example,

the operation 100! ! might be considered valid, but it would no doubt

cause termination due to insufficient main storage to contain the result.

4. 1 Operators

4.1.1 Equality Test

The equality test is written "a = b" , where a and b are expressions.

Its negation, -i(a = b), may be written a i b. The operands a and b may

have any value whatever, but they must have some value (they must be

defined). The result of the equality test "a = b" is TRUE ('1*B) if the

current value of a equals that of b, and FALSE ('O'B) otherwise.

Generally speaking, for two expressions to be equal their values

must be the same in every respect. Numbers are an exception, however.

Two numbers x and y are considered to be equal if |x - yl^<5, where S -

if x and y are both exact, <5 = T (the numerical tolerance of about 10"
)
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if one is exact and the other is approximate, and S = 2T if both numbers

are approximate.

Two atoms are equal if they have the same type and the same value.

Thus the number 1, the character ' 1', and the Boolean value ' l'B are

all distinct. Two sets are equal if they have the same number of members

and each member of one is contained in the other, as determined by the

equality test (thus equality testing is a recursive process). From this

it follows that vectors and arrays are equal only if they have the same

number of components, the same origin, and the same values of corres-

ponding components. There is no extension of the shorter operand in

string comparisons (as is done in PL/I).

The notation "a = b = c" is permitted and, in the absense of side

effects, it is equivalent to a = b & b = c. This may be extended to any

number of operands, and the i sign may also be used. For example,

a = b^c=dis (in the absense of side effects) equivalent to a = b &

b + c & c = d.

The evaluation of e
1
R

1
e^ R-

2 • • •
Rn-1 e

n'
where the e

i
are

expressions and the R. are either = or i operators, is equivalent to:

r = FALSE
*2 = e

2
IF ej Rj t

2
THEN DO

t
3

= e
3

IF t
2
R

2
t
3
THEN DO

IF t , R e THEN r = TRUE
n-1 n-1 n

END IF t
2

END IF ej
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Here r is set to the value of the expression, and the t- are compiler

temporaries. The main point is that when the shorter notation is used,

the expressions e. are evaluated only once (at most).

4. 1. 2 Existence Test

The existence test is written "3e", where e is an expression.

The value of 3e is TRUE if e has a value (is defined), and FALSE otherwise.

The state of having no value (being undefined) originates in these ways:

1. It is the initial state of a procedure's local variables

before the procedure has assigned them a value.

2. It is the result of an operation in which the operands are

of valid types and forms (in the case of sets), but the

values are such that no result exists.

Referencing a map with the argument not in the domain of the map, as

for example a vector with the subscript out of range, is a special case

of (2) above. A procedure may signify that its argument is not in its

domain by executing the statement RETURN; or RETURN ( ); or RETURN e; with e

undefined. Unlike an itemized map, if the argument is not in a pro-

cedure' s domain, the procedure may terminate by attempting to execute

an illegal operation, it may normally terminate, or it may loop indefinitely.

An expression u which has no value may appear in these contexts

only:

1. The existence test (j3u).

2. A function reference such as y = u(x) or u(x) = e (assignment).
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3. The right-hand side of an assignment statement (x = u;

f(x) = u; etc. ).

4. A component of a vector (e. g. ,
(x, u, y) ).

5. In a RETURN statement (RETURN u).

In cases (3), (4), and (5), the undefined state maybe explicitly indicated,

e.g., x = ;, (x, , y), RETURN ; . Case (4) applies to function arguments, as

in f(x, u, y) or f(x, , y).

To emphasize, if u is undefined then the expressions |u; and u = x

(comparison) are invalid. An attempt to put u into a set or to compare

it with another quantity leads to termination of execution.

Occasionally in mathematics the conditional "x = y" is used, when

the possibility exists that one operand (but usually not both) may be

undefined. It is assumed in such a case that "x = y" is defined and is

"false". However, for the sake of clarity, in ASL we require the pro-

grammer to write, for example, "3x & x = y". Conditionals are evaluated

in left-to-right order with evaluation terminating when the outcome is

known; hence if x is undefined, then 3x is false, and "x = y" is not

evaluated.

Regarding the evaluation of expressions, the general use of the

undefined state is to produce it when the operands are of valid type, but

the result does not exist, or cannot be expressed, for one reason or

another. The program may then test for this outcome and take appropriate

corrective action. However, if a nonexistent result is used in another
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operation, other than those mentioned above, then the programmer is

assumed to have made an oversight, and execution terminates. For

example, if an arithmetic overflow occurs, there is no result. The

programmer may then test for overflow after performing the operation,

which is easier than testing for it beforehand. Similarly, after a matrix

inversion one may test to see if the result exists.

89



4. 1. 3 Arithmetic Operators

The arithmetic operators are:

Addition (x + y)

Subtraction (x - y)

Multiplication (x*y)

Division (x/y)

Exponentiation (x**y)

Absolute Value, or Norm (|x|)

Factorial (x !

)

With the exception of the factorial, these elementary operations are

defined for matrix and vector operations, as well as for simple numeric

operations. For example, if A and B are matrices, then A*B is the

conventional matrix product, |a| is a certain norm of A (described below),

etc.

As discussed in section 4. 1. 5, the Boolean operations are also

defined for matrices and vectors. But that is as far as ASL goes in this

direction. The predefined functionsgenerally do not accept matrix or

vector operands. For example, although one can define the square root

and the inverse tangent of a matrix, the ASL SQRT(x) and ATAN(x)

terminate if x is anything other than a number. Of course some predefined

functions operate on vectors and matrices, e. g. HI(v) and DET(A) (determinant).

The elementary arithmetic operations are actually defined over a

class of objects that is larger than matrices and vectors as they

are defined in ASL. The enlargement consists of not requiring that the

"indexes" of a matrix or vector be numeric. For the arithmetic (and

Boolean) operations, we define two structures: a generalized matrix is
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an itemized map whose domain consists entirely of pairs, and a generalized

vector is any itemized map that is not a generalized matrix. Thus we have

simply taken the entire class of itemized maps and separated it into

two subclasses: those that are considered to be matrix -like and those that

are not.

This manner of recognizing a generalized matrix leads to anomalies

that may occasionally be troublesome. One may be dealing with objects

that are thought of as "vectors", and their domains may consist of objects

whose structure varies in a way that is hard to predict. One might multiply

two such objects together, meaning to employ the vector product (ASL

uses the dot product for vector multiplication). However, if the objects

happen to qualify as "generalized matrices", then the matrix product

will apply, and the result will not be what was intended or, more likely,

execution will terminate. In the great majority of cases, however,

the data structures are of a fixed format that is known when a program

is being written, and no ambiguity arises.

With the exception of the factorial,

the definitions of the arithmetic operations on data structures are recursive.

Thus we can add or multiply matrices of matrices, vectors of matrices

of matrices, etc.

For an arithmetic operation to be valid, the operands must be com-

patible. The first requirement is that both operands must be itemized

maps (or simply numbers). The next requirement is that their domains

must satisfy certain conditions, which are described below for each
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operation. The arithmetic operations on the elements in the range of

the map must be valid. For example, matrix multiplication is defined

in terms of vector multiplication. For the matrix multiplication to be

valid, each vector multiplication that it implies must be valid. All

arithmetic operations ultimately reduce to operations on atoms. The

last requirement for validity is that the atoms must be numeric.

If the evaluation of an arithmetic operation on structures produces

an undefined intermediate result, then the entire result is made undefined.

For example, if in adding two vectors, one component overflows, then

the entire result is made undefined. This may seem to be an overly

severe action to take, but there are several reasons why it is done. One

is that it gives the programmer a simple way to check that an operation

was normal. He need not search an entire structure to see if some part

of it does not exist. Another reason is that we wish to have simple

rules such as "the addition of two regular vectors is a regular vector, if

the result exists." To give up such rules would make ASL programs less

transparent and would negate many optimization possibilities. Lastly,

our treatment allows us to be more consistent. We do not have to state

that a nonexistent value is allowed to enter into an arithmetic operation

provided the arithmetic operation is being invoked to calculate a "larger"

arithmetic operation. Instead, it is understood that as soon as a result is

undefined, the whole outermost operation terminates, and the result is

made undefined. As a simple example, consider the dot product of two
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numeric vectors. If a multiplication causes an overflow, we prefer to say

that the evaluation terminates, rather than to say that it continues but that

a special "add" routine is used that allows one operand to be nonexistent.

4. 1. 3. 1 Addition and Subtraction

As has already been mentioned, addition and subtraction are

defined for itemized maps. That is, if f and g are maps with identical

domains, then

£ + g= {(x, f(x)+g(x)), Vxs &i},

and the result is defined if and only if f(x) + g(x) is defined for all x

in the common domain. The sum f(x) + g(x) is defined if both f(x) and

g(x) are numeric, or if they fit this definition. Subtraction is defined

similarly.

Addition and subtraction have been defined recursively, which is

illustrated by the following addition of two vectors:

(1, (2, 3), (4, (5, 6))) + (7, (8, 9), (10, (11, 12)))

= (8, (10, 12), (14, (16, 18)))

If addition or subtraction is attempted in any of the following

situations, then the operation is invalid and execution terminates:

1. An operand is undefined.

2. The domains are not identical.

3. An operand is a non-numeric atom, or a set that contains

non-pairs, or a set that contains pairs that have the same
first components.

93



The last part of (3) will frequently be stated "... a set that is not a map".

The null set vacuously satisfies the conditions for a valid addition

or subtraction operand; we have + = 0-0 = 0.

As was mentioned in section 3. 1. 1, the addition of two exact

numbers produces an exact result, but if either operand is approximate,

the result is approximate. In the latter case, the addition or subtraction

is done in approximate mode; this is pointed out because the conversion

of an exact number to approximate mode may cause an overflow condition

(see section 3. 1. 1) which may not have occurred if the operation were

done in exact mode.

Addition and subtraction of exact numbers is carried out according

to the formula

a i c ad I be_ 4- _
b ~ d

_
bd

where a, b, c, and d are integers. The result is then reduced to lowest

terms.

If x is numeric, then -x means - x, and +x means + x. The

meaning of -x, +x, - x, and + x when x is not numeric is not specified.

This is left open to allow the optimizer to change an expression such as

--x to x. That is, the question of whether or not "--x" is valid when x

is non-numeric is dependent upon how much optimization is done, which

in turn depends upon the implementation and possibly the declaration,

if any, of x. Unusual expressions such as --x and + x occur most

often in practice as a result of preprocessor activity.
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4. 1. 3. 2 Multiplication

Multiplication is defined in a way that includes ordinary scalar

multiplication, the vector dot product, and matrix multiplication.

The product of two exact numbers is exact. If either operand

is approximate, the result is approximate and the multiplication is done

in approximate mode.

The product of a number and a map is the map obtained by mul-

tiplying all members of the range of the map by the number. That is,

if a is a number and f is a map, then

a * f = f * a = {[x, a*f(x)] , Vxe pi}.

The operation is valid and defined if and only if a*f(x) is valid and defined

for all x in the domain of f.

If f and g are generalized vectors, and they have the same domain,

then

f *g = SZf(x) * g(x).

xeFf

This is called the generalized dot product . Expressed in ASL, f * g

is the value computed by the somewhat formidable procedure below,

which defines f * g for arbitrary f and g in terms of f * g for numbers.
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FUNCTION p(f, g)

IF NUMERIC f & NUMERIC g THEN RETURN f*g

IF ATOM i\y¥i £ pg THEN STOP "Invalid operation."

Vx a p f DO
temp = p(f(x), g(x) )

IF -,3temp THEN RETURN; "Undefined."

IF ITERATION(Vx) = 1 THEN p = temp
ELSE p = p + temp

IF -,3p THEN RETURN;
END Vx

RETURN p
END FUNCTION p(f, g)

If A and B are generalized matrices, then

A * B = f [(x, y), A(x, *) * B(*,yj] , Vx £ pPA, Vys R V BJ .

Here we have used the "cross section" notation (see section 4. 6).

A(x, *) is row x of A, and B(*, y) is column y of B. A*B is a valid operation

if (and only if) A(x, *) * B(*. y) is valid in all cases. If x and y are not

pairs (so that A(x, *) and B(*, y) are not matrices) then the "generalized

dot product" of maps applies, and we must have

,J7[A(x,*)] = pCB(*,yfl.

Expressed in another way, for A*B to be valid, we must have Ri?A = p$B.

This latter condition is not always the requirement, however. For

example, if x and y are pairs of atoms, then the condition becomes

RRpA =VV,Vb.

The above definition is called the generalized matrix product .

For matrices of numbers, it reduces to the familiar

C = >A., B, ..

!J ,
lk kJ

k

The matrices need not be regular, but we must have the rows of A

defined over the same domain as the columns of B.

96



These definitions of multiplication allow certain "strange" structures

as operands. The simplest is one whose elements are indexed as

A£(i, j), (k, 1)]. For such a structure, matrix multiplication applies,

and since its rows and columns are also matrices, matrix multiplication

applies at the first two levels. Such a structure is similar to a matrix

of matrices, but not the same; the latter would have its elements indexed

as[A(i,j)](k,l).

This generalisation of matrix multiplication is r.ot idle generalization

for its own sake. In many, and perhaps most, applications, the "indexes"

of a. matrix are most naturally not integers. For example, one might

choose to represent a directed graph by a square matrix of l's and O's

(numbers, not truth values), in which M(a,b) is 1 if node a is connected

to node b, and otherwise. The matrix is indexed by some sort of

node identifier which need not be numeric. Then the nth power of such

a matrix, using ASL multiplication, expresses the number of ways one

can get from node a to node b by traversing exactly n edges. There

are countless other cases where matrix multiplication turns up with

non-numeric indexes.

Generalized matrices and generalized vectors may be multiplied

together as follows. If A is a generalized matrix, and f is a generalized

vector, then

A*f = {[x, A(x, *) * f], Vx £ PtiA}

and f*A = {[y, f * A(*, y)], Vye R #A} .
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This is similar to matrix multiplication with f treated as a column (in

the first case) or row (in the second case) matrix. Except in special

cases the result is a vector, however, and not a column or row matrix.

The conditions under which the operation is valid and the result is defined

are similar to those for matrix multiplication.

This product and the generalized matrix product are not commun-

icative but the others (generalized dot product and multiplication by

a scalar) are.

4. 1. 3. 3 Division

Division is the inverse of multiplication, when the inverse exists,

and is either undefined or invalid otherwise.

The quotient of two exact numbers is exact. If either operand is

approximate, the result is approximate and the division is done in approx-

imate mode. If the divisor is zero or if an overflow occurs, the result

is undefined.

If a is a scalar and f is a map, then f/a is f*(l/a), except that

if a is zero, then f/a is undefined (f*(l/a) would be invalid). The operation

a/f is invalid.

If f and g are maps, then f/g is invalid unless f and g are generalized

matrices, in which case f/g may be defined, as follows. It is the map

M satisfying

g * M = f

if such a map exists. If the forms of f and g are such that such a map
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could not possibly exist, then f/g is invalid. Otherwise, the operation

is valid but the result may be undefined. As a first condition on validity,

we must have JTJTf =5T,J7g. In addition, we must have #$Tp g = #RJTg.

This expresses the fact that there must be as many equations

as there are unknowns. If f and g map pairs of atoms into atoms, then

these conditions are sufficient for the validity of f/g. However, the

result will be undefined if the postulated map does not exist.

4. 1. 3. 4 Exponentiation

Exponentiation, x^, is written x**y. Unlike all other binary

operators, exponentiation is grouped to the right: x**y**z means

x**(y**z) (see section 2. 2. 3. 1).

If x and y are numbers, then x^ is exact if and only if both x and

y are exact, and y is an integer. The result is defined only if x and

y are in the domain of exponentiation and no overflow occurs. For

numerical x and y, the domain of exponentiation is:

x> 0,

x = 0, y> 0,

x < 0, y an integer.

This is essentially the range of values for which x^ is real. There are

1/3
exceptions, however. For example, if x <^0 then x has a real value

but the ASL x**(l/3) is undefined.

Exponentiation is also defined for the raising of generalized vectors

to non-negative integral powers. If f is a generalized vector, then f

99



is f*f* ... *f (n times); f
n

is a number for even n and a generalized

vector for odd n. f is 1.

If M is a generalized matrix, then Mn
is similarly defined, but

only if ppM. = ft..pM (except possibly for the case n = 1). In such a

case M is defined; it is the generalized matrix I with the same form

as M, with identity elements on the diagonal, and with zero elements

elsewhere. The diagonal elements are the elements M(x, x). The "identity

elements" are arrived at by inspecting each M(x, x), and if M(x, x) is

a generalized matrix, then I(x, x) is its identity element if it has one

(this is a recursive definition) and the entire result is undefined if it

does not. Otherwise (M(x, x) is not a generalized matrix), I(x, x) is

the number 1. The "zero elements" are defined similarly.

This somewhat involved definition of M is used so that M can

be added to M, as in the series M + M + M + . . . . Such a series is

valid for matrices of matrices of . . . of numbers, but it is not valid

for matrices of vectors.

The meaning of f**l is f if f is a map, and is otherwise unspecified.

Hence an optimizer may simplify f**l to f without regard for what f is.
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4. 1. 3. 5 Absolute Value or Norm

If x is a number, then Ixl is a nonnegative number with the same

magnitude. The precision of Ixl is the same as that of x. The result

is undefined if changing the sign of x causes an overflow condition.

If f is either a generalized vector or a generalized matrix, that

is, a map, then

l
f

l = (yjy|
2

)

1/2
,

ye Hi
provided this is defined.

This is a recursive definition, and hence it defines the norm of

a vector of vectors, a matrix of vectors, etc. The only requirement

is that the map ultimately reduce to numbers; the norm of a character,

Boolean value, pointer, or procedure is an invalid operation.

If f is a map of maps (vector of vectors, etc. ) then the above

becomes:

lfl = (XI Z>i 2
)

1/2
.

y£ R f z £ R y
For example (using a non-ASL notation for matrices):

Id, (4 5), (6, 7, 8))| = |(1, 2, 3, 4, 5, 6, 7, 8)1 = V2 04.

4. 1. 3. 5. 1 Norm, Theoretical Remarks

Much of this section comes from Computational Methods of Linear

Algebra , by V. N. Faddeeva (Dover, 1959). She defines a norm of a

vector x as an associated nonnegative number Ixl (in ASL notation)

satisfying:
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1. |x|> for x / 0, and 1 1
= 0,

2. Icxl = Icrlxl for a numerical multiplier c, and

3. |x + y| <^ |x| + lyl (the triangular inequality).

A norm of a matrix A satisfies the above with x replaced by A, and in

addition:

4. IabI ^|a|- IbI.

The ASL norm obviously satisfies (1) - (3). For vector products, (4)

is the familiar Cauchy-Schwarz inequality, which is equivalent to the

triangular inequality. Inequality (4) may be verified for matrix products

by repeated application of the Cauchy-Schwarz inequality, as follows,

where A. denotes row i of A and B denotes column i of B:
l

|a|
2
|b!

2 m|a
1

|

2
+ |a 2 |

2
+ ... + |An l

2
)(|B 1

|

2 + Ib
2

|

2
+ .„. +|Bm

|

2
)

= Ia^IbV + Ia^Ib 2
!

2 ^.. + |Aj 2
|B
m

|

2

^U.B 1

!

2
+ lA.B 2

!

2
+ ... +|AnB

m
|

2

>|(A
1
B 1

, A
X
B 2 AnB

m
|

2

^IabI
2

Hence the ASL |a| is a norm.

Faddeeva defines three vector norms, which are the "p-norms"

for p = 1, 2, and infinity:

lx|
p

= (Eixf) 1 ^.

For p = 1, this is the sum of the absolute values of the components of

X. For p = 2 it is the familiar length, or magnitude, of X. For p = oo

it is the absolute value of the largest component of X. The 2-norm
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has by far the widest application, and hence it is chosen for the ASL,

vector norm. The advantage of the 1- and »?-norms is that they are

easy to compute, particularly for hand calculations, and they lead to

easily computable matrix norms, as follows.

Faddeeva defines a matrix norm as compatible with a given vector

norm if for any matrix A and any vector X ^ 0,

|A|>]AXL.

The ASL matrix norm is compatible with the vector norm, because

for any matrix A and vector X:

|A|
2 |X|2 =

(|A1 |

2
+ |A

2 |

2
+ ... + |AJ

2 )|X|
2

Z 1

Ia

z

= lA^IXl* + |A
2nxr + ... lAj'IX

>Ia,xI 2
+ k ? x!

2
+ . . . + Ia xl

i c. n

>IaxI 2
.

Faddeeva calls a matrix norm subordinate to a given vector norm

if the compatibility condition is just barely met, i. e. , if

|A| = max jAXl
x IxT

On this basis, she proves that the matrix norms subordinate to the three

vector norms being considered are:

1-norm: max ^~|a ;

J i
1J

22-norm: A,, where Aj is the largest eigenvalue of

T TA A (A = transpose of A).

po-norm: max > a-.

1
J
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Consideration was given to having the above matrix 2-norm the

ASL matrix norm, as it seems attractive on the theoretical grounds

just outlined. The main trouble with it is that it's too hard to compute.

p i/2
The ASL, matrix norm, (^_5_|a..| ) , is easy to compute, as it

2
i j ^

involves only n multiplications and additions (for a square matrix)

and there are no significant accuracy problems. Furthermore, it is

applicable to a wider class of structures than the subordinate matrix

2-norm, for example to non-square matrices, to sparse matrices, to

matrices whose elements are mixed numbers, vectors, and matrices,

etc. The fact that the same norm applies to both matrices and vectors

(and in fact to maps in general) is a simplification to ASL.

The ASL matrix norm is equal to the square root of the sum of

Tthe eigenvalues of A A. This follows from the facts that the sum of

the eigenvalues of any matrix equals the trace of the matrix (sum of its

Tdiagonal elements), and the trace of A A is the sum of the squares of

the elements of A:

A* + ;*2 + . . . + %\ = tr(A
T
A) = ]T Y_ J =

|
A f

2
.

1
J

J

The smallness of a matrix norm implies various convergence

properties of the matrix. Since the ASL norm is larger than the sub-

ordinate 2-norm, and since if either norm approaches zero then the

other does, these theorems generally hold with a margin of safety.

For example:

1. An
- A — if and only if |A

n
| - Ui —* 0, and

2. if |A| <1 then An —* 0.
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Occasionally one wants an upper bound on the eigenvalues of a matrix.

fA| is obviously such an upper bound.

1/2One frequently encounters the expression (X*X) ' for the vector

norm. We have avoided this notation in favor of one that applies to

a larger class of objects, for example to a vector of matrices.

4. 1. 3. 6 Factorial

The factorial, n!, is defined only for n a nonnegative integer.

0! = 1 and n! = n(n-l)! for n^ 1. If n is approximate, it is converted

to exact mode, and the result is always in exact mode. If n is numeric

but not a nonnegative integer, or if an overflow occurs, then n! is

undefined. If n is not numeric, the operation is invalid and execution

terminates.
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4.1.4 Numerical Comparison Operators

The numerical comparison operators are <C, <\ >, and > , with

their usual mathematical meaning. If e is an expression whose value

is exact, a is approximate, and T is the numerical tolerance, then the

meanings are as follows:

ei <^e means e <^ e ->

e <^ a means e <a-T

e <_a means e ^a+T

a <C a
7
means a < a -2T

a, <" a-, means a <C a„+2T1^2 1^2
The remaining comparison operators are defined similarly (a <^e means

a+T < e, e> a = -,(e ^>), etc. ).

If both operands are exact, then the comparison is done in exact

mode: a/b <Cc/d is equivalent to ad <Cbc, as the denominators are always

positive. If either operand is approximate, then the comparison is

done in approximate mode. Hence the above relationships involving

T are themselves approximate, being limited to the accuracy of the

machine.

If an overflow occurs in a conditional expression due to an operation

such as the multiplication in "a*b <Cc", then execution terminates because

an operand of a comparison is undefined. However, if overflow occurs

in evaluating the comparison operation itself (as might happen if comparison

is implemented by subtraction), then the result is undefined. If the
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conditional expression is in an IF header or set former, for example,

then execution terminates. If its value is merely assigned to a value

receiving expression, on the other hand, then execution continues.

As in the case of the equality test, comparison operations such

as a <Cb <^ c, a < b > c ^d, etc. , are allowed. These are taken to be

abbreviations for a <b & b <C c and a <^b & b > c & c ^d, respectively,

except that the intermediate expressions are evaluated only once when

the abbreviated notation is used. The exact meaning of the shorter

notation is similar to that given in section 4. 1 . 1, Equality Test.

Note that in ASL the expression <2 ^ 1 is FALSE, whereas

it is (unfortunately) TRUE in both PL/I and APL.

4. 1. 5 Boolean Operators

The Boolean operators, which operate on Boolean values to produce

Boolean results, are:

Not (-.a)

And, Nand (a & b, a fe b)

Or, Nor (a^b, a^b)
Implies and its negation (a^=>b, a ^^>b)

Equivalence, Exclusive or (a =b, a^b)

These suffice to provide all twelve nontrivial Boolean functions

of two variables:

a b a&b a=#b b^a a#> avb a ^b a=b ib b=^a -,a. a=^b a&b
F F



The Boolean operators may also be applied to maps of Boolean

values, maps of maps of Boolean values, etc. , in a manner similar

to the arithmetic operators. However, for Boolean operations there

is nothing analogous to arithmetical matrix multiplication. Boolean

matrices are treated the same as any Boolean maps.

If "OP" is a Boolean operator, and f and g are maps with the

same domains, then

f OP g = f(x, f(x) OP g(x)), Vx £ Vt}.

For a Boolean operation on maps to be valid, the domains of the two

maps must be identical. In particular, if the two maps are Boolean

strings, they must be of the same length. To get the PL/I effect of

extension of the shorter operand to the right with zeros, one must be

explicit; for example (where a is the shorter operand):

[av/ b(l:#a)] £ b(#a+l:#b).

Every Boolean operation on null maps produces the null map

as the result, i. e. , -,0 = 0, & = 0, etc.

For Boolean atoms, the equality test ( = , 4) could be used in place

of the Boolean equivalence operators (=, 5^). However, for Boolean

maps the equality test and the equivalence operator are entirely different

operations. It should be stressed that the equivalence operator may

only be used for Boolean map operands.

The result of a Boolean operation always exists or the operation is

invalid; it is never undefined.
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4. 1. 6 Pointer Operators

The pointer operators are the up arrow and the down arrow.

The value of "texpr" is a "pointer", or "reference", to the current

value of "expr". The pointer is a unique data type. If p is a pointer,

then |p is the quantity pointed to by p.

Why have references? They are somewhat out of character for

ASL, which is very "value oriented". Furthermore they are not entirely

necessary for the description of algorithms, and they lead to obscure

programs that are hard to follow, often necessitating the drawing of

diagrams.

Three reasons for having pointer variables in ASL are:

1. for the "control block effect",

2. for the accurate description of computer-oriented algorithms,
and

3. for efficiency.

Control blocks have the property that when something in them

changes, then the change is reflected by the action of algorithms that

have references to the control block. To get the control block effect

without pointer variables, one would probably introduce a mapping of

integers (or any convenient objects) into the values of the control block.

For example, consider the following two code sequences.
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Without Pointers With Pointers

TAG = TAG + 1

p = TAG
C(p) = (TRUE, TRUE, TRUE) p = f(TRUE, TRUE, TRUE)
Store copies of p Store copies of p

Fetch any copy of p Fetch any copy of p
(C(p))(2) = FALSE Up)(2) = FALSE

In the first code sequence, a global variable TAG is incremented,

and the new value is used as a pointer. It is saved in variable "p"

because other processes may alter TAG. A map C is defined or aug-

mented that maps p into a control block consisting of three flags, all

of which are initially TRUE. The reference to the control block, p,

is then stored away in various places such as members of sets. Sub-

sequently, a reference to the control block is obtained and the second

flag is changed to FALSE. If, after this, another copy of "p" is obtained,

then a reference to (C(p) )(2) will reflect the new value FALSE.

The second code sequence accomplishes the same purpose, but

uses a pointer variable, rather than an integer, for p. These steps

seem more direct and to the point, mainly because it is not necessary

to introduce the map C.

A second reason for having pointer variables in ASL is to facilitate

the accurate specification of computer -oriented algorithms that employ

"address variables". For example, one might wish to use ASL as an

aid in developing algebraic simplification algorithms that feature the

sharing of data (as in ALTRAN). Pointers also permit ASL to rather
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accurately imitate list processing languages such as LISP.

Finally, the introduction of pointers in ASL may at times allow

one to write faster-running or more compact programs. This motivation

for pointers is somewhat out of character for ASL, as it will usually

lead to more obscure algorithms, but there will no doubt be times when

it is justified.

When the term "^expr" is encountered, memory space is allocated.

Then "expr" is evaluated and the result is stored in the memory space.

This occurs (or at least ASL acts as if it occurs) even if "expr" is

simply a stand-alone constant or variable. It also occurs if "expr"

is the name of a set. Thus " expr" always causes a copy operation.

On the other hand, "fp" does not in itself cause copying of the thing

referenced by p.

Following are some examples of the use of pointers.

v = (a, b, c)

pv = fv "Same as pv = f(a, b, c). "

qv = \v "pv and qv do not compare equal. They
reference different copies of v."

x = (|'pv)(l) "x is a copy of a. "

(|pv)(l) = "x and v are unchanged."

y - ^pv "The value of y is (0, b, c).
"

pi = fl; Ip 1 = "The program's constant '1' is not changed."

Note that the notation for pointers is concise, but explicit. It

is more concise than PL/I, in which one writes P = ADDR(X) for approx-

imately the effect of p = ix (the PL/I P = ADDR((X)) more accurately

reflects ASL). Also, in PL/I one writes P-> X for the ASL If p. The

ASL notation is (intentionally) more explicit than Algol 68, in which

"y := x" might mean the ASL "y = fiix", depending upon the data types
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of y and x. A concise notation for pointers is important because when

they are used, they are apt to be heavily used.

The fact that the statement "p = I x" makes p point to a copy of

x deserves special comment. One reason for this is for simple con-

sistency with statements like "p = t(x+l)" and "P = * in
> in which a copy

is desirable. Another reason has to do with optimization.

If "p = fx" caused p to point to x itself, then every reference of

the form Ip would be a potential reference to all variables in the compil-

ation that have occurred in the context Ix. This would cause a degradation

in optimization possibilities that is best avoided. For example, in the

statements

P = ty

y = tq + 1

z = frq

the expression |q could not be factored out because there would be a

possibility that lq is y.

There is no way to point directly to the value of a program variable.

The statement x = j p does not cause x to be the object pointed to by p,

because assignment causes a copy operation.

As another example contrasting the conventional pointer treatment

with ASL' s, consider the PL/I:

A - P -> D;

X = 0;

B = P -> D;

Here the common expression P->D cannot be factored out unless it is
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known from a more global analysis that P does not point to X.

In ASL, the above would be coded as one of the following:

case 1 case 2

a = \p a = jrp

x = Ip =

b = *p b = +p

In case 1, the common expression *p may be factored out, as p cannot

possibly point to x's value. In case 2, it is obvious from local analysis

that Ip may not be factored out of the first and last statements, because

it is changed by the second statement (however, the optimization of

replacing the last statement with "b = 0" may be done).

The ASL code segments above are not only better for optimization

than their PL/I counterparts, but they are also easier to understand.

In fact, there seems to be a general principle in language design that

what is good for optimization is good for readability.

The expression tx is valid and defined if x has any value whatever,

including a procedure value, but is invalid if x is undefined. The ex-

pression Jrp is only valid if p is a pointer. Its value may be undefined

(as it is after lp = ;). For the null pointer, one would normally use

the undefined state for the pointer itself, rather than for the object pointed

to, so that the PL/I predicate "P = NULL" becomes " 3p"

.
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4. 1. 7 Set Operators

The set operators are those that may be applied to arbitrary

unordered sets of objects. They are:

Number of members {#S)

Membership test and its negation (x £ S, x 4 S)

Arbitrary member (3S)

Union (SI U S2)

Intersection (SI D S2)

Set difference (SI - S2)

Proper subset test (SI CI S2)

Subset test (SI Q. S2)

Proper superset test (SI 3 S2)

Superset test (Sl^ S2)

In the above, S, SI, and S2 are set expressions, and x is an

arbitrary expression. These operations are invalid if either operand

is undefined.

The value of #S is an integer giving the number of members in

5. We have #0 = 0. The # operator is frequently used for operations

that are not usually thought of as set operations, such as the length of

a string (for a string S, LENGTH(S) = #S; however, for a sparse vector

or array, LENGTH and # produce different results).

It is recommended that an ASL implementation maintain the size

of a set along with the set itself, so that #S is a fast operation.

The value of x £ S is TRUE if x is a member of S, and FALSE
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otherwise. The expression x $. S is equivalent to -i(x e S).

The value of 3S is (a copy of) an arbitrary element of S, and is

undefined if S is null.

The implementation has a good deal of freedom in implementing

)S, as two successive occurrences of 3S are not guaranteed to produce

the same value, or different values, or to have any particular statistical

properties.

The remaining set operations, union, intersection, set difference,

subset test, etc. , have their conventional mathematical meaning. The

union operation is used to add a member to a set, e. g.

S = S U(x}.

Of course if x is already present in S, the above statement does not

alter S.

The difference S^ - S 2 is the set of members which belong to Sj

but not to S 2 , i. e.
,

£ x, Vx £ Sj
I x i S2}.

The difference is used to delete a member from a set, e. g. ,

S =S - fx}.

The subset and superset tests may be combined similarly to the

numerical comparison operations. For example,

is equivalent to:

s
1
cs

2
cs

3

SjQ s
2

& s
z
a sy
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except that in the former expression S^ is evaluated only once.

These basic set operations exhaust those commonly found in math-

ematics with the exception of the complement, power set, and Cartesian

product.

There is no way to form the "true" complement of a set, i. e. ,

the set of members that do not belong to the given set. With respect

to a given (finite) universe U, one may write U - S for the complement

of S. The extension of ASL to handle infinite complement sets is an

interesting area for research, but it is not taken very seriously at this

time due to lack of motivation: in the algorithms studied so far there

does not seem to be much use for such a concept, and it would be a

considerable complication to ASL. The complement with respect to

a finite universe turns up from time to time, and for this the expression

U - S seems to be adequate.

The power set operation (set of all subsets of a given set) is avail-

able in ASL by means of the POW predefined function.

The Cartesian product is not available either as a built-in operator

or as a predefined function. One must explicitly form the product set.

Of course one could supply a procedure such as:

OPERATOR A „X B
RETURN {(x, y), Vx t A, Vy e B>

END

In using cross products, one must beware that whereas in mathematics

the sets A X (B X C), (A X B) X C, and A X B X C are generally considered

116



to be equal (it is understood in such contexts that "equal" means "iso-

morphic"), in ASL the products A X (B X C) and (A X B) X C are distinct.

If a cross product operator were introduced into ASL, it would probably

be best to have A X B X C denote a set of triples, making it an exception

to the left association rule (which is acceptable inasmuch as there already

are similar exceptions, such as a < b < c).
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4.1.8 Relation Operators

The relation operators are:

Range (ft)

Domain ($7)

Inverse (J.)

These are called "relation operators" because they can be applied to

binary relations, which are sets of ordered pairs that one may at times

think of as "multiple valued functions". The relation operators may

not, however, be applied to higher order relations (sets of triples, etc. ).

The range of a binary relation is the set formed by taking as members

the second component of each pair. The domain is the set of first

components, and the inverse is the set with each pair reversed. In ASL:

$- R = |y, V(x, y) t r]
V R = [x, V(x, y) £ R}
J R = /(y,x), V(x, y) t Rl

It is invalid to apply a relation operator to a set that is not a

binary relation. If an occurrence of a relation operator is valid, then

the result is alwavs defined. We have R0 = J?0 = ./0 = 0.

fv , £? , and Jl are frequently used, and an ASL implementation

should take care to make them reasonably fast operations. For example,

one might provide a special implementation for the predicate x t T? S

and the iterator Vxe VS so that j?S need not be explicitly formed. The

inverse of a binary relation might conceivably be implemented as a

single pointer switching operation.
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4.1.9 Array and Vector Operators

There are two operators that may only be applied to arrays and

vectors:

Origin setting (A @ b), and

Concatenation (a £ b).

The @ operator was discussed in section 3. 2. 2. To review, if

V is a vector expression and k is an integer expression, then V @ k

is the vector V with its lowest index biased so that it is k, and with

its other indexes biased by the same amount. For example, if

V = (a, b, , c) @k

then V(k) = a, V(k+1) = b, and V(k+3) = c.

The @ operator also applies to arrays. If A is an n-dimensional

array, then

A @ (kr k
2

k
n )

is the same array with its indexes biased so that the array is (k, , k
2 , .

k )-origin. Any of the components k, , k
? , . . . , k may be absent,

indicating that the corresponding dimension is not to be changed.

For A @ b to be valid, A must be a vector or array, and b must

be an integer vector such that A has a dimension corresponding to each

defined component of b. In other words, we must have

LI(b) > 1 and HI(b) ^#LENGTH(A)

(see section 3. 2. 2 for a discussion of LI, HI, and LENGTH). If A @ b

is valid then the result is always defined. Regarding the null set, we

have A @ = A and @ (kj, k2> ... , k
n ) = for all n > 0.
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The @ operator could have been defined so that an expression such

as A @ ((1, 2), 3) would be meaningful. This was not done because such an

operation would probably have little use.

The concatenation operator £ is defined only for vectors. They may

be sparse and other than one-origined. If a and b are vectors, then con-

catenation is defined as:

a £ b = a U b@(HI a + 1).

Note that the left operand, a, determines the origin of the result. If a is

null, the result is b@l, which is not necessarily equal to b.

120



4. 2 Function Referencing

This section discusses the meaning of expressions involving function

references. The related subjects of recursion, sinister calls, dynamic

name scopes, etc. , are discussed in section 7, Procedures.

The most common type of function reference is the function call, which

is denoted by juxtaposition of expressions, e. g. , LOG x, LOG (x), (LOG) x,

etc. Association is to the right, for example LOG SIN x means LOG (SIN x).

A function may be implemented as either an itemized map or as a

procedure. In addition, a function may be invoked in either a value pro-

ducing (right-hand side) or a value receiving (left-hand side, or sinister)

context. We first discuss the referencing of itemized maps, as that is

the simplest.

4. 2. 1 Dexter Itemized Map Referencing

As discussed in section 3. 2. 1, an itemized map is a set of pairs

such that each pair has a distinct first component. If f is an itemized map,

then a right-hand side (dexter) occurrence of f(a) signifies a search of f

for the pair whose first component is "a" (there can be at most one). The

result is the second component of the pair, provided the pair exists, and

otherwise the result is undefined. In ASL, provided f is a map:

f(a) = (pe f : p(l) = a)(2).

If u is undefined, then f(u) is invalid. However, f(u, ) is valid: it is equiv-

alent to f(0). u(x) is also valid: it is equivalent to 0(x) (the result is undefined).
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4. 2. 2 Sinister Itemized Map Referencing

A left-hand side (sinister) occurrence of f a, e. g. , f(a) = b, signifies

a search of f for a pair whose first component is a, the deletion of that pair

from f, if it exists, and the addition of the pair (a, b) to f. However, if b

is undefined, then the pair beginning with a is deleted but nothing is added

to f. In ASL, f(a) = b is equivalent to:

f = f - {p, Vp 6 f
|
p(l) = a} U f(a,b)}

if f is a function and b is defined. If a is undefined then f(a) = b is invalid;

however f(a, ) = b is the above with a replaced by (a, ) or 0. If f is undefined

then f(a) = b is valid and it sets f = {{a, b)}.

By "left-hand side" we mean any value receiving context, such as

READ f(x), Vf(x) = 1, 2, 3, etc.

4. 2. 3 Itemized Map Referencing (General)

As an example of itemized map referencing, let

f = f(a, b), ((a, b), c), ((.b),d), ((a,b,c),e)].

Then:

f(a) is b,

f(a, b) is c,

f(, b) is d,

f(a, b, c) is e,

f(a, b, c, d) is undefined, and

f(, a) is undefined, as is f(a, ),
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After the assignments:

f(a) = x;

f(a,b) =
;

f(0) = y;

f is the set:

((a,x), ((,b),d), ((a.b.cj.e), (0,y)}.

Functional application for itemized maps could be defined in a some-

what more general way than has been done, by dropping the restriction that

an itemized map must consist entirely of pairs, and that the mapping be

unique, so that any set is a potential map. This is done in SETL.

This approach is not taken in ASL because it is believed that making

the meaning of various constructions as self-evident as possible leads to

improved readability. For example, suppose the set:

S ={a, (b, c), (d,e,f), ((d,e), g)}

is to be regarded as a potential map. Then what is the domain of S?

It's range? Does S have an inverse ? Is S(d, e) equal to f, org, or [i, g} , or

is it undefined or invalid? When are two functions considered to be equal?

In ASL, an attempt is made to reject generalities if the meaning is

not rather clear, especially if the concept has no precedent in conventional

mathematics. If the meaning of a basic ASL operation on certain objects is

not clear, then chances are that the operation is invalid or the result is

intentionally undefined. For the above set S, R(S), P (S), ^'(S), and S(d, e)

are all invalid, because S is not in the domain of these operations. One

might consider two functions f and g to be equal if they have the same domain
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D and if, for every x t D, f(x) = g(x). With the ASL definition of function,

this sense of equality is equivalent to normal set equality, and thus one is

not led ast ray.

It is possible that the restricted definition of "map" will lead to im-

proved efficiency in function evaluation and in storing maps.

Regarding the evaluation of itemized map references, one can make

the following general observations:

1. A function reference always involves exactly one argument.

However, the argument may be a vector, in its full generality,

and thus we can easily create the appearance of references in-

volving a variable number of arguments, or in fact with any

arguments omitted: f 0, f(a), f(a, b), f(,b), and even f£(a, b, c)@-5j

all have meaning (for the same function f).

2. An itemized map reference never causes a new value to be assigned

to an argument.

3. If v = (a,b), then f(v) and f(a, b) are equivalent.

4. There is generally no relation between f(a), f(a, b), f(a, b, c),

etc. , unless the function f happens to be defined so that some

relation exists.

As will be seen in the next section, with a modification to (2), these

remarks continue to hold if f is a procedure. However, in spite of the

attempt to unify the concept of function in ASL, a procedure reference

does differ from an itemized map reference in several important respects.

For example, a procedure may have side effects, and it can alter its argu-

ments in a left-hand side call.

124



4. 2. 4 Dexter Procedure Referencing

Parameters are passed by value in a way that is based on vector

assignment. Although vector assignment is fully discussed in a subsequent

section (5. 2. 2), this section can probably be followed without first reading

that. We first discuss right-hand side procedure calls.

When a function f is referenced by an expression such as f(a,b, c),

and the function header statement is something like FUNCTION f(x, y, z),

then the compiler in effect inserts the assignment

(x, y, z) = (a,b, c)

at the point of the call. No similar assignment is inserted at the point of

the return, and thus procedure f cannot alter the arguments a, b, and c,

even though f may contain assignments to its formal parameters (we will

speak of the arguments_ a, b, and c, even though more formally there is

only one: the vector (a, b, c)). Of course f could alter the arguments a, b,

and c via external/shared linkage.

The meaning of the vector assignment (x, y, z) = expr, where x, y,

and z are variables, is:

t = expr

z =t(3)

y = t(2)

x = t(l)

where t is a compiler temporary. The reason for introducing the temporary

is so that expr will be evaluated only once. The ASL, use of temporaries is

discussed in sections 4. 10. 2 and 5. 2. 3; here we will largely ignore them.
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been pointed out, if f is an itemized map then the same relationship holds:

f(v) and f(a, b, c) produce the same result.

There are two anomalies in parameter matching. One is that to pass

a single parameter to a procedure that expects a number of parameters, one

must include a comma, e. g. , f(a, ). This is because (a) = a, but (a, ) is

a one-vector containing a. The other anomaly has to do with omitting all

parameters. One may code this as f(0) or f 0; f( ) is invalid because ( ) is

taken to be undefined. The problem is that if the procedure has only one

formal parameter, there is no way to omit it; f assigns the null vector

to the formal parameter. This behavior can be deduced from the way vector

assignments work (see section 5. 2. 1). Of course in many cases it is possible

to code the procedure to interpret as meaning that all parameters are

omitted.

A function may be coded to accept an arbitrary number of arguments, with

any of them omitted (except for the anomalies above) by having only a single

formal parameter:

FUNCTION g(x).

For a reference such as g(a, , c), the assignment x = (a, , c) is done, and the pro-

cedure g may then iterate over the components of x to process them all. An

itemized map has the same property: it may have values specified for a variable

number of parameters with any of them omitted.

The "formal parameter display" portion of a procedure header may be any

valid value receiving expression (see section 4. 8), as its only function is to become

the left side of the assignment statement that the compiler inserts as a part of

procedure linkage. This permits some strange displays, e.g.
,
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FUNCTION f(x(3),
, y, y). For this function, the call f(a, b, c, d) causes the

assignment (x(3),
, y, y) = (a, b, c, d), which is equivalent to x(3) = a; y = c;

in the absense of any complicating factors.

Unusual parameter displays such as this would practically never be

used. It is pointed out merely to get across how ASL works.

4. 2. 5 Sinister Procedure Referencing

Procedures may be invoked in a left-hand side, or value receiving,

context. Such a procedure call is referred to as a "sinister call". The

subject of coding a procedure that may be invoked in a sinister manner is

fully discussed in section 7. 6; here we discuss the basic meaning of a

sinister call, and the mechanics of the linkages, emphasizing the handling

of parameters.

FORTRAN and many other languages provide one case of a sinister

call in their array assignments, e. g.

A(l) = e

is understood to designate an altering of array A by changing the value of its

first component to the value of the expression e, leaving all other components

unchanged.

PL/I includes another type of sinister call, for example:

SUBSTR(S, 3, 2) = 'AB';

REAL(C) = 1. 0; etc.

Eleven built-in functions have been singled out as permissible to use in a
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left-hand side context. These are called "pseudo-variables".

ASL extends this idea so that the statement

f(x) = e

may be meaningful if f is a user-provided procedure, as well as an itemized

map or one of a number of built-in functions. Only a small class of pro-

cedures may be used in a sinister call, however. For example, a routine

"plus(x, y)", which adds x and y, probably could not be used in a sinister

context. Precisely which procedures are valid in which mode depends upon

how the procedure is coded. Many procedures (in fact, most) are only

valid in dexter mode. If a procedure is valid in sinister mode, then it

is also valid in dexter mode, but it may not be meaningful in dexter mode.

If it is meaningful in both modes it is called "ambidextrous".

Usually the ambidextrous procedures are those that perform, in

dexter mode, what one would intuitively think of as a "retrieval" operation,

as for example the PL/I SUBSTR. Vaguely speaking, a retrieval operation

is one that searches a data structure in some way and retrieves some part

of the structure. The most natural meaning of a sinister invocation of the

procedure is then to search the structure in the same way and replace what

is found (if anything) with the value of the right-hand side expression.

There are, however, reasonable ambidextrous procedures that are not

retrieval operations (see procedure . LE. in section 7. 6).

To fully understand sinister procedure calls, it is necessary to examine

procedure linkage in more detail than was used in the previous section.
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Procedure linkage may be thought of as involving four global variables:

F, the procedure,

ARG, the argument,

SINISTER, the "sinister flag", and

RESULT, the result in a dexter call, and an input quantity

in a sinister call.

Two of these, SINISTER and RESULT, are key words in ASL and they may

be directly employed by the problem programmer; their use is discussed

in section 7. 6.

Function calls expand as illustrated below, ignoring the possibility

of side effects (for a more precise analysis, see section 5. 2. 3).

Dexter call, e = f(a, b, c)

F = f

ARG = (a, b, c)

SINISTER = FALSE
IF SET(F) THEN RESULT = (p e f : p(l) = ARG)(2)

ELSE call F "Sets RESULT. "

e = RESULT

Sinister call, f(a, b, c) = e

IF 3f THEN F = f ELSE F =

ARG = (a, b, c)

SINISTER = TRUE
RESULT = e

IF SET(F) THEN f = F - fp, pe F I p(l) = ARG} U {(ARG, RESULT))
ELSE DO call F; (a, b, c) = ARG END

The statement "call F" denotes a "branch and link", or "return jump";

'call" is not an ASL statement.

The sinister procedure call differs from its dexter counterpart in that
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(1) RESULT is an input quantity to the called procedure, and (2) the sinister

call includes the step (a, b, c) = ARG, which is executed after

return. Hence if f is a procedure that alters its formal parameter, then

the change is communicated to the caller in a manner similar to a conven-

tional call by value with deferred argument return.

Note that without knowledge of what f is (set or procedure), one cannot

tell whether the effect of f(x) = e is to alter f or x (or both). For example,

the array assignment A(l) = e alters A, but SUBSTR(S, 1, 2) = 'AB 1 alters S.

In ASL, the determination of the type of f must in general be done at run

time (if f is a variable, then it may at times have sets and at other times

have procedures for values).

The expansions given show the type test as in-line code. For the

dexter call, this may trivially be moved to a system "apply" routine, so

that the statement e = f(a, b, c) would become e = APPLYDEX(f, (a, b, c)).

For the sinister call, the expansion of f(a, b, c) = e would be t =

APPLYSIN(f, (a,b, c), e); IF SET(f) THEN f = t ELSE (a, b, c) = t.

In some cases the function is altered and in some cases the argument is

altered. We shall assume for simplicity that the type test is done in-line

(at the point of the call).

For the called procedure, the only difference between dexter and

sinister calls is in its handling of the RETURN statement. For a procedure

to be capable of sinister execution, its return expression must be a valid

value receiving expression, e.g. x, x(i), (x, y, z), or it must be omitted. The

linkage on the called procedure side is as follows. The procedure:
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FUNCTION f(x, y, z)

RETURN r

END f

compiles as follows:

f: (x, y, z) = ARG

IF SINISTER THEN DO
r = RESULT
ARG = (x,y, z)

END
ELSE RESULT = r

RETURN
END f

If the return expression is present but is not a value receiving expression,

an error exit is invoked if it is attempted to execute the return in a sinister

call.

The following example should help to tie this together. Procedure

"nextnbc" retrieves or replaces the next non-blank character in a character

string, based on an internal counter n.

FUNCTION nextnbc(s)

DECLARE n SHARED
(n < Vi < #s) IF s(i) / h THEN [n = i; RETURN s(i)J

RETURN "Undefined result. "

END nextnbc

It is fairly obvious what this routine does for a dexter call such as

C = nextnbc(S).

For a sinister call, such as

nextnbc(S) = 'a',

the expansion is given below, where for simplicity the tests of the type of

the function and the sinister flag have been omitted, as have a few other

irrelevant details.
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ARG = S

RESULT = 'a'

call nextnbc

nextnbc: s - ARG
(n <Vi<#s) IF s(i) t h THEN [

n = i

s(i) = RESULT
ARG = s

RETURN]
ARG = s

RETURN
S = ARG

It may be seen that this does what was intended: it scans S for a non-

blank character and replaces it with 'a'. If no such character is found,

no action is taken.

4. 2. 6 Sinister Composition of Functions

The meaning of dexter composition of functions is obvious: by e =

f(g(x)) we mean t = g(x); e = f(t); where t is a compiler temporary. Further-

more, this trivial expansion can be derived from the dexter call expansion

given in the previous section (4. 2. 5). Expanding from the outside in, we

have:

F = f

ARG = g(x)

SINISTER = FALSE
IF SET(F) THEN RESULT = (pa f : p(l) = ARG)(2)

ELSE call F
e = RESULT.

It is easily seen that t = g(x); e = f(t); gives an identical expansion, by

expanding the call to f: we have t = g(x); F = f; ARG = t; SINISTER = FALSE;

IF SET(F) THEN. . .ELSE call F; e = RESULT. Eliminating the temporary

(t) reduces this to the above.
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There is more to the sinister composition of functions, however, and

the remainder of this section is devoted to it.

There are basically two types of expressions to consider:

f(g(x)) = e, and

(f(g))(x) = e.

Each of these has four subcases, corresponding to whether f and g are

procedures or itemized maps. We shall arrive at expansions that clearly

show the meaning of the above assignments by a process of derivation from

the basic sinister call expansion that has been given (which ignores side

effects). Section 5. 2.3 includes an alternate and more precise derivation

of the results that follow.

First consider what is perhaps the most interesting case: f(g(x)) = e,

with f and g both procedures. Expanding this from the outside in, we have

F = f

ARG = g(x)

SINISTER = TRUE
RESULT = e

call F
g(x) = ARG

Note that the inner function, g, must be ambidextrous.

The next level of expansion, for the sinister call g(x) = ARG, requires

a temporary for ARG, but that is straightforward and will not be shown.

The above expansion of f(g(x)) = e is exactly equivalent to the following,

where t is a temporary:

t = g(x)

f(t) = e

g(x) = t.
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To see this, simply expand the sinister call f(t) = e to: F = f; ARG = t;

SINISTER = TRUE; RESULT = e; call F; t = ARG;. With this

expansion replacing f(t) = e in the above, it is obvious that the assignments

involving t may be combined so that t is eliminated, which makes the

code sequences identical.

The above three-assignment expansion of f(g(x)) = e has a symmetry

that makes it easy to remember (the last line is the reverse of the first),

but it should be stressed that it may not be correct if side effects are in-

volved. This is because the basic expansions of function references given

at the beginning of the previous section are not quite right (the situation

will be clarified in section 5. 2. 3).

The last step in the expansion of f(g(x)) = e (i. e. , the last step in

t = g(x); f(t) = e; g(x) = t) is superfluous if procedure f does not modify

t. If this step were always omitted, one would have the expansion that one

would expect FORTRAN or PL/I to use, if these languages permitted left-

hand side procedure calls (it is presumed that these languages would treat

it similarly to the way they treat the array assignment A(B(I)) = E). The

following simple example shows the utility of the last step, and also illus-

trates a simple but common use of sinister calls.

Suppose it is desired to name the components of vectors, for mnemonic

purposes, in a manner imitative of the PL/I structure declaration. In

such an application one might have a group of procedures such as the following
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FUNCTION name(v); RETURN v(l); END;
FUNCTION first(v); RETURN v(l); END;
FUNCTION last(v); RETURN v(HI v); END;

FUNCTION street(v); RETURN v(2); END;
FUNCTION city(v); RETURN v(3); END;

If initially:

V = (('John 1

, 'Doe'), '251 Mercer Street', 'New York'),

then after:

last name V = 'Smith'

we have:

V = (('John', 'Smith'), '251 Mercer Street 1

, 'New York').

The (abbreviated) execution is as follows:

t = name V Sets t = ('John', 'Doe'),

last t = 'Smith' Sets t = ('John', 'Smith').

name V = t Sets V = (('John', 'Smith'), '251 Mercer Street',

'New York').

The conventional method of expanding "last name V = 'Smith' ", if it were

permitted at all, would amount to nothing since the last assignment would

be omitted.

Thus far we have considered the expansion of f(g(x)) = e only if f and

g are both procedures. To consider a different case, suppose we have

A(B(i)) = e, with A and B itemized maps (possibly vectors). Then, after

expanding this as above, we have:

136



F = A
ARG = B(i)

SINISTER = TRUE
RESULT =

e

A = F - ( p, p £ F I p(l) = ARG} U[(ARG, RESULT)}

This is easily seen to be equivalent to:

t = B(i)

A(t) = e

The above expansion in this case is exact, as no side effects are involved

in itemized map referencing. The cases of mixed itemized maps and pro-

cedures work out similarly.

If a function g is free of side effects and has the property that the

sequence t = g(x), g(x) = t is a no-operation, then g will be called a pure

retrieval function. Itemized maps are pure retrieval functions. The term

"retrieval function" will be used loosely; for example the procedure "nextnbc"

above might be called a retrieval function, but it is not a pure retrieval

function because it has the side effect of updating an internal counter.

Functions with side effects should be used in sinister composition

only with great care. Consider f(nextnbc(s)) = e, where f is a procedure.

It doesn't work as would probably be intended:

t = nextnbc(s)

f(t) = e

nextnbc(s) = t

because the internal counter would be stepped twice.
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Now consider composition grouped on the left, e. g.

[f(x)](y) = e.

For the moment assume that f and f(x) may be either procedures or itemized

maps (we treat all four cases simultaneously). Mechanically expanding

the above, we have (in the absense of side effects):

F = f(x)

ARG = y
SINISTER = TRUE
RESULT = e

IF SET(F) THEN f(x) = F - (p E F | p(l ) = ARG}. . .

U((ARG, RESULT)}
ELSE DO call F; y = ARG END

Here f must be ambidextrous if f(x) is an itemized map. In this case, the

above is exactly equivalent to:

t = f(x)

t(y) = e

f(x) = t,

which may be seen by expanding the second assignment, t(y) = e. This is

similar to the "three-assignment" rule previously given for f(g(x)) = e.

To illustrate with a concrete example, suppose V is a vector of vectors.

Then the assignment:

[V(i)](j) = e

is equivalent to:

t = V(i)

t(j) = e

V(i) = t.

This obviously has the effect of changing component j in vector i of V; the

third assignment is essential to accomplish this.
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For the composition [f(x)](y) = e, if f(x) is a procedure, then the third

assignment of the expansion is omitted. However, it could be included (as

a no-operation) if f is a pure retrieval function and f(x) does not alter y.

4. 2. 6. 1 Sinister Composition, General Remarks

It should be clear how multiple arguments are handled. Recall that

every procedure reference really involves exactly one argument, although

the argument may be a vector. Hence the meaning of:

f[g(x), h(y)] = e

if f is a procedure, is:

t = [g(x), h(y)]

f(t) = e

[g(x), h(y)] = t

in the absense of side effects. This may alternatively be written:

tl = g(x)

t2 = h(y)

f(tl, t2) = e

h(y) = t2

g(x) = tl.

The meaning of more deeply nested composition of functions should

also be clear. For example, the expansion of:

f[[A(i)](j)l = e,

if f is a procedure and A(i) is an itemized map, is:
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ti = A(i)

t
2
=t l(j)

f(t 2 ) = e

t
1
(j)=t

2
A(i) =t

x
.

This is easily derived by noting that it is of the form f(g(j)) = e, with g =

A(i). Hence we have:

t 2
= [A(i)](j)

f(t2 ) = e

[A(i)](j) =t2 .

Expanding the last line, the above becomes:

t
2

= [A(i)l(j)

f(t
2

) = e

tj = A(i)

t
x (j) = t

2
A(i) = t r .

Provided no side effects are involved (so that neither i nor A(i) is changed

at line 2), the line ti = A(i) may be moved to the top, and the next line

may be changed to t
2

= t, (j). The expansion is then identical to the one

originally given.

The compiler would probably generate code closer to the last sequence

than the first. It would then be an optimizing task to factor out the dexter

evaluation of A(i). The only reason for giving the original expansion is that

it has a symmetry that makes it easy to write down immediately, and as

a practical matter it is usually correct.

Sinister calls apply to some operators as well as to functions. That

is, if .OP. is a suitably defined operator, one can write:

x .OP. y = e.
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The rules given for sinister call expansion frequently result in syn-

tactically invalid assignments. When this occurs, the invalid assignments

are omitted. For example, the expansion of f ( 1 ) = e is:

F = f

ARG = 1

SINISTER = TRUE
RESULT = e

IF SET(F) THEN . . .

ELSE DO call F; [1 = ARG] END

where the assignment in brackets is omitted.

So far we have glossed over the fact that f is allowed to be undefined

in the assignment f(x) = e, in which case it is initialized to the null set.

To see why this is so, consider again the composition of itemized map

assignments:

CA(i)](j) = e.

This has the expansion:

t = A(i)

t(j) = e

A(i) = t.

Suppose the program is building up structure A by repeatedly executing

[A(i)](j) = e for various values of i and j. Then presumably A would be

initialized to the null set. This makes t undefined after t = A(i), and for

the second assignment to work we want to treat t as the null set in this case.

We could require the programmer to initialize A to a map of the proper

domain onto 0, or to supply an initialization statement such as "IF -.3A(i)

THEN A(i) = 0" before the assignment [A(i)](j) = e , but this is a burden
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that's best left to the compiler.

This means that a program may build up a map component by com-

ponent, by executing statements of the form M(i) = e, 'without initializing

M to the null set (assuming M is a local variable and hence is initially un-

defined).

Carrying this analysis one step further reveals that it is necessary

to allow the expression f(x) with f undefined in dexter context also. For

example, the expansion of:

[[M(i)](j)](k) = e

is:

tl = M(i)

t2 = tl(j)

t2(k) = e

tl(j) = t2

M(i) = tl.

If M is initially null, then the first assignment leaves tl undefined. The

second assignment is nevertheless permitted, and it leaves t2 undefined.

The third assignment sets t2 = {(k, e)}, the fourth sets tl = {(j, {(k, e)})},

and the last sets M = {(i, {(j, {(k, e)})})}, which is the desired result.

Hence in either dexter or sinister mode, f in the expression f(x) may

be undefined, and it is then treated as the null set.
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4. 2. 7 Expression- statements

An expression written as a statement, e. g. ,

e;

is an abbreviation for the assignment:

e = TRUE; .

For the statement "e" to be valid, e must be a value receiving expression

and any procedures that it causes to be invoked must be capable of execution

in the appropriate mode (dexter or sinister). Normally, e would be an

expression that would have a Boolean value if executed in dexter mode.

This minor syntactic device extends ASL in one significant way and

in a few ways that are useful, although not of great significance. For an

example of the latter, if x is a variable, then simply writing "x;" sets it

to TRUE. If we wish to set a switch to indicate that some process is com-

pleted, we simply write:

d one

;

rather than "done = TRUE;".

More significantly, if "sub" is a function procedure capable of sinister

execution, then we may write

sub(x);

to cause sub to be invoked in a way that allows x to be both an input and

an output quantity. Hence for all practical purposes ASL has subroutines,

although strictly speaking there are only function- and operator -type pro-

cedures. If sub is intended to be a "subroutine", that is, a function that
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is only intended to be invoked in sinister mode, then it may of course ignore

the value TRUE that is passed to it via RESULT. It would probably return

using simply RETURN; without a return expression.

Similarly, if . OP. is a user-defined operator-procedure capable

of sinister execution, then we may write

x .OP. y;

for the effect of x .OP. y = TRUE.

A few built-in operators may be used as expression-statements.

These are:

not (-.)

and (&)

nor (16)

implies (=^ )

membership test and its negation (e, 4 )

Although the Boolean operators normally apply to maps (vectors, etc. ),

when used in sinister mode they apply only to atomic Boolean operands.

In addition, and, nor, and implies may only be used when the right-hand

side is TRUE.

If e is an expression then the statement -.e; is equivalent to e = FALSE.

To reset a switch we may write -.done; rather than done = FALSE. The

way this is (or at least could be) implemented is that the "not" routine

is capable of sinister execution, and it sets its argument to -.RESULT.

Hence when we write -.e;, the compiler translates this to -.e = TRUE,

which becomes (in essence):
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ARG = e

SINISTER = TRUE
RESULT = TRUE
call "not routine" "Sets ARG = -.RESULT = FALSE. "

e = ARG

All of the above sinister operators could be implemented similarly.

The "and" routine accepts only a TRUE value for RESULT. That is,

we can write e. & e
2

; or e j & e 2
= TRUE; but not e

l
& e 2 = FALSE. The

routine sets both of its parameters TRUE.

Nor is similar to and, except that it sets both parameters FALSE.

The statement e^ =£' e 2 ; causes the "imply" routine to test its first

parameter (e, ). If it is TRUE, the second parameter is set to TRUE.

If e j is FALSE, no action is taken (however, e
?

is evaluated in any event,

since it is an argument of a procedure call). Hence e. =^» e^ i- s equivalent

to the statement IF e, THEN e 2 ,
except for the evaluation of e 2 .

The statement x e S; (or xe S = TRUE;) causes x to be made a member

of S. It is equivalent to S = SU (xj, but may be more efficient in an un-

sophisticated implementation (which would build the set [x] and perform a

set union operation for the latter statement).

Similarly, x 4- S, or x 4 S = TRUE, or x e S = FALSE, causes x to be

removed from S; they are equivalent to S = S - {x}.
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4. 2. 8 Functions as Data

As discussed in section 3. 1. 5, a function procedure name may be

treated as data and assigned to variables, put into sets, etc. , much as an

itemized map may be treated. There are important differences, however,

between procedure maps and itemized maps.

One difference is that a procedure name is considered to be a constant;

it cannot appear in a value receiving context.

Another difference is that if M is an itemized map, then the assignment

x = M causes M to be copied, so that x is the current mapping of M. On

the other hand, if P is a procedure name, the assignment x = P does not

involve generating a copy of P (together with all objects that might affect

its operation via shared/external linkages). Instead, future changes to P

will be reflected as changes done by the mapping x.
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4. 3 Set and Vector Formers

There are non-iterative and iterative set former expressions. The

non-iterative set former is written:

[ ei , e 2 , . . . , en }

where the e. are expressions. The value of the set former expression is

the set containing the current values of the e-. The set will have fewer

than n members if some of the expressions have the same values. The

values must all be defined, or the set expression is invalid.

The general form of the iterative set former is:

[e, iteration^, iteration-, iteration i.

Here e is an expression generally involving n iteration variables, and the

iteration- are iteration terms. An iteration term is explained in its full

generality in section 6. 5 (the same forms are used for iterating statement

blocks and in set formers). In this section we will use only simple iteration

terms such as Vx e S I C(x) (iteration over a set S) and m ^Vi ^n I C(i)

(iteration for i = m, m+1, . . . , n).

The above iterative set former forms the same set as S in the following

program section:
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As examples, here is a set of three integers:

fl, 2, 3},

and here is the set of primes from 2 to 100:

(p, 2^Vp<100l n(2<3m<p :REM(p,m) = 0)},

and here is a certain subset of the cross product of two sets R and S, as

determined by C:

f(x, y), Vxe R, Vy e S I C(x,y)>.

The conditional expression and its associated stroke symbol may be

omitted if it is simply TRUE; for example:

{x**2, Vx £ S}

is a set of squares obtained from S. The expression e may be omitted if

it is a vector obtained from the value receiving portions of each iteration

term, taken in order. For example:

[VxtSlc(x)} = [x, VxeS|C(x)}

{l<Vi<^n, Vx f S) = [(i,x), l<Vi^n, Vxe S]

(Vf(x) £ S} = (f(x), Vf(x) € S}

The last example illustrates that the iterand may be any value receiving

expression.

The vector former is the same as the set former except that instead

of braces, either parentheses or brackets are used. The non-iterative

vector former has been sufficiently discussed in section 3. 2. 2. As an

example of an iterative vector former, we have:

[p, 2<Vp<100 | -,(2$3m <p| REM(p, m) = 0)]
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which is the vector (2, 3, 5, 7, 11, . . . , 97). That is, the vector is built

from left to right as the iteration proceeds.

A vector formed from the iterative vector former may have undefined

(missing) components, for example (f(x),"VxE S) if f(x) is undefined for some

xe S.

4. 4 Search Expressions and Quantifier Predicates

A search expression causes a search of a list of items, a range of

integers, or a set until some condition is met. The value of the expression

is the first item found for which the condition is met, or is undefined if the

search is exhausted. Usually the condition expresses some property the

item is to have. For example, suppose S is a set of vectors. Then the

value of the expression

veS: v(2) =

is the first encountered vector in S whose second component is zero, or is

undefined if S does not contain such a vector. Similarly, the value of the

expression

x> : P(x) =

is the first positive integral root of P, if there is one. Evaluation of this

expression does not terminate if there is no root.

A quantifier predicate is either a universal predicate or an existential

predicate. A universal predicate is an assertion that all items in some

range (a list, range of integers, or set) satisfy some condition. For example,

149



the value of

Vxe S : x>

is TRUE if all members of S are positive (numbers) or if S is null, and is

FALSE otherwise.

Similarly, an existential predicate is the assertion that at least one

item in some range satisfies some condition, e.g.

3xe S : x> 0.

Search expressions and quantifier predicates all involve iteration,

and the mechanics of the iteration are the same as in the case of statement

iteration, which is discussed in section 6. 5. The reader is referred to

that section for much of the detail, but this section can probably be followed

without first reading that.

4. 4. 1 Search Expressions

The general form of a search expression is:

STARTING stmt range- specification WHILE C DOING stmt
2

: C
2

The range specification and the ": C
?
" are required, but the STARTING,

WHILE, and DOING clauses are optional. Refer to section 6. 5 for a discussion

of the STARTING and DOING clauses.

The range specification is a list of range-items, each of which is

in one of the following three forms:

1. (Itemized) x = list | C

2. (Counting) m^i^nlC, or i^>m |C, etc.

3. (Set) x£ S BY next I C
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The syntax and meaning of the range-items are very similar to those

of the for-items discussed in section 6. 5. 2, and the reader is referred to

that section for details. Here we merely summarize. The x and i in the

above are the iterands, and it is the final value of the iterand (if any) that

is the value of the whole search expression. The iterand may be any value

receiving expression.

The "list" above is a sequence of expressions separated by commas.

It specifies the range of the iteration by explicitly listing each value the

iterand is to be assigned.

C denotes a predicate expression. Only those values in the range that

satisfy C will be used in the search expression. For example, the range

specification

x = 2, 1, 3, 4 |MOD(x, 2) = 1

specifies an iteration with x = 1, then 3 (2 and 4 being skipped). The stroke

symbol and C may be omitted, in which case ITRUE is assumed.

The counting form specifies that i is to take on integer values from

m to n, for the form m ^i ^n. The form i> m signifies t = FLOOR(m) + 1,

i = t, t + 1 There are twelve varieties of such expressions (six of them

count backwards, e.g. m>i^n).

S is a set expression, and "next" is a procedure or itemized map that

determines the order of iterating over S. The "BY next" phrase may be

(and usually is) omitted, in which case the predefined procedure variable

NEXT is used. This variable is initialized, at procedure entry, to the
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"standard" set iterator. For general sets, the standard order is arbitrary

(not specified and not necessarily the same from one case to another for

the same set). If the set is an array, the order of iteration is lexicographic

(last subscript varying most rapidly).

The WHILE C clause in a search expression causes searching to ter-

minate if C becomes false during the search. That is, in the search expression

xf Si C WHILE C : C
2

C, may cause termination of the search before all members of S have been

examined, whereas Cq merely causes certain members to be skipped over.

The expression has no value if evaluation is terminated early.

The evaluation of the expression

STARTING stmt j x£ S BY next |C
Q
WHILE C

L
DOING stmt 2 : C

2

is equivalent to the following, where r is the result:

t = variables

r =
;

(STARTING stmtjVxE S BY next I C WHILE Cj DOING stmt
2 ) DO

IF C 2
THEN (r = x; QUIT) END

variables = t

Here t is a temporary and "variables" is a vector containing the iterand x,

and the variables that are referenced in stmt^ and stmt_.

Expanding this statement iteration as described in section 6. 5 gives:
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t, - variables

r =
;

stmti

*2 = >

back: t 2 = next(t, S)

IF3t2 THEN DO
x = t2
IF C THEN

IF C
x
THEN IF C 2 THEN (r = x; GO out)

stmt 2
ELSE GO out

t
?

= x
GO back
END

out: variables = t

Search expressions using the other types of range specifications have

similar expansions. For example,

is equivalent to

m < i <n : C

t = i

r =
;

(m <^Vi <^n) IF C THEN (r = i; QUIT)
i = t

and this may be further expanded with reference to section 6. 5.

In the absense of side effects, the search expression xe S : C is

equivalent to i[x, Vxe S
| C} , but the former is of course more to the point

and faster running (for an unsophisticated compiler).

The iterand of a search expression is not a dummy, or bound, variable.

However, it is saved and restored before and after evaluating the search

expression, so that evaluation does not (normally) have the side effect of

changing a variable. The reason for this is so that the iterand may be any

value receiving expression. For example, suppose we have a vector V of
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numbers and we wish to find a number in a set S which, when used in place

of V(l), causes the magnitude of V to exceed 5. Then we may write

y = V(l)* S : |vl> 5.

The variable y is assigned the appropriate number from S, and V is not

altered.

There are other temporaries introduced for the evaluation of search

expressions, coincident with the technique discussed in section 4. 10. 2, but

we point out here the one for the iterand to show how ASL performs an

assignment locally but without (normally) its having a global effect.

The temporaries also prevent the statements in the STARTING and

DOING clauses from having any global effect (in the absense of side effects).

They are "bound statements".

As a practical matter the STARTING, WHILE, and DOING clauses,

and the conditional expression in the range specification, are seldom used.

The latter is because the expression

x e S
I
C q : C

j

is equivalent to

x e S : Cq & C^,

as can be readily seen from the expansion given. Similar remarks apply

to the universal and existential predicates.

As an example of the use of the STARTING and DOING clauses in a

search expression, here is a calculation of the 100 prime:
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y = STARTING k = 1; p> 2 I [2 <^Vi <p : REM(p, i) i 0] DOING k = k + 1

: k = 99

Search expressions and quantifier predicates involving the STARTING

and DOING clauses are usually so intricate (as the above example illustrates)

that they will seldom be used. The main reason they are permitted is

because they are of value in statement iteration, and we wish to have a unified

treatment of iteration in ASL to keep the language simple in the sense of

having a simple grammar, being easy to remember various constructions,

etc.

Here is an example of the value of this type of simplicity. In section

6. 5, the pseudo-function ITERATION is discussed in connection with statement

iteration. The question arises: can ITERATION be used in a search expression,

universal predicate, existential predicate, set former, or vector former?

The answer is obviously "yes" to all of these.

4. 4. 2 Universal Predicates

The general form of the universal predicate expression is:

STARTING stmt j
for -specification WHILE C

l
DOING stmt

2
: C

2

The for- specification is the same as a range specification except that a V

symbol precedes the iterand. The for-specification of the universal predicate

is the same as the for-specification of a statement iteration header (section

6. 5).

The details of the meaning of the universal predicate parallel those

of the search expression. Here we summarize by giving the expansion of:
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Vxe S BY next I C Q
WHILE C

x
: C v

which is shown below, where r is the result.

t = x
r = TRUE
(Vx£ S BY next I C

Q
WHILE Cj) DO

IF .C 2 THEN (r = FALSE; QUIT) END
x = t

Note that the expression:

Vxe S | C
Q

: C
2

is equivalent to:

Vx 6 S : -.Cqv Ct.

4. 4. 3 Existential Predicates

The general form of the existential predicate expression is:

STARTING stmt, exists-specification WHILE Cj DOING stmt
2

: C
2

The exists-specification and the ": Co" are required, but the other

clauses are optional.

The exists-specification is the same as a range specification except

that an 3 symbol precedes the iterand.

The details of the meaning of the existential predicate parallel those

of the search expression and universal predicate. Here we summarize

by giving the expansion of:

3x8 S BY next | C Q
WHILE Cj : C

2

which is shown below, where r is the result.
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t = X

r = FALSE
(Vxe SlC BY next WHILE C^ DO

IF C 2 THEN (r = TRUE; QUIT) END
x = t

The expression:

3x £ S lc„ : C.

is equivalent to:

and to:

and to:

' 2

3xe S : C & C
2

,(Vxe S lc : -C
2 )

i(Vxe S : -iCqv ""Co)-

Note that if S is null, then Vx e S : C is TRUE, and 3x e S : C is FALSE.

This preserves the identities (in the absense of side effects) 3x £ S : C =

-(Vxe S : -,C) and Vx s. S : C = -.(3x6 S : -,C).

Expressions that violate the normal mathematician's rules regarding

free and bound variables, such as 3x s A : (Vx e B : C(x)), and [e(x, y),

Vx e A(x, y), Vy fe B(x, y)} are allowed and are given the meaning of the appro-

priate expansion. This is because it would be difficult to disallow them in

view of the fact that the iterands may be arbitrary value receiving expressions.

For example, if v is a vector, {v(i)+v(j), Vv(i) f SI, Vv(j)£ S2} makes sense

if i ^ j , but not if i = j . In ASL we accept it in either case.
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4. 5 Ellipses

The ellipsis is used to specify simple sequences. There are two

general forms:

e 1, e2, . . . , en

e 1, e2, . . .

where el, e2, and en are expressions. The three periods are a single

token and may not contain blanks. There may, however, be blanks between

the ellipsis and the following comma in the first form.

The compiler parses el, e2, and en, and then determines the lowest

single node for which el and e2 differ (syntactically), and for which el and

e2 are the same everywhere except at this node and its descendants. If we

denote by u and v the subexpressions in e 1 and e2 that correspond to this

node, then the sequence is of the form e(u), e(v), . . . , en (or e(u), e(v), . . . ).

The expressions u and v must be numeric, and the compiler then generates

the assignment d = v - u, where d is a compiler temporary. In general,

d can only be evaluated at run time, but in practice it often can be determined

at compilation time.

The compiler then generates code to fill in missing terms by changing

the sequence to

e(u), e(u+d), e(u+2d), ..., e(u+nd).

The ending point is arrived at as follows. First expression en is examined.

If it is of the form e(w), then n is the largest integer such that u+nd < w if
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d ^ 0, and n is the largest integer such that u+nd > w if d < 0. If en is

not of the form e(w), then n is the largest integer such that e(u+nd) ^en

if the sequence is increasing (i. e. , if e(v)> e(u)), and n is the largest

integer such that e(u+nd)^en if the sequence is decreasing. There are

other differences in these two forms, regarding what happens if the iterand

alters the value of the stepping variable. This it can do if en is not of the

form e(w), and hence e is numeric. A detailed expansion is given in section

6. 5. 2. 1 Itemized Iteration.

As suggested above, the expressions el, e2, and en need not be numeric

if either en is absent, or if the three are of the form e(u), e(v), and e(w).

The ellipsis can be used in the set former, vector former, search

expression, universal predicate, existential predicate, and an iteration

in any context. Below are some examples.

1. {1,2 n)

2. (-8, -6, .... 8)

3. i = a, b, . . . , #s : s(i) = 'a 1

4. Vy = x**l, x**2, . . . , x**n : f(y)>

5. 3S = {n, 1 <Vn <l}, £n, 1 <Vn ^2}, [n, 1 <Vn ^m} : c(n)

6. (Vx = a, a+dx, . . . , b) S = S + f(x)*dx

7. Vy = sin(x), sin(x+l . 0E - 3*PI), ..., sin(x+2*PI) DO... END
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The first example forms the set of integers from 1 to n. The same

set can be 'written £i, Vi = 1 , 2 n}, which employs the ellipsis in a

set former in a different sense (an iteration).

In the second example, the difference d would for most ASL imple-

mentations probably be 6 - 8 = -2, because the minus signs would be treated

as operators. However, an implementation could compile the minus signs

in as part of the numbers, in which case d = (-6) - (-8) = +2. It makes no

difference, as in the former case the general term is -(8 + (-2)d) and in

the latter (-8 + 2d), which is equivalent. Hence either type of compilation

is acceptable.

The third example is a search expression (not an assignment statement).

The expression searches certain characters of s for an 'a 1

, and the value

of the expression is the index of the first 'a' encountered, or undefined if

there is none. The characters tested are those of index a, b, 2b-a, 3b-2a, etc.

The remaining examples should be clear.

In matching subexpressions, the compiler is really trying to "guess"

what is intended by the ellipsis expression. There is room for interpretation.

For example, the expression m, m+1, . . . should, in a sense, be written

m+0, m+1 This latter form clearly shows the difference d to be 1-0.

In the former expression the difference d is calculated as (m+l)-m. For-

tunately it makes no difference in this frequently occurring case. But suppose

example 4 above had been coded x, x**2, . . . , x**n. Then the difference

d = x -x, and the sequence is x, x , 2x -x which is not what was
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intended.

The exact manner of comparing el, e2, and en in the ellipsis expression

is not specified in ASL. One implementation may ignore redundant parentheses,

the difference between parentheses and brackets, prefix plus signs, and

the order of terms in a commutative operation, and it may evaluate subex-

pressions involving self-defining values at compile time, whereas another

implementation may not. This is a weak point in ASL, as the implementations

will differ in their execution of valid programs.

As an example of a pitfall, consider the sequence 1/2, (1/3)

A compiler that ignores the redundant parentheses will treat this as 1/2,

1/3, 1/4, 1/5, . . . , which is probably what is intended. However, a compiler

that is sensitive to the parentheses will treat it as 1/2, 1/3, 1/2 + 2(1/3-1/2),

1/2 + 3(1/3-1/2) As another example, consider the sequence (x+l)**l,

(l+x)**2 Here a sophisticated compiler, which recognizes x+1 and

1+x as the same, would supply the third term as (x+l)**3. An unsophisticated

compiler would not.

What we have here is a problem in pattern matching. A "good" ASL

compiler would not only eliminate redundant parentheses and prefix plus

signs, but it would also be based on an unordered tree comparison, and

would evaluate subexpressions at compile time when possible. Furthermore,

possibly it could supply redundant subexpressions such as **1, *1, +0, etc. ,

in order to lower the node at which different subexpressions are recognized,

which is probably a desirable principle.
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It is probably premature to specify elaborate pattern matching rules

for ASL. Instead, we accept the fact that implementations will differ in

this respect, taking comfort in the fact that the ambiguous cases probably

won't arise very often, and they probably won't arise at all with "good"

programmers. That is, a "good" programmer would not insert redundant

parentheses in one term of an ellipsis expression and not in another, or

write parts of the terms in different orders, because such constructions

confuse the human reader as well as the compiler. The only disturbing

thing is that he must, to be safe, supply such things as the **1 of example

4. Of course he shouldn't have to.

If the expressions involve only addition, subtraction, and multiplication,

then it does not matter where on the tree they are considered to be different;

they could always be regarded as differing at the top node. Consider, for

example, a*(b+c-d*e), a*(b+c-(d + l )*e), .... The general term is

a*(b +c-(d+n)*e) if considered to be different at nodes d and (d+1), and the

general term is a*(b+c-d*e) + n*(-a*e) if considered to be different at the

top node, and the two are equivalent.

Note that the capabilities for a "good" interpretation of ellipsis ex-

pressions are also desirable to do a good job of common expression elim-

ination. For example, for both purposes the expressions x+2 and

l+x+(--l) should be recognized as equivalent.
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4. 6 Cross Sections

ASL includes a construction similar to the array cross sections of

PL/I and Algol 68, but generalized to apply to any itemized map.

A cross section of a map f is denoted by

f(xl, .... *, .... xn)

with at least one asterisk present.

For a three-dimensional array A, the cross section A(*, *, z) denotes

the "slice" at the given value of z and parallel to the x, y plane. A(*, y, *)

and A(x, *, *) similarly denote slices parallel to the x, z and y, z planes.

A(*, y, z) denotes the vector at the given values of y and z, and parallel to

the x axis. A(#, *, *) is equal to A, if A is a three-dimensional map.

Cross sections of itemized maps are defined so that relations such

as the following hold, and these relations are regarded as the fundamental

properties of cross sections:

[f(x, *)](y) = [f(*, y)](x) = f(x, y)

[[f(x, *, *)](y, *)](z) = f(x, y, z), etc.

(However, these relations are not sufficient to define cross sections).

We define f(*) to be simply f itself. In other cases, the expression

f(xl, . . . , *, . . . , xn), with at least one asterisk present, is evaluated in

dexter mode as follows. For each pair p in f, p(l) is examined. If p(l)

is not a vector, then p is excluded from further consideration. If p(l) is

a vector, then all components that correspond to asterisks are deleted

(made undefined). Similarly treating the asterisk positions of the argument
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(xl, . . . , *, . . . , xn) to be undefined, a "match" is said to occur if the

modified p(l) and argument are equal. From the matched pair p, a new

pair (q, p(2)) is constructed, where q is the vector of components of p(l)

that correspond to asterisk positions, with q(i) corresponding to the i*-"
1

asterisk. However, if q is of length one (i. e. , if there is only one asterisk

in the argument), then q is replaced by its component.

Some specific cases, expressed in ASL, are:

f(a, *, b) = ftx(2), y], V(x, y) e f I VECTOR x & x(:l) £ x(3:) = (a, b)}

f(a, *, *) = (tx(2:3), y], V(x, y) e f I VECTOR x & x(:l) £ x(4: ) = (a, )}

(This use of the colon is explained in the following section).

As an example, let

f={(a,b), (b, (c,d)), ((a,b), d), ((a,b, c), e)}

and g = {((,a),b)}

where a and b are atoms. Then:

f(a, *) = [(b,d)J

f(*,b) = {(a, d)}

f(*, *, c) = {((a, b), e)}

f(,*,c) =

f(b, *) =

£(*) = f

f(*, *) = £((a,b),d)}

g(*) = g

g(, *) = f(a,b)}

A cross section of a map is always a map (uniqueness is preserved).

Note that the value of f(*, *) is a subset of f whose domain consists

of vectors v such that LI(v) > 1 and HI(v) ^ 2, i. e. , pairs, if undefined

quantities are not involved. Similarly,

f(*
f ) = (tx(l), y], V(x, y) £ f

I
VECTOR x & x(:0) # x(2:) = ( , )},
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which is obtained from f by considering only pairs whose first component

is a one-tuple, and by changing such a pair ((x, ), y) to (x, y).

Cross sections may not be nested. That is, a construction such as

f((a, *), b) is invalid. Furthermore, an argument with an asterisk may

not appear in any context other than functional application; (a, *, b) is not

a vector. Hence cross section parameter lists may not be built out of line,

and a construction such as f((a, *, b)@2) is invalid. The reason for these

restrictions is that we do not wish to open up a Pandora's box of definitions

of how * behaves in various contexts, which would amount to adding a new

data type, or a "state" analogous to the undefined state.

Cross sections may be used in sinister mode. For example, the

assignment f(a, *, b) = e, where e is an itemized map, modifies f as

follows:

f = f - {V(x, y) £ f
I
VECTOR x & x(: 1) £ x(3:) = (a, b)}

U(((a,x, b), e(x)), Vx £ JZTf).

Similarly, the assignment f(a, *, *) = e, where e is an itemized map whose

domain consists entirely of pairs, modifies f as follows:

f = f - {V(x, y)e f I VECTOR x & x(:l) £ x(4:) = (a, )}

U(((a,x, y),e(x, y)), V(x, y)e^f}.
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4. 7 Subarrays

The notation f(m:n) has meaning if f is a vector and m and n are

integer expressions. It is then the vector (f(m), f(m+l), . . . , f(n)) if

n> m, and if n <m. The expression f(m:n) is called a "subvector"

or " substring"

.

The following forms are also permitted:

f(m: ) means (f(m), f(m+l), . . . ).

f(:n) means (f(LI f), f(LI f + 1), .... f(n)) if n> LI f, and otherwise.

f(:) means (f(LI f), f(LI f + 1), . . . )

Note that the result is "shifted" so that the result is a one-origin

vector (or 0). Below are some examples of the subvector operation, where

v = ( , a, , b, c).

v(l:2) =
( , a)

v(3:) =
( , b, c)

v(:2) = ONEVECTOR a

v(:) = (a, , b, c)

v(6:) =

The result is always a vector, and the indexes are permitted to be out of

range.

The subvector operation could have been defined to have meaning for

maps in general, by ignoring non-numeric elements in the domain. However,

this would be of little utility, and its inclusion would make programs more

obscure and would make the implementation more complicated and somewhat

slower in execution.
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The subvector notation extends to arrays in an obvious way. For

example, if A is the array

1 2 3

a b c

d e

f

(i.e., the set {((I, 1 ), a), ((1,2), b), ((1,3), c), ((2, 2), d), ((2, 3),e), ((3, 3), £)})

then A(2:3, :) is the array

1 2

d e

f

The colon may not be nested. That is, a construction such as A((l:2, 3), 4)

is not permitted. This is because such a construction implies that A is

referenced by forms of the type A((i, j), k), which implies that A is not an

array. Similarly, a construction such as A((l, 2), 3:4) is not valid.

A cross section is similar to a subarray in which neither limit is given.

That is, if A is a regular array then A(i, *) = A(i, :). However, in general

these concepts are different. The cross section is defined for maps in

general, for one thing, whereas the subarray is only defined for arrays.

Even if f is a vector, then f(*) and f(:) may not be the same. For example,

if f =
( , a, b) then f(*) =

( , a, b) but f(:) = (a, b). For one-origin vectors,

however, f(*) = f(:).

Subarrays may be used in left-hand side contexts. Intuitively, the

meaning of s(m:n) = e, where e must be a vector expression, is to replace

components m through n of s with all the components of e, sliding the

right-hand components of s to the left or right as necessary to make room.
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More precisely, it is equivalent to:

s = ts(:m-l) tf e $ s(n+l:)] @ MIN(LI s, m).

The domain of e need not match the indexes m and n. For example, we

may write s(3:6) = (a, , b) and s(l:2) = 0. Note that this is not a pure re-

trieval function; i.e. , after s(m:n) = e, it is not necessarily the case that

the value of s(m:n) is e. However, if m^ LI s and LENGTH(e) = n-m+1,

then it is a pure retrieval function.

The meaning of s(m:) = e is the same as s(m:HI s) = e, that is,

s = [s(:m-l) £ e] @ MIN(LI s, m).

Similarly, the meaning of s(:n) = e is the same as s(LI s:n) = e, that is,

s = [e £ s(n+l:)]@ LI s.

The assignment s(:) = e is equivalent to s(LI s:HI s) = e, that is,

s = e @ LI s.

The assignment to a higher dimensional subarray is an obvious ex-

tension of this. Assignments such as A(i:j, k:, 2) = M are permitted.

168



4. 8 IF Expressions

ASL includes the IF expression, similar to that of Algol. As an example,

y = Ixl could be coded:

y = IF x ) THEN x ELSE -x.

These may of course be nested. The IF expression may also be used in

a left hand side context (as in Algol). However, see section 5. 2. 1 Map

Assignments for a similar but more general left hand side expression.

In ASL there is nothing analogous to the decision table for IF expressions.

The words IF, THEN, and ELSE must all be present. However, in

a dexter context the expression following either THEN or ELSE may be

absent or ( ), indicating the undefined state.

Parsing depends on the fact that IF, THEN, and ELSE are reserved

words. They act like prefix operators of precedence lower than that of any

built-in operator. For example, the parentheses are required to code |x| + 1

as (IF x> THEN x ELSE -x) + 1.
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4. 9 Value Receiving Expressions

A value receiving expression is one that is syntactically valid in a

left-hand side, or sinister, context. These contexts in ASL. are:

1. The left-hand side of an assignment statement.

2. An item in a READ I/O list.

3. The stepping expression in a search expression or quantifier

predicate.

4. The formal parameters of a procedure heading or ENTRY statement.

5. A RETURN statement when the procedure is invoked in sinister

mode.

6. An expression- statement (this is really a case of (1) above; see

section 4. 2. 7).

A value receiving expression is any of the following:

1. A variable name.

2. A function reference, f(x) or f x.

3. A map expression of the form £(xl, el), (x2, e2), . . . ,
(xn, en)},

where the ei are value receiving expressions.

4. A vector expression of the form (el, e2, . . . , en), where the ei

are value receiving expressions.

5. A cross section expression, f(x, *,* ), etc.

6. A subarray expression, A(i:j), A(i, j:), etc.
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7. An IF expression, IF c THEN x ELSE y, where x and y are value

receiving expressions.

8. The expression (e), where e is a value receiving expression.

The definition allows an assignment such as (1, 2, 3)(2) = 4, although

the effect of such an assignment is nil (a compiler temporary holding the

vector (1, 2, 3) is modified to (1, 4, 3)).

171



4.10 Expression Evaluation

4. 10. 1 Order of Evaluation

This section discusses the order in which operators are executed and

the order in which their operands are evaluated. ASL is very left-to-right

oriented in both respects.

Binary operators are evaluated as follows, where we consider juxta-

position of expressions to be a binary operation in which the operator is

not explicitly shown. The higher precedence operations are performed

first (see the table in section 2. 2. 3. 1). Among operators of equal precedence,

with two exceptions they are grouped on the left. That is, a - b + c is eval-

uated as (a - b) + c. The two exceptions are juxtaposition and exponentiation;

log sin x is log(sin x) and x**y**z is x**(y**z).

The order of evaluation of operands is of less importance in ASL than

in many languages, because the values of the variables in an expression

are captured before evaluation begins, and the captured values cannot change

during evaluation of the expression (see the following section). Nevertheless

the order of evaluation is significant if the terms involve procedures that

have internal counters, share global variables, perform input/output, etc.

The left operand of a binary operator is evaluated first, then the right

operand (if at all). The components of set and vector formers, such as

(a, b, c), are evaluated in left to right order. For the expression IF c THEN

x ELSE y, c is evaluated first. If it is TRUE, then x is evaluated, and y
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is not evaluated at all. If it is FALSE, then y is evaluated, and x is not

evaluated at all.

For the binary Boolean operators, the left operand is first evaluated.

If the result is then independent of the value of the right operand, then the

right operand is not evaluated. This applies to &, $. ,
=£• , and =^ if the

first operand is FALSE, and to\/and 4/ if the first operand is TRUE. It

also applies to an expression such as a<b <c; if after evaluating and com-

paring a and b it is found that a<b is FALSE, then c is not evaluated.

Map and vector assignments are done in right to left order; (a, b, c) =

e is executed as c = e(3), b = e(2), a = e(l), ignoring temporaries. Hence

in an assignment such as (a, a) = e, it is the leftmost assignment to a that

takes effect. The multiple assignment el = eZ = . . . = en = expr is also

done in right to left order.

For a left-hand side function reference such as f(x) = e, first f is

evaluated, then x, then e, and finally the assignment itself is done, which

may alter either f or x. For left-hand side composition of functions, and

more complicated expressions such as the ellipsis, set former with an

iteration, and quantifier predicate, see the expansions given in the appro-

priate section.

4. 10. 2 Use of Temporaries

This section discusses the use of compiler-generated temporaries

in value producing (right-hand side) expression evaluation. Their use in

value receiving (left-hand side) expressions is discussed in section 5.2. 1.
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The intuitive notion of the evaluation of a simple (non-iterative)

expression is that all variables in the expression initially have values

that are to be used in the evaluation, and the various distinct parts of

the expression can be evaluated simultaneously. Unfortunately most

programming languages break down on both of these intuitive concepts.

ASL only breaks down on the latter concept (simultaniety), and it breaks

down less easily than most languages.

For example, in many languages the expressions a + f(x) and

f(x) + a have different values if procedure f has the side effect of changing

a. This is because the initial value of a might not be used when it enters

into the add operation.

This non-intuitive behavior is avoided in ASL by the rule that before

any expression is evaluated, all variables in it are assigned to temporaries,

and then the evaluation is done in terms of the temporaries. Of course

a reasonably sophisticated compiler will omit most of the unnecessary

assignments, or will introduce them and later delete them by an optim-

ization process, but nevertheless the program's behavior is as if all the

assignments had been done.

For example, if f is a procedure name (a type of constant), the

evaluation of;

a + f(x)

is:

tl = a

t2 = x

t3 = f(t2)

t4 = tl + t3
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where t4 gets the result. If f had been a variable (procedure variable or

an itemized map), a temporary would have been used for it also (Alter-

natively, the compiler could simply always assign a temporary for f,

and even for all constants.

It is easy to see that no matter what procedure f does, barring its

result being a function of time, the expressions a + f(x) and f(x) + a have

the same value. Hence there are some cases where addition in ASL com-

mutes because of the use of temporaries, and this can be used to aid optim-

ization efforts (however, addition in ASL does not always commute).

If the same variable occurs more than once in an expression, then

for evaluation purposes it makes no difference whether or not it is assigned

to distinct temporaries.

It was remarked in section 4.4 that the iteration variable in a search

expression, set former, etc., was not a bound variable, although it be-

haves similarly to a bound variable in that the value of a variable with

the same name as the iteration variable is preserved across the expression.

For example, the expression:

{v(l), Vv(l)e S I
|v|> 5}

is evaluated in terms of a temporary assigned to v. It is the temporary

that receives assignments in the V loop. On the other hand, v is not a

bound variable because it is the initial value of v that is used to supply

components other than v(l) in the conditional |v|/ 5.
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5. 1 DECLARE Statement, Attribute Summary

This section briefly describes attributes in general, and shows how

to write them in a DECLARE statement.

ASL classifies attributes as "essential" and "inessential". The

table on the next page shows all the essential attributes that can be declared,

and a few of the inessential ones. A reference where further details

may be found is given.

Essential attributes are those that could be required for logically

correct operation of a program. Inessential attributes are those that

are never required, but are supplied only for commentary, efficiency

enhancement, and as debugging aids. For example, the length of a string

is an essential attribute, but the maximum length of a string variable

is an inessential attribute.

The DECLARE statement may be used to specify any attribute. It

is the only way to specify the attributes of variables (as opposed to the

attributes of values), i.e., STATIC, DYNAMIC, external, SHARED,

INTERNAL, and value. Hence the DECLARE statement is an essential

part of ASL, although it is frequently used merely for co nmentary and

efficiency enhancement.

Another way to classify attributes, which is sometimes useful, is

as attributes of variables and attributes of values. For example, the

storage class attributes STATIC and DYNAMIC are attributes of variables,

and not of the values taken on by variables, or of constants. On the other
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hand, EXACT and APPROXIMATE are attributes of (numerical) values.

Generally speaking, an attribute of a variable can only be specified by

means of a DECLARE statement, but an attribute of a value originates

by the way a constant is written, and it is passed on by assignment (and

hence is passed on as a part of the parameters of procedure linkage).

A variable attribute (e. g. STATIC) is never considered to be a

property of a value. However, a value attribute (e. g. type) can be specified

(in a DECLARE statement) as a property of a variable. This is taken to be

a comment to the effect that all values assigned to the variable will have

the specified value attribute. Data conversions are not invoked, although

internal representations might change by assignment (such a change

does not affect the results of a valid program, except possibly when the

numeric tolerance is involved.

As an example, consider the statements:

x = 1

y = x + 1.

The constant "1" is EXACT, and hence the value assigned to x is EXACT.

The program would be invalid if x had been declared as APPROXIMATE.

The constant " 1 . 0" is APPROXIMATE. The addition rules dictate that

the sum of an EXACT number and an APPROXIMATE number is APPROXIMATE,

and hence the value assigned to y is APPROXIMATE. Again, the program

would be invalid if y had been declared EXACT.

An ASL variable cannot have a value attribute unless it also has a value.

For example, if a program contains the declaration DECLARE K NUMERIC,
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the type of K is undefined when K is undefined, and the assignment "K = ;"

is valid (this is pointed out mainly because it differs from Algol 68).

The distinction between attributes of variables and attributes of

values cannot conveniently be rigorously maintained. For example, the

external attribute can be an attribute of a variable name or of a procedure

name, which is a type of constant.

A declaration such as:

DECLARE 1 ^i <1000 INTEGER

can be viewed as mere commentary, since it does not affect the results

of a valid program. However, it is a type of comment that can be interpreted

and used by the co ripiler. For example, the above declaration (which means

that the values assigned to i are always integers from one to a thousand)

might cause i to be stored as a half word on the IBM System/360. Hence

there is a fair chance that a program will not work properly if a comment

"lies". The VERIFIED attribute may be used to invoke a run-time check

after each assignment to i to verify that i is, in fact, an integer from one

to a thousand.

The essential attributes will now be briefly described. For further

details refer to the section given in the preceding table.

STATIC and DYNAMIC are the storage class attributes. A STATIC

variable retains its value when a procedure is invoked recursively. A

DYNAMIC variable is pushed down, and a new (initially undefined) value

is popped up.
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External, SHARED, and INTERNAL are the name scoping attributes.

A variable is INTERNAL unless declared otherwise, and an INTERNAL

variable is known only within its "owning" procedure. A SHARED variable

is known in other procedures, which may be all procedures in a program

or an explicitly identified subset. The external attribute declares a

variable to be identified with a variable (possibly of a different name)

owned by another procedure.

An internal procedure's name is SHARED with all descendents of its

parent, unless declared otherwise. An outermost procedure's name is

SHARED globally. A "declared constant" (as the "x" in "DECLARE x 1.0")

may be INTERNAL (the default) or SHARED, but it may not be external.

The value attribute is the value itself. It is given to a variable

by an assignment statement, READ statement, etc., and to a declared

constant by a declaration such as the one in the preceding paragraph and

"DECLARE ARTICLES ('a', ),'an', 'the'}". A declared constant cannot

enter into an assignment (and hence is considered to be a constant), but

it has some properties normally associated with variables, such as the

fact that it can be SHARED.

The type attribute classifies a value as being one of the six ASL

data types NUMERIC, CHARACTER, BOOLEAN, PROCEDURE, POINTER,

and SET.

The structure attribute further classifies a SET as being a RELATION,

MAP, ARRAY, MATRIX, VECTOR, STRING, or PAIR. In addition, the
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structure may be further described by such phrases as STRING(CHARACTER),

SPARSE ARRAY DIMENSION = 3, etc.

EXACT and APPROXIMATE are numerical precision attributes.

An EXACT number is represented internally as a ratio of integers, either

of which may be arbitrarily large. An APPROXIMATE number is repre-

sented in a more convenient (for the machine) form, generally in the

machine's floating point format. Examples of EXACT constants are 1,

IE 100, and 1/3 (the last is actually an expression whose value is EXACT).

Examples of APPROXIMATE constants are 1.0, 1. 0E100, and 0. 333.

The ASSIGNS attribute identifies which arguments of a function

or operator are assigned new values when the function or operator is

invoked in a sinister (value receiving) context. For example,

DECLARE f(x, y, z) ASSIGNS(x, z)

specifies that in an assignment such as f(a, b, c) = . . . , a and c are assigned

new values (provided they are valid value-receiving expressions), but b

is not. The ASSIGNS attribute need not be given in a DECLARE statement.

It is a value attribute, i. e. , it is inferred from the procedure itself and

passed on by assignments to procedure variables.

The PRECEDENCE attribute specifies the precedence of user-defined

operators. The precedence is a numerical value (not necessarily an

integer). An example of a precedence declaration is:

DECLARE .MYPLUS. PRECEDENCE = 3

The keyword PRECEDENCE is also a predefined function
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that returns the precedence of any operator. Thus we may write (using

the allowed abbreviation of PRECEDENCE):

DECLARE .MYPLUS. PREC = (PREC(+) + PREC(*))/2.

The precedence attribute is an attribute of an operator name , and

is not inferred from the definition of the operator. Thus a statement

can be parsed without having compiled the definition of user-defined

operators. A user-defined operator could be given different precedences

in different procedures, but (like variable name attributes) cannot be

changed within a procedure.

The default precedence is that of the binary +.

The table on the following page shows which attributes are incom-

patible within the same procedure. For example, a variable could not

be both SHARED and external in the same procedure, but it might be

SHARED in one and external in another.

Many attributes are implied by others. For example, declaring

a variable to be APPROXIMATE implies that its type is NUMERIC.

Redundant attributes are always permitted, provided they don't conflict.

For example, the following are valid:

DECLARE x NUMERIC APPROXIMATE

DECLARE S (1, 2, 3) SET VECTOR STRING.
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5.1.1 Placement of DECLARE Statements

A declaration for an identifier must precede the first occurrence

of the identifier in the procedure, not counting the occurrence of identifiers

in a procedure heading.

The essential attributes of an identifier that can only be specified

in a declaration must all be given in the same declaration. Thus it is

invalid to write DECLARE x STATIC; DECLARE x SHARED; or even

DECLARE x STATIC, x SHARED. It must be DECLARE x STATIC SHARED.

The attributes in this category are STATIC, DYNAMIC, external, SHARED,

INTERNAL, value (the effect of a value declaration cannot be specified

by assignment), and PRECEDENCE.

The inessential attributes and the essential attributes that are spec-

ified for commentary reasons may appear in different declarations. They

must, however, precede the first non-procedure-heading occurrence of

the identifier.

These rules are included for the benefit of the reader (although they

may also help the compiler). When the reader of a program wants to know

the attributes of an identifier, he need only search in one direction: upwards.

When he finds an attribute that can affect the operation of the program

(such as SHARED), he knows that he need look no further for other such

attributes. The rules are relaxed with regard to the other attributes

to facilitate adding efficiency enhancing or Hebugging declarations without

alter ; ng any existing code.
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5.1.2 Writing the DECLARE Statement

The DECLARE statement is written in the PL/I style, with attributes

listed with each item being declared, rather than the other way around, as

in FORTRAN. Factoring is permitted. The general form without factoring is:

DECLARE item attribute [attribute] . . . [, item attribute [attribute]. ..]...;

Here "item" is the item being declared. It must be an identifier (other than

a keyword), or a user-defined operator name (which is a period-delimited

character string with no embedded blanks or periods).

At least one attribute is required (unlike PL/I). The word DECLARE

may be abbreviated DCL. A comma is used to separate items appearing

in the same statement, but attributes are separated only by blanks. The

attributes may be written in any order, but the item being declared must

precede all of its attributes.

5. 1. 2. 1 Storage Class Attributes

The storage class attributes are written STATIC and DYNAMIC, e.g.
,

DECLARE x STATIC, y DYNAMIC;

5. 1.2.2 Name Scoping Attributes

The internal attribute is written INTERNAL and the shared attribute is

written SHARED, optionally followed by a list of procedure names enclosed in

parentheses. DECLARE x SHARED declares x to be accessible to any procedure

that has an appropriate external declaration. DECLARE x SHARED (P, .OP. )
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declares x to be accessible from procedures P and „OP.
,
provided

they have the appropriate external statement, but x is not accessible

anywhere else. The external attribute is written in either of the forms:

IN proc

= name IN proc.

For example, DECLARE x IN PI, y = z IN P2 declares x to be identified

with the variable (or procedure) of the same name that is owned by pro-

cedure PI, and y to be identified with the variable (or procedure) z owned

by procedure P2. The x in PI and the z in P2 must be SHARED. This

attribute may be factored, as illustrated below.

DECLARE (x, y, z) IN proc

DECLARE (x, y = a, z = b) IN proc

DECLARE (x, y) = a IN proc

5.1.2.3 Value Attribute

The value attribute is written as a self-defining value or an expression

involving only self-defining values. For example:

DECLARE epsilon 0.001, (x, y, z)(l, 2, 3+4).

The second declaration declares x, y, and z to all be names for the

vector constant (1, 2, 7) (it does not mean something closer to the

assignment (x, y, z) = (1, 2, 7)).

The manner of writing a constant value implies all of its essential
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attributes. It is sometimes useful, however, to supply inessential

attributes along with the value attribute, for example:

DECLARE KEYWORDS {'IF', 'THEN', 'ELSE'} HASHED.

5.1.2.4 Type Attribute

The six type attributes are written NUMERIC, CHARACTER,

BOOLEAN, PROCEDURE, POINTER, and SET. The first five may

be abbreviated NUM, CHAR, BOOL, PROC, and PTR. Some examples:

DECLARE (x, y, z) NUMERIC

DECLARE SW BOOL, SUB PROC.

The attribute INTEGER (abbreviated INT) is frequently used.

This is an inessential attribute that implies NUMERIC and has the obvious

additional meaning.
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5. 1. 2. 5 Structure Attributes

In many cases a variable takes on values that are always sets of a

certain fixed structure. The structure attributes serve to identify this

structure. The "set display" and the "vector display" are catch-alls

that can represent any structure more or less pictorially. The other

structure attributes in some cases merely abbreviate commonly occurring

structures, and in other cases they supply addititional information, such

as the maximum length of a string.

The structure attributes are:

set display

vector display

RELATION

MAP

ARRAY, MATRIX, VECTOR, STRING, PAIR

DENSE, SPARSE, REGULAR

DIMENSION, SIZE

LI, HI, LENGTH

5. 1. 2. 5. 1 Set Display Structure Attribute

The set display is written {attributes}. For example:

DECLARE SI {NUMERIC}, S2 {[CHARACTER}) ;

declares that the variable SI takes on values that are always sets of

numbers (or the null set), and S2 takes on values that are sets of sets

of characters. These declarations mean that the set is homogeneous.

188



There is no way to declare, for example, that a variable's values are

sets of numbers and characters, but with no other data type.

The syntax of the set display is very close to the value attribute,

the only difference being that in the case of the set display, the material

within the braces cannot be reduced to a self-defining value (a constant).

A similar appearing value attribute might be written DECLARE SI {'NUMERIC'}

The attributes STATIC, DYNAMIC, external, SHARED, INTERNAL,

PRECEDENCE, and some of the inessential attributes are not permitted

in a set display.

5. 1. 2. 5. 2 Vector Display Structure Attribute

The vector display is written in the following forms:

(attribute list)

(attribute list) @ expression

(attribute list, ... )

(attribute list, . . . ) @ expression

Here "attribute list" is a list of one or more attributes or an asterisk,

separated by commas, and "expression" is an expression that can be

evaluated at compile time. Some examples of the vector display:

DECLARE VI (NUM, CHAR, NUM, PTR)

DECLARE V2 (NUM, *, PROC) @ (3*(4- 1))

DECLARE V3 (NUM, , PROC)

DECLARE V4 (NUM, CHAR )

Here VI is specified to have values that are vectors normally of length
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four, vhose first component (if present) is numeric, and whose second

component (if present) is a single character, etc. The possibility of

components not being present is allowed so that VI can be built up component-

by-component, i.e., "Vl(2) = 'a'; Vl(l) = 1;" etc.

V2's values, when all components are present, are nine-origined

vectors, with V2(9) numeric, V?(10) of unspecified attributes, and V2(ll)

a procedure. V3 is similar to V2, except that V3 is one-origined and

its second component is never present.

V4' s values are (normally) one-origined vectors of length one or more,

whose first component is numeric, and whose remaining components,

if any, are all single characters.

There are some vector structures that cannot be declared in ASL.

One is a vector whose left end "floats". That is, (. . . , NUM, CHAR),

for example, is not allowed. There is no way to specify a list of alternative

attributes for a component (analogously to the Algol 68 union ). There is

no direct v ay to specify that a component is always present, although

some specifications to this effect may be accomplished by means of LI,

HI, and LENGTH, which are discussed below.

The * and omitted specification serve as place markers. Thus

in (NUM, *, CHAR), component number one is numeric, and component

number three is a character, and this holds 'when the second component

is undefined, as well as when the first or third components are undefined.

The value attribute may be used as a component of a vector, in
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which case the value is assigned and may not be altered (the vector is a "partial

self-defining value" or "partial constant"). Thus after DECLARE V (2, NUM,

CHAR), assignments such as V(l) = . . . or V = . . . are invalid. The validity of

V(i) = . . . can, in general, only be determined at run time. The value attribute may

not precede the ellipsis (e. g. , DECLARE X (1, . . . ) is invalid). This anomaly is

a consequence of the anomaly that the value attribute causes an assignation.

As with the set display, the vector display cannot include the attributes

STATIC, DYNAMIC, external, SHARED, INTERNAL, PRECEDENCE, and

some of the inessential attributes, within the display itself.

5. 1. 2. 5. 3 RELATION Structure Attribute

The RELATION attribute specifies that the values taken on by the

declared variable are sets of regular vectors all of the same length, with

the length greater than or equal to two. The attributes of the vectors may

be shown in parentheses immediately following the word RELATION, sim-

ilarly to a vector display. Some examples:

DECLARE Rl RELATION

DECLARE R2 RELATION(NUM, CHAR)

DECLARE R3 {(NUM, CHAR)} RELATION

DECLARE R4 RELATION ( (CHAR, „„„), NUM, *)

Here Rl is merely declared to be a relation, but it is not known whether

it is binary or trinary, etc. R2 and R3 are binary relations between

numbers and single characters. For R3, the set display is used.
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The word RELATION informs the reader (and the compiler) that the elements

of R2 and R3 are always pairs. Without the word RELATION, set R3

could contain null vectors and vectors of length one. The declarations

of R? and R3 are equivalent.

Another (possibly less suggestive) way to specify R2 is:

DECLARE R2 {(NUM, CHAR) LENGTH = z}

R4 is declared to be a trinary relation between character strings,

numbers, and a third quantity of unspecified attributes. In the context

of the RELATION attribute, the * is taken to mean a component that is

always present (defined). (This remark applies to (CHAR, . . . ) and NUM

also).

5.1.2.9.4 MAP Attribute

The MAP attribute declares that the values taken on by a variable

are either itemized maps or procedure maps. That is, the values are

either sets or ordered pairs whose first component is unique, or are

procedures (of either function or operator type) that are free of side effects.

The two possibilities can be distinguished by giving the type, i. e. , SET

MAP or PROCEDURE MAP.

The attributes of the domain and range of the ma.p may be written

in parentheses immediately following the word MAP. For example:

DECLARE Ml MAPfINT, CHAR)

DECLARE M2 MAP((CHAR, . . . ), *)

declares Ml to be a map from integers to characters, and M2 to be a map
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from character strings to objects of unspecified attributes.

A set map differs from a binary relation in that the pairs that make

up a set map must have unique first components.

5. 1. 2. 5. 5 ARRAY, MATRIX. VECTOR, STRING, and PAIR Structure Attributes

These are special cases of SET MAP, and they imply those attributes.

An array is a set map whose domain consists of regular vectors of integers,

all of the same length, this length being the dimension of the array. A matrix is

an array of two dimensions, and a vector is a set map whose domain consists

of integers. A string is a regular vector, i. e. , a vector whose domain

contains all integers from one up to some maximum, or is null. In practice,

strings are usually homogeneous (the members of the range have some

attributes in common), but they need not be. A pair is a string of length two.

If an array, matrix, vector, string, or pair is homogeneous in some sense,

the common attributes of the range may be written in parentheses immediately

following the word ARRAY, MATRIX, VECTOR, STRING, or PAIR.

Some examples:

DECLARE Al ARRAY

DECLARE A2 ARRAY(NUMERIC)

DECLARE VI VECTOR(CHAR)

DECLARE V2 VECTOR(CHAR, . . . )

DECLARE SI STRING(CHAR)

DECLARE PI PAIR(CHAR)

Here Al is merely declared to be an array. The number of dimensions
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is unknown, as is the range of its indexes. A2 is an array of numbers,

but its dimensionality is also unknown. VI is a vector of single characters,

and V2 is a vector of character strings. SI is a conventional character

string. An equivalent declaration of SI is DECLARE SI (CHAR, . . . ); the

preference is a matter of taste. PI is a pair of characters. PAIR is equivalent

to STRING LENGTH = 2, and hence an equivalent declaration for PI is

DECLARE PI STRING(CHAR) LENGTH = 2. The preference would depend

upon which is more suggestive of how PI is used in the program.

The vector display cannot be written immediately following the word

RELATION, MAP, ARRAY, MATRIX, VECTOR, STRING, or PAIR. Thus

DECLARE VI VECTOR(CHAR, . . . ) declares VI to be a vector of character

strings, whereas DECLARE V2 (CHAR, ..„) VECTOR declares V2 to be a

character string, and the word VECTOR is redundant. This restriction also

applies to the SHARED attribute; it and the fact that the item being declared

must appear before its attributes are the only restrictions on the order of

items in a declaration.

5.1.2.5.6 DENSE, SPARSE, and REGULAR Structure Attributes

These attributes apply to arrays and vectors. A dense array is one

whose domain ranges from some (imin , jmin , . . . ) to (imax , j max> . . . )

with no "holes". That is, if imin ^i <^imax and j min <^j ^Jmax> etc., then

A(i, j, . . . ) is present (defined) if A is dense. A dense vector is similarly

defined. Note that a dense array cannot be "ragged". SPARSE means

"not necessarily dense". If DENSE is not specified or implied by some
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other attributes, then SPARSE is assumed, and hence the attribute SPARSE

is of value mainly to the human reader (The compiler may use it to assure

that it doesn't conflict with something else, for example SPARSE STRING

is invalid).

REGULAR means (1, 1, . , . )-origined and dense. Although REGULAR

may be applied to strings and pairs, it is redundant. In fact, STRING is

merely an abbreviation for REGULAR VECTOR,

An example:

DECLARE A ARRAY(NUMERIC) DENSE;

5. 1. ?. 5. 7 DIMENSION and SIZE Structure Attributes

The DIMENSION attribute applies to arrays, and the SIZE attribute

applies to sets in general. They are written in the form:

identifier relation expression

(for example "DIMENSION = 3"), where "identifier" is either DIMENSION

or SIZE, "relation" is one of the six relational operators = ^<-$.>^>:, and

"expression" is an expression that can be evaluated at compile time, and

whose value is such that the dimension ard size are non-negative.

SIZE implies SET and DIMENSION implies ARRAY, which implies

SET. For clarity, one might choose to be redundant and write, for example,

SET SIZE <10.

DIMENSION may be abbreviated DIM.

Some examples:

DECLARE S SIZE ^100
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DECLARE S SET SIZE ^100

DECLARE A DIM = 2

DECLARE A ARRAY DIMENSION = 2

DECLARE F SET SIZE i

Here the two declarations for S and for A are equivalent.

When DIMENSION and SIZE are written with one of the relational

operator s <C<jr >^> , the specification is, strictly speaking, an inessential

attribute. However, it is convenient to discuss it in this section. The

same remark applies to LI, HI, and LENGTH in the following section.

5.1.2.5.8 LI, HI, and LENGTH Structure Attributes

These attributes apply to arrays, vectors, and strings. They are

written in either of the forms:

identifier relation expression

expression! relation, identifier relation2 expression^

(for example 3^ LENGTH <10). Here "identifier" is either LI, HI, or

LENGTH, optionally subscripted with an expression that can be evaluated

at compile time an^ whose value is a positive integer. Each "relation" is

one of the six relational operators = ^"x^X^- Each "expression" is an

expression that can be evaluated at compile time and whose value is

numeric. LENGTH is further restricted to non-negative values (although

LENGTH>-1 is valid). If the relation is "=", the expression is further

restricted to have an integral value. In the second form, the relational
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operators are restricted to <^.<" ^T> > and they must both point in the same

direction.

The optional subscript on LI, HI, and LENGTH is used to refer to

the different dimensions of the array. That is, to specify that a regular

array is 10 x 20, one may write either "HI(1) = 10 HI(2) = 20" or "HI =

(10, 20)". To specify that a regular array is of varying size up to 10 x 20,

one can write "HI( 1)^10 HI(2)^20", but the specification "HI ^ ( 1 0, 20)"

is not valid.

Some examples:

DECLARE STR STRING(CHAR) LENGTH ^"20

DECLARE Al ARRAY(NUMERIC) LI = ( 1 , 1)

DECLARE A2 ARRAY(NUM) REGULAR HI = (10, 20)

DECLARE A3 ARRAYfCHAR, . . . ) LI = (1, 1) HI(1) = 2

HI(2)^T100

DECLARE V STRING(ARRAY((CHAR, . . . ) LI ^1 0) LI = ( 1 , *)) . .

10 ^LENGTH ^.20

Here STR is a character string of maximum length 20. Being a

string, it is dense and LI(STR) is 1. The variable Al is a two-dimensional

array (as implied by LI = (1, 1)) of numbers. There is no specified limit

on HI(A1), and Al may be sparse. A2 is similar to Al except that it is

dense and of fixed size 10 x 20. A variable such as A2 is of limited value

in ASL, as it may not be built up component-by- component. It would be

more usual to replace "HI = (10, 20)" with "HI(1 ) ^ 10 HI(2)^20 DIM =2",

and possibly also DENSE, if it is built up in an appropriate order. Declarations
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of fixed size arrays would occur more frequently in declarations of nested

structures.

A3 is a two-dimensional array of character strings.

Visa string whose length varies from 10 to 20, and whose elements

are arrays. The arrays are two-dimensional with LI(1) = 1 and LI(2)

unspecified (an * here is taken to mean "present but not specified").

Each element of the array is a character string of maximum length 10.

A c a final example of the manner of writing structure attributes,

the declaration below is for a simplified symbol table, such as might

be found in a compiler. The symbol table is a map from character strings

of varying length (the "symbols", or identifiers, that have appeared in the

text being analyzed) into vectors giving the various properties of the

symbols. The vectors might contain an integer giving the storage location

that has been assigned to the symbol, a short character string identifying

the symbol's type ("REAL", "INTEGER", etc.), and various flags. The

vectors in the range of the symbol table are (in general) sparse, as the

properties of each symbol are accumulated gradually. Such a simplified

symbol table might be declared as follows:

DECLARE SYMTAB MAP[STRING(CHAR) LENGTH>1, ...

(INT, STRING(CHAR) HI < 10, BOOL, BOOL)]
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5. 1. 2. 6 Precision Attributes

The precision attributes are written EXACT and APPROXIMATE,

for example:

DECLARE x EXACT, y APPROXIMATE;

5.1.2.7 ASSIGNS Attribute

The ASSIGNS attribute is written as shown by the following example:

DECLARE f(x, y, z) ASSIGNS(x, z)

The arguments (x, y, z in the above) are strictly local to the declaration.

For example, in:

DECLARE f(x, y) ASSIGNS(x), x NUMERIC;

there i= no connection between the x in "x NUMERIC" and the other x's.

In ASL, there is no way to specify the attributes of the parameters

of a function, unless the function happens to be free of side effects. Then

one can write, for example:

DECLARE f(x, y) PROCEDURE MAP((NUM, NUM), CHAR)

ASSIGNS x;

5. 1. 2. 8 PRECEDENCE Attribute

The PRECEDENCE attribute is written:

PRECEDENCE = expression

where "expression" is an expression that can be evaluated at compile time,

and whose value is numeric. PRECEDENCE may be abbreviated PREC. For

example:

DECLARE .SPECIALOP. PRECEDENCE = 0;

DECLARE . +. PREC = PREC(+) + 0. 5;
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5. 2 Assignment Statement

ASLi includes four varieties of assignment statements:

simple assignment,

function assignment,

map assignment, and

multiple assignment.

A simple assignment has a single variable on the left-hand side, possibly

enclosed in parentheses. A function assignment is of the form f(xl, x2, . . . ,

xn) = expr, where f is a function (itemized map or procedure). It may also

be of the form x .OP. y = expr, where .OP. is an operator-procedure.

A map assignment is of the form ( (xl , e 1 ), (x2, e2), . . . ,
(xn, en)J- = expr,

where the ei are value receiving expressions (see section 4.9). A multiple

assignment is of the form el = e2 = . . . = en = expr, where the ei are value

receiving expressions.

In a simple assignment, the right-hand side expression is evaluated, and

a copy of the result is assigned to the variable on the left. Hence after

A = {1, 2, 3}

B = A
A = A - {1}

B is still the value assigned to it, namely fl, 2, 3} (this is pointed out only

because some LlSP-oriented languages do not work this way). An ASL im-

plementation may, for efficiency, not actually perform a copy operation

for the assignment B = A, but the program logically behaves as if a copy
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had been made.

If the right-hand side expression is undefined, then the left-hand side

is made undefined also. Furthermore, one may write "x = ;", or "x =
( );",

to explicitly make x undefined.

ASL does not take the view that an assignment is an expression that

has a value and hence can be used anywhere an expression can be used.

The main reason for this is for the sake of readability. We do not wish

to have deeply hidden assignments. Another reason is to preserve the dual

use of the " =" sign. That is, the statement a(b = c) = d; means to compare

b and c and set either a(TRUE) or a(FALSE) equal to d. It does not mean

to set b = c and then set a(b) = d.

Function assignments are discussed in section 4. 2, Function Referencing.

Briefly, the meaning of f(x) = y depends on the data type of f. If f is an

itemized map, it means

f = f -{p, Vpe f |p(l) =x}U{(x, y)}

except for minor differences involving side effects if f or x are expressions

involving procedure references. It is permissible for f to be undefined,

in which case it is treated as the null set. If f is a procedure, f(x) = y means

to invoke f in a sinister call, which generally results in a change to x. If

f is any other data type, or is a set that is not a map, then the assignment

is invalid.
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5. 2. 1 Map Assignments

The map assignment:

{(xl, el), (x2, e2), . . . , (xn, en)} = expr

is essentially equivalent to:

en = expr(xn)

e2 = expr(x2)

e 1 = expr(xl ).

By "essentially equivalent" we mean that we are ignoring side effects and

peculiar cases involving interdependencies between the ei. The exact meaning

will be clarified in the subsequent section on the use of temporaries in

assignments.

The xi in the above must all be defined. The right-hand side, expr,

may be undefined, in which case the ei are all made undefined.

As a practical matter the map assignment is usually used in the special

case of a vector assignment. An assignment of the form:

{(l,el), (2,e2) (n, en)} = expr

may be abbreviated:

(el, e2, . . . , en) = expr.

Some of the ei may be absent, e.g.,

(x, , y) = expr

is essentially equivalent to:

y = expr(3)

x = expr(l

)
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Map assignments may be nested. For example,

((x, y), z) = expr

is essentially equivalent to:

z = expr(2)

(x, y) = expr(l)

which in turn is essentially equivalent to:

z = expr(2)

y = [expr(l)J(2)

x = [expr(l)](l).

Although permitted, assignments involving nested maps that are not vectors

would seldom be used, because they are rather intricate. For example,

the above nested vector assignment could be written:

{(1, ftl.x), (2,y)}), (2, z)> = expr.

The most frequent use of map assignments is the use of vector assign-

ments to group related quantities, analogously to the PL/I structure declaration.

Of course in ASL the grouping is done at execution time, whereas in PL/I

it is static.

As another example of vector assignments, after

(, a, b, (c,d), e) = (1,2, 3,(4, ), (5, 6), 7)

we have a = 2, b = 3, c = 4, d is undefined, and e = (5, 6).

Function assignments and map assignments may be combined, as

illustrated by:

(x, y, z)(i) = expr.

Here either x, y, or z receives a new value, depending on whether i is 1,
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2, or 3, respectively. It might seem that this would cause the vector

(x, y, z) to be constructed and stored in a temporary, modified, and the

result left in the temporary. However, this does not happen. As explained

in the subsequent section on use of temporaries in assignments, the above

is essentially equivalent to:

t = (x, y, z)

t(i) = expr

(x, y, z) = t.

Hence the assignment IF c THEN x ELSE y = z; may be coded:

(x,y)(IF c THEN 1 ELSE 2) = z;

or:

{(TRUE.x), (FALSE, y)}(c) = z.

The latter expands as follows:

t = MAKEMAP{(TRUE,x), (FALSE, y)}

t(c) = z

{(TRUE.x), (FALSE, y)} = t.

The last line further expands into x = t(TRUE); y = t(FALSE). The MAKEMAP

predefined function converts its argument, which must be a set, to a map,

by deleting all non-pairs. It is necessary to introduce this because either

x or y may be initially undefined, and we must assure that t is a map for

the assignment t(c) = z to be valid. The MAKEMAP function is not necessary

in the case of vector assignments because the (right-hand) evaluation of, for

example, (x, y, z) with y undefined, is {(1, x), (3, z)}-, and not [(I, x), (2, ), (3, z)}.
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The MAKEMAP function is sometimes used in ASL source code for the

same purpose.

For the assignment f(x) = expr, ASL does not introduce the MAKEMAP

function. This is because in most cases it would be a waste of time, and

some program errors would be missed.

Although one could give meaning to assignments such as:

(a, b) £ (c, d) = expr

{(a,b)} U f(c,d)} = expr,

they are not permitted in ASL. This is mainly because they do not seem to

be of significant value.

5. 2. 2 Multiple Assignments

The multiple assignment is written

el = e2 = . . . = en = expr,

where the ei are value receiving expressions. This is essentially equivalent

to:

t = expr
en - t

e2 = t

el = t.

However, expressions within the ei are evaluated before the right-hand side

(in left to right order).

Parsing of assignments is complicated by the fact that the = sign has

two precedences. The situation is similar to that existing in PL/I, but worse
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because of the existence of multiple assignments. Some examples follow.

ASL Statement Meaning

a = b = c = d a-«-b^-c«-d

(a = b = c = d) a-»-b<-c-<-d

a = (b = c = d) a*-(b = c = d)

(a = b = c) = d invalid (like "1 = d")

a = (b = c) = d invalid

a = b = (c = d) a-.—b-«-(c = d)

All the left-hand sides of a multiple assignment are done "simultaneously'

when possible. For example, an assignment such as

a(i) = i = 2

sets a(i) = 2 using the old value of i, and sets i = 2. The assignment i = a(i)

= 2 does the same thing. The order of assignment is only important in the

case of sinister calls with side effects. For example, in

f(x) = g(y) = expr,

procedure g is invoked first, then f.
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5.2.3 Use of Temporaries in Assignments

The use of temporaries in assignments and other value receiving

contexts is similar to that discussed in section 4. 10. 2 for value producing

expressions. However, a final step is necessary so that an assignment

will in fact be done. An assignment is evaluated as follows:

1. Set temporaries for all variables appearing on both sides of the

assignment.

2. Perform the assignment in terms of the temporaries. As for

expressions in general, the order of tree traversal is left-right-

top, and the assignment operation is of course at the top.

3. Append reversed assignments, in the reverse order, for all

temporaries used in the value receiving (left-hand side) portion

of the expression, omitting those that are obviously invalid

(e. g. , tl + t2 = t3, 2 = tl, etc. ).

For example, consider the simple assignment

x = y

where x and y are variables. This becomes:

tl = x

t2 = y
tl = t2

x = tl

This can be simplified by recognizing that the first assignment is an assign-

ment to a dead variable and hence can be omitted. The variable y can be

propagated to the third assignment and from there to the fourth. This makes

the second and third assignments assignments to dead variables, and hence

expendable. The final result is simply "x = y", and hence in this case

the introduction of temporaries was superfluous.
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Now consider:

This is defined to mean:

f(x) = y.

tl = f

t2 = x
t3 = y
tl(t2) = t3

IF SET(tl) THEN f = tl ELSE x = t2

(see section 4. 2. 5 for the meaning of tl(t2) = t3). If f is a map (array, etc. ),

then the variables x and y may be propagated forward, giving:

tl = f

tl(x) = y
f = tl.

This sequence is of the form tl = f; modify tl; f = tl; and hence may be

simplified to f(x) = y. Again, the temporaries have no net effect.

If f is a procedure, then it presumably changes its argument when

invoked in a sinister call, but it may also change f (assuming f is a variable),

x, and y through external linkage. In this case the three temporaries have

some effect. The use of tl saves f for the subsequent test. The use of t2

clearly identifies which value is finally assigned to x if it is altered both

by its appearance as an argument and by external linkage (its appearance as

an argument takes precedence). The use of t3 clearly indicates what value of

the right-hand side is used by f even if f changes y through external linkage

(in some language f might be invoked and allowed to run until it needs y,

and then y would be evaluated. This would be a "sinister call by name").
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Similar remarks apply to the dexter procedure call y = f(x) if f can

change y, f, and x through external linkage.

Now consider the assignment:

f(g(x)) = y.

This expands as follows:

tl = f tl(t5) = t4

t2 = g IF SET(tl) THEN f = tl ELSE DO
t3 = x t2(t3) = t5

t4 = y IF SET(t2) THEN g = t2 ELSE x = t3

t5 = t2(t3) END

If f and g are maps (itemized), then the expansion simplifies to t5 = g(x);

f(t5) = y; which is conventional.

In the general case, where f and g may be procedures with side

effects, the above expansion cannot be simplified significantly. This is

because the first reference to t2(t3) (i.e., to g(x)) may alter f, g, x, and y,

and hence all four temporaries may be needed. However, if we assume

that f and g are side effect free, or rather that they can't change certain

of the four variables, then the above simplifies to:

t5 = g(x)

f(t5) = y
g(x) = t5.

This is because the full expansion does not alter tl or t2 in this case, and

the assignment g(x) = t5 alters x in the same way that the sequence t3 = x;

g(t3) = t5; x = t3; does. This simplified expansion is precisely that given

in section 4. 2. 6, Sinister Composition of Functions, and the utility of the

last step (g(x) = t5) is discussed there. In section 4. 2. 6 this result is
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ecomes:



Note that distinct temporaries must be used for the two occurrences

of i on the left-hand side. However, identical variables occurring on the

right-hand side need not have distinct temporaries.

The notion of simultaneous assignment breaks down if the same var-

iable receives different values in the same assignment, for example in

(i, i) = (2, 3). As pointed out above, in ASL the leftmost assignment

takes effect. In spite of this rather unavoidable breakdown, the use of

temporaries makes ASL closer to the intuitive idea of simultaneous assign-

ment than it would otherwise be.

In the expansion of f(x) = y, one might possibly expect an assignment

that pre-evaluates the left-hand side, as follows:

tl = f *t4 = tl(t2)

t2 = x tl(t2) = t3

t3 = y IF SET(tl) THEN f = tl ELSE x = t2

However, the assignment t4 = tl(t2) (indicated by *) is not included, as it

is usually superfluous and would, counter to intuition, invoke f in a dexter

call for this case.

The general rule is that in the assignment e-r = e R , if e-r is of the

form el(e2), we do not assign a temporary to this outermost operation el(e2).

However, expressions within el and e2 are pre-evaluated and stored in

temporaries. If e, is of the form (el, e2, . . . , en), we go further and do

not assign a temporary to (el, e2, . . . , en), and then (recursively) consider

el, e2, . . . , en to be outermost operations. Map assignments in general

are handled similarly to vector assignments.
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As an example of this rule, the assignment

(x, f(x), (y, g(h(z)))) = v

expands as:

tl = x tl = t8(l)

t2 = f t2(t3) = t8(2)

t3 = x (t4, t5(t9)) = t8(3)

t4 = y IF SET(t5) THEN g = t5 ELSE DO
t5 = g t6(t7) = t9

t6 = h IF SET(t6) THEN h = t6 ELSE z = t7

t7 = z END
t8 = v y = t4

t9 = t6(t7) IF SET(t2) THEN f = t2 ELSE x = t3

x = tl

The vector assignment above must be further expanded in the usual way.

Multiple assignments are handled similarly to vector assignments.

For example,

a(i) = i = 2

expands as:

tl = a t3 = 2

t2 = i tl(t2) = 2

t3 = i i = t3

IF SET(tl) THEN a = tl ELSE i = t2

In summary, the use of temporaries elevates the level of ASL by

bringing it closer to one's intuition with respect to:

1. Parallel evaluation of expressions (section 4. 10.2)

2. Pseudo bound variables (section 4. 10.2)

3. Sinister composition of functions

4. Map and multiple assignments
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In addition, a few optimization possibilities are introduced. One is that

expressions are more likely to qualify for parallel computations on a machine

of suitable architecture (such as the System/360 Model 195). Another related

one is that expressions are more likely to be reorderable, as was pointed

out in section 4. 9. 2. Consider also the evaluation of

[x, Vx£ S I f(x) = a + 1}

where f is a procedure and a has the SHARED attribute. Because of the

ASL use of temporaries, an optimizer can factor out the expression a + 1

from the loop, even without any knowledge of f. Without temporaries, f

could possibly change a on each iteration, preventing the optimization.
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5 13 GO TO Statement

The GO TO statement is written either GO TO s, or GO s, or

TO s, where s is a positive integer expression. Control then transfers

to statement number s, which is called the "target" of the GO TO.

It is recognized now that this statement introduces some of the

worst problems in a programming language. If it is attempted to min-

imize the restrictions on the target of a GO TO, the language designer

must make some rather arbitrary decisions regarding the meaning of

a GO TO in a recursive environment. The language implementor may

have to provide for abruptly altering the program's "environment" in

a way that can only be determined at run time. The optimizer must

assume worst case upon encountering a transfer in which little or nothing

is known about the target. Perhaps worst off of all is the program

reader, who must be aware that the side effects of a GO TO may cause

practically all of the variables to change in value (due to a change in

recursion level). More commonly, he is given a program whose flow

of control is so intricate he can hardly flowchart it, let alone understand

it.

Consideration was given to not having a GO TO statement, forcing

ASL procedures to be highly structured in blocks that are always entered

at the top and exit at the bottom. Until that programming style is more

widely accepted, however, ASL employs the compromise of having a
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restricted, and relatively simple, GO TO.

The GO TO is restricted in two ways:

(1) the target must be in the procedure containing the GO TO, and

(2) a statement group or a loop can only be entered at the top.

The first restriction helps in the top-down study of a program.

When one encounters a reference to a procedure, one knows immediately

that the procedure is certain to return to the point of invocation (or

terminate). Thus one can follow the flow of a program precisely without

having a detailed understanding of the procedures it calls. This restriction

also helps readability by keeping a procedure more self-contained.

Because ASL does not have the "begin „ . . end" type of environment

stacking, the first restriction implies that the GO TO is only a simple

transfer of control without environment altering side effects. Thus it

is natural to define the GO TO in a recursive environment as meaning

nothing more complicated than it means in a non- recursive environment.

The second restriction, that statement groups and loops can be

entered at the top only, is primarily aimed at reducing the occurrences

of the spaghetti bowl structures that one encounters from time to time.

The main point is to eliminate the branch into the middle of a loop or a

THEN clause, for example, from the outside. This type of branch is

fairly easy to give up, and giving it up will go a long way toward encour-

aging the coding of programs with a more fathomable structure.

The second restriction applies even if the loop is "hand coded"
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using IF's and GO TO's. Thus the equivalence between the ASL iteration

and its unraveling (which is given in section 6. 5) is strictly maintained.

This restriction is enforceable only with a fairly sophisticated compiler.

The second restriction is also intended to simplify and enhance

the possibilities of global optimization of ASL procedures. For example,

a well-formed ASL procedure is completely reducible without node

splitting, in the sense of optimizers that use the concepts of the interval

and the derived graph. In fact, the ASL restriction is stronger than

necessary to prevent the necessity for node splitting, as illustrated

by the graph (a) below. This structure is outlawed, although it is

reducible without node splitting.

It might be reasonable to relax restriction (2) slightly by requiring

only that every loop or group have exactly one entry. This is sometimes

convenient, as illustrated by case (b) below, which is topologically

equivalent to (c), and readability is probably only slightly impaired.

However, an optimizer would then have trouble with case (d)„ Here

node A ends with a "GO TO v", and the optimizer has no idea what

values v may have„ The optimizer would then have to assume that the

loop could be entered at any point, nullifying many opportunities for

optimizing the loop. Hence, for the sake of optimization (and partly for

readability), ASL requires that loops be entered at a readily identifiable

point.
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(a) (b) (c) (d)

The ASL GO TO still introduces optimization problems when the

possible targets are not obvious, even though the GO TO restrictions

make these problems much less than they would otherwise be. The

problems may be made still less severe by some feature of the elaborations,

such as listing all the possible targets of a variable GO TO, It does seem

worthwhile to allow a general integer expression for the " s" in "GO TO s",

however, rather than to adopt the FORTRAN approach of having two

particular forms of variable GO TO's (the "assigned" and "computed"

GO TO's).

Some sample GO TO statements:

GO BACK

GO TO (LI, L2, L3)(i)

GO TO {('a', LI), ('l',L2), (' +', L3)}(char)
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6. 3 IF Header

The IF statement has the general form:

IF condl, match 1; . . . ; condn, matchn;

THEN (stmtl actl; ...; stmtmactm;) ELSE else_stmt

Here "condi" is a conditional expression (which must evaluate to a

TRUE or FALSE result), "matchi" is a self-defining Boolean vector or a

self-defining character string containing only the letters T, F, blank, and

period, "stmti" is a statement (or statement group), and "acti" is a Boolean

string or a character string containing only the letters X and blank.

This format is chosen to allow a form that closely resembles decision

tables, such as:

IF xe R,



The resulting set of vectors can be regarded as a matrix. The columns

of the matrix, which are called "rules", are examined in left-to-right order,

starting with column 1. Each column is matched with the conditional ex-

pressions, taking the components in top-down order. If a component in

a column is undefined, then the corresponding conditional expression is

not examined. If the component is defined, then the conditional expression

is evaluated, if necessary, and compared to the match component. If they

are equal, the next component in the rule is tested. If they are not equal,

then the current rule does not apply, and the next rule is tested.

The unraveling of the IF statement is shown below.

tmatchl = MAKEBOOL(matchl)

tmatchn = MAKEBOOL(matchn)
tcond 1 = tcond2 = . . . = tcondn =

;

1 < VJ < MAX (HI tmatchl HI tmatchn) DO
IF 3tmatchl(j) THEN (IF -,3tcondl THEN tcondl = condl

IF tcondl t tmatchl (j) THEN CONTINUE Vj

)

IF 3tmatchn(j) THEN (IF -, Jtcondn THEN tcondn = condn
IF tcondn 4 tmatchn(j) THEN CONTINUE Vj)

"Got a match on column j.
"

IF actl(j) = 'X' THEN stmtl

IF actm(j) = 'X' THEN stmtm
GO out

END Vj

else_stmt
out:

;

The match matrix (or "condition entry") must uniquely identify the

rule that applies. This restriction is imposed to improve the readability

of programs. It also simplifies the application of optimizations that depend
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upon permuting the columns of the decision table. That is, two columns

may be interchanged provided the order of evaluating the conditions is not

altered, but it is not necessary to determine whether or not the two columns

might in some cases both apply.

Whether or not this rule is observed cannot be determined from the

match vectors alone. For example, the following is valid:

IF x > 0, «T '

x < 0, T"

THEN . . .

Hence the compiler cannot always tell whether or not the unique rule restric-

tion is observed. For this reason and for the sake of run-time efficiency,

the action of the program is left unspecified if the unique rule restriction

is violated.

The reasons for specifying that the conditional expressions cannot

in general be pre-evaluated, and must instead be evaluated as needed, are

the same as the reasons for the left-to-right evaluation of Boolean expressions:

(1) to allow the programmer to gain efficiency by placing lengthy but frequently

not required expressions near the end of the list, and (2) (more importantly)

to allow decision tables such as the following:

IF 3x, 'FTT'
f(x)> 0, FT'

THEN ... 'X •

A match vector and its preceding comma may be omitted, in which

case a vector of all T's is assumed. Similarly, if there is only one "action"

statement, then its action vector may be omitted, in which case a vector
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of all X's is assumed. The ELSE clause is also optional. Thus the following

are valid IF statements:

(1) IF 3x; x> 0; cl(x), 'TTFF'

c2(x), 'TFTF'
THEN (y = x; 'X X'

z = x; ' XX '

)

(2) IF c THEN si ELSE s2

(3) IF c THEN s

(4) IF c THEN; ELSE s

In case (4), a semicolon is required after the THEN, to denote a null

statement.

The ELSE clause is always matched with the innermost unmatched

IF (as in PL/I). Thus the statement:

IF cl THEN IF c2 THEN si ELSE s2

means:

and not:

IF cl, 'TT 1

c2, 'TF'

THEN (si; 'X '

s2; X')

IF cl, 'TF'

c2, 'T '

THEN (si; 'X '

s2; ' X').

The latter interpretation results from:

IF cl THEN IF c2 THEN si ELSE; ELSE s2.

Like simple IF statements, decision table IF statements may also

be nested. However, the resulting constructions are even more grotesque
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than nested simple IF statements. Below is an example.

IF cl, "TTF 1

c2, 'FTF'
THEN (IF c3, 'TF'

c4, 'F '

THEN (si; 'X '

s2; " X'); 'X X 1

s3; 'XX •)

Such nesting may always be removed. For example, the decision table

above is logically equivalent to the one below, but in the absense of an

optimizing compiler, the one below would probably be slower in execution.

IF cl, 'TTTFF'
c2, 'FFTFF'
c3, 'TF TF'
c4, 'F F '

THEN (si; 'X X '

s2; ' X X'

s3; 'XXX ')

222



6. 5 Iteration Header

ASL provides only one iterator, but it is of a general form that combines

the three SETL iterators and adds a few embellishments. Although this

section is oriented toward the iteration of statements, the same iterators

are used for statement repetition, the set former, and the vector former.

The overall syntax of a statement iteration is an iteration header followed

by either a single statement or a statement group. Parentheses around

the iteration header itself are optional, although there are cases where

parentheses are necessary around either the header or a single -statement

iterand, to correctly specify what is intended.

The general form of an iteration is:

STARTING stmt for-specification WHILE cond DOING stmt
2

stmt

3

This may be regarded as a sequence of five clauses. The first four

form the iteration header, and are independently optional. The last clause

(stmt3) is the iterand, and it is required to be present (although it may con-

sist of a null statement).

Any of the stmt's above may be either a single statement or a statement

group.

The overall approach taken in the ASL iterators is first of all that

the stepping variables are free variables: they are of significance outside

the iteration. This is often of use in search loops, and it seems to be

necessary in view of the fact that a stepping "variable" may actually be

any value receiving expression.
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On exit from an iteration, whether by a go to, quit, or fall-through,

the stepping expression is set at the last used value. If the loop is never

executed, the stepping expression is not changed from the value it had

before the iteration.

An attempt is made to give a reasonable interpretation to changing

the stepping variable and the range of an iteration, in the iterand. The

PL/I approach of first evaluating as much as possible outside the loop

is not adopted. That is regarded as a slight compromise in the expressivity

of a language for the sake of efficiency, and in ASL we opt for the expressivity.

Many of the cases where various expressions (such as the upper limit of

an incrementing variable) can be hoisted out of the loop will be recognized

by known optimization techniques. (It is an oversimplification to write off the

problem in this way, and the main reason ASL tends to opt for expressivity

rather than efficiency is simply that the intended uses of ASL are different

from those of PL/I).

6.5.1 STARTING Clause

Loop initialization statements are generally placed here. The word

STARTING is in most contexts merely a noise word that serves only to aid

the human reader.
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6. 5. 2 For -specification

The for- specification consists of a list of "for-items" separated by

commas. Each for-item is distinguished syntactically by the presence of

the V character, and has one of the following three forms:

1. Itemized iteration: Vx = list I C(x).

2. Counting iteration: Any of the twelve varieties of expressions

such as m ^Vx ^n I C(x), m> Vx^ n | C(x), Vx^ n
| C(x), etc.

3. Set iteration: Vx e S BY next I C(x).

In the above, x denotes any value receiving expression, m and n

are integer expressions, S is a set expression, C is a conditional expression,

and next is a function expression. The conditional expression and its

stroke symbol may be omitted if it is simply TRUE.

We will first discuss these three for-specifications without regard

for the conditional expressions.

6. 5. 2. 1 Itemized Iteration

In the itemized iteration, the "list" is a sequence of expressions

separated by commas. The ellipsis may be used. Some valid itemized

iterations:

Vi = 1, 2, 4, 8

Vi = 1, 3, . . ., 99, 100, 98, . . . , 2

Vx = 1, N+l, 'a', (l, 2, 3}

V(i, j,k) = (1, 1, 2), (1, 2, 1), (2, 1, 1)

Vi = 1, 2, ...
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The iteration "Vi = el, e2, . . . , en stmt", where the ellipsis is not

actually used, is essentially equivalent to:

i = el; stmt; i = e2; stmt; . . . ; i = en; stmt.

However, the generated code will actually correspond to:

k = 1; "k is a compiler temporary. "

i s elj TO b;

a(2): i = e2; TO b;

a(n): i = en;

b: stmt;

k = k + 1;

TO a(k);

a(n+l):

When the ellipsis is used, as in Vx = e(u), e(v), . . . , en stmt, where

u and v are numeric expressions, the iteration is equivalent to the rather

formidable expansion given below (we assume here that en is not of the form

e(w), and hence e and en must be numeric expressions. See section 4. 5. )

k = u

tv = v

d = tv - k

tl = e(k)

up = e(tv) - tl>

back: t2 = en

IF up & tl ^t2 n/ -up & tl> t2 THEN DO(
x = tl

stmt
next: IF up & x^tl v -.up & x <^tl THEN DO "advance."

k = k + d

tl = e(k)

IF up & x <tl v -.up & x> tl THEN GO back

ELSE TO next "(x was changed in stmt)."

END
ELSE DO "regress (x was backed up by stmt). "

k = k - d

tl = e(k)

TO next

END
)END
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If en is omitted, then so is the assignment t2 = en and the IF . . . THEN

header at the statement labeled "back".

When en is of the form e(w) (with w a numeric expression), the

expansion is simpler, mainly because changes to x within "stmt" are

ignored in this case (it would be hard to do otherwise, as e(u) is not nec-

essarily numeric). The expansion of Vx = e(u), e(v), . . . , e(w) is:

k = u

tv = V

d = tv - k

back: tw = w
IF d>0 & k^tw \s d < & k> tw THEN DO

x = e(k)

stmt
k = k + d

GO back
END

These "unravelings" are of course intended to point out such details

as the value of the stepping variable on exit from the loop, and the effect

of changing the stepping variable or the limit while iterating. The fact

that the stepping variable is not set if the loop is not executed is intentional,

as it is consistent with the straightforward treatment of nested iterations

(to be discussed), and -with the action of the set iteration (also to be dis-

cussed) when the set is empty.

Care should be taken if the itemized iteration with the ellipsis is

used, and the sequence is not monotonic. For example, the iterand is

never executed in:

Vi = (-i)**2, (0)**2 25.

However, it would be if the 25 were written (5)**2.
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6. 5. 2. 2 Counting Iteration

The counting iteration m <^Vx ^n, where m and n must be numeric

expressions, is equivalent to:

t = CEIL(m); Vx = t, t+1, . . . , n.

The form Vx> n is equivalent to:

t = FLOOR(n)+l; Vx = t, t+1, . . .

and similarly for the other forms.

The counting iterator is provided because when it can be used, it is

more concise and often easier to read than the corresponding itemized

iteration. This is particularly true when the starting value is a lengthy

expression. Compare, for example, 2*(m-n) ^Vi ^e with Vi = 2*(m-n)+0,

2*(m-n)+l, . . . e.

Because of the temporary t introduced, counting iteration has a

different meaning than the corresponding iteration of the form Vi = ej(m),

ei(n) e2 if the variables defining e^ change while iteration is in

progress.

6. 5. 2. 3 Set Iteration

The set iteration Vx fc S BY next stmt is equivalent to the following:

t = ;

back: t = next(t, S)

IF 3t THEN (x = t

stmt

t = x
GO back)
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Here "next" is a map on S which, when given a set S and a member

t£ S, produces the "next" member of the set. If t is not defined, "next"

produces the "first" member. If t is the "last" member, next has no value.

The map "next" may be either an itemized map or a procedure.

The "BY next" clause may be omitted. In this case, the predefined

procedure variable NEXT is used. This variable is initialized, at procedure

entry, to the "standard" set iterator. The ASL user may redefine NEXT

as an alternate means of specifying his own ordering over sets. However,

he is limited to the basic unraveling that has been given; it can only be

avoided by hand-coding the type of loop control desired. Changing the

value of NEXT would affect all set iterations in the procedure for which

no other user-supplied routine is given, including those in set formers, etc.

For general sets, the standard order is arbitrary (not specified).

If the set is an array, the order of iteration is lexicographic (last subscript

varying most rapidly) on the first component of each pair in the set. This

is referred to as the "natural" order. Vectors are handled similarly.

For a map, such as an array, vector, or string, the stepping var-

iable is a pair. Thus an expression such as "V(i, c) e- string" is common,

as one usually wants the components i and c separated. Some other forms

of iteration over itemized maps are:

V(i, *)f v Iterates over the domain of v.

V(*, r) e v Iterates over the range of v (with repetitions).

V((i, j, k), a) e. A One way to iterate over a three-dimensional

array.
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Set iteration is defined in such a way that both the stepping variable

and the set being iterated over maybe changed during the iteration.

However, the action of the standard routine NEXT is in these cases

not specified, except for certain special cases to be discussed below.

This is due in part to implementation difficulties and in part to the fact

that there does not seem to be a natural meaning of iteration in these

cases.

Consider the case of iterating over a general set (that is, a non-

array). Iteration is then defined to be a pass over the members in an

arbitrary order, which might not even be the same from one case to

the next over the same set. Iteration normally continues until all members

have been used exactly once.

An idea of the difficulties encountered can be obtained by considering

the following questions: (1) If a member has been used as the stepping

variable, and it is then deleted from and added to the set, should it be

used again? (2) Similarly, if a member has been used and a copy of it

is added to the set (which doesn't actually change the set), should it be

used again? (3) What is the meaning of changing the stepping variable

within the iterand? Does it mean to skip over or repeat a range of

members? Or should just the new value be skipped over, assuming it

is in the set? Or should the change be ignored?

In addition to the above implied difficulties, some representations

of sets can undergo drastic changes when a member is added or deleted.
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This complicates the design of an efficient "next" algorithm that can

tolerate such changes.

If the set is an array, the situation is different. In this case,

NEXT searches the new value of the set for the next member in lex-

icographic order, starting with the new value of the array's indexes.

As an example, the following iteration over a matrix has the effect

of "backing up" to rescan the current row from the beginning (assuming

it is one-origin):

V((i,j), m)e M[... j = 0; ...].

This has the unraveling:

t = ;

back: t = NEXT(t, M)
IF 3t THEN C((i,j), m) = t

• • # " vj f • I

t = ((i, j),m)

GO back]

To make a transformation on each member of a set, one cannot

in general write (for example) "Vx I S (x = x + 1)", or "Vxe S (x $. S;

(x+1) £ S)". These are valid expressions, but their meaning is not

defined when the standard "next" routine is used. One can accomplish

the transformation only by the more awkward "STARTING T =

Vx e S ((x+1) e T); S = T;".
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6. 5. 2. 4 For- specifications: Conditional Modifier

Any of the three forms of the for-specification can have a "con-

ditional modifier", or "such that" phrase appended on the right. This

is separated from the left part by the stroke symbol. For example:

Vx = a, b, c
|
(x-l)**2>

1 <Vi <N I f(i) =

V(i, c) £ string | c i h

The meaning of a specification such as "Vx& S BY next I cond

stmt" is:

t = ;

back: t = next(t, S)

IF 3t THEN (x = t

IF cond THEN stmt
t = x
GO back)

On exit from the iteration, the iteration variable x is set to the

last value obtained from S, which may not have actually been used in

the iterand. If S is null, then x is not changed; however if the iterand

is not executed because the condition is always false, then x is set to

the last value obtained from S.

It might seem better to move the assignments x = t and t = x into

the THEN clause of the IF cond. Then x would not be set unless it were

actually used in the iterand, and on exit it would indicate the last value

actually used. However, it is debatable which operation is preferable,

and the one given seems to be necessary in view of the fact that "cond"

232



may involve x or, worse yet, "parts" of x. This is illustrated by the

iteration over a matrix M which skips the main diagonal:

(V((i,j), x) 8 M I i i j) stmt;

which expands as:

t = ;

back: t = NEXT(t, M)
IF 3t THEN [((i,j),x) = t

IF i 4 j THEN stmt

t = ((i,j),x)

GO back]

6.5.3 WHILE Clause

The WHILE clause may be used to specify when an iteration is

to end. The statement "WHILE cond stmt" expands as:

back: IF cond THEN [stmt; GO back] ELSE GO out; out:

The reason for phrasing it in this way (with an apparently purposeless

ELSE clause) will be apparent in section 6. 5. 5 below.

6. 5. 4 DOING Clause

The DOING clause may be used to specify a block to be inserted

after the iterand. It provides a convenient way to make iteration con-

trolling steps clearly visible, by placing them in the iteration header.

The statement "DOING stmtj stmt2" expands as simply "stmt2

stmtj". It is useful in iterations such as "STARTING x = WHILE 3x

DOING x = f(x) statement".
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6. 5, 5 The Full Single Iteration

For the case of set iteration, the expansion of:

STARTING stmt Vx e S BY next I Cj WHILE C
2
DOING stmt

2
stmt,

is shown below.

stmti

t = ;

back: t = next(t, S)

IF 3t THEN DO
x = t

IF C THENt
IF C

2
THEN (stmt 3 stmt

2 )

ELSE GO out]

t = x
GO back
END

out: ;

Note the difference between C,, which causes skipping of members,

and C 2 , which causes loop termination.

The full expansions involving itemized iteration and counting

iteration are similar.

6. 5. 6 Multiple Iterations

An arbitrary number of single iterations can appear, separated

by commas, in the same iteration header. This creates a nested iter-

ation. The general form of a two-level nested iteration is:
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STARTING stmt for-specj WHILE Cj DOING atmt
2

STARTING stmt 3 for-spec
2
WHILE C 2 DOING stmt 4 stmt

5 ;

The expansion, using simple set iterators Vxj e Si and Vx
? £ S ? , is:

stmt i

ti = ;

backj: tj = NEXT(tj, S
2 )

'if 3tj then:
x

l = fc

i

IF C
l
THEN[

stmt o

*2 S
'

back2 : t
2

= NEXT(t
2 , S

2 )

IF Jt 2
THENC

x
2

- t
2

IF C 2 THEN (stmt
5 stmt4 )

ELSE GO out
2

t 2 =x 2
GO back2]

out2 : stmt-,]

ELSE GO out
l

tj = Xl
GO back^

out , : ;

If the iterand is never executed because, for example, one of the

set expressions S^ evaluates to the null set, then x^ through x^_j are

arbitrary members of S, through S- •, and the remaining x^ are not changed

by the iteration.

An iteration such as "VxeRIC , VyfcSlC
?
" is in general different

from "Vx g R, Vye SIC, &C 2
", because C j might be a function of y.

Only the itemized form of a for- specification allows a "multiple

iteration" that is not nested. That is, to step a single variable over two

ranges or over two sets, one cannot write "1 ^~Vi ^10, 20 ^TVi ^"30", or
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"Vxf Sj, VxeSV'. One must instead write something like "Vi=l, 2, ....

10, 20, 21, ..., 30" or Vx t S^U S
2

(if this is intended). The first expres-

sions are valid, but they won't do what is presumed to be intended. (Note

that in "Vxe S., Vx£.S
2
", NEXTfSj, x) will be invoked with x e S

2
rather

than Si. This is a valid construction, but the action of NEXT is unspecified

if x i Sj).

6. 5. 7 ITERATION Pseudo-function

It is sometimes desirable to have available a count of the number

of times an iteration has been done, even though the iteration may not be

of the counting type (see, for example, function p in section 4. 1.3. 2).

This may be obtained by using the ITERATION pseudo-function, which

avoids the petty details of initializing a counter, incrementing it, thinking

up a name for it, and commenting it.

The "argument" of the iteration pseudo-function is obtained from

either the for- specification or the WHILE specification of the iteration.

Any number of tokens, starting with the V or the word WHILE, may be used.

If the argument does not uniquely identify the iteration, the ITERATION

applies to the innermost one that matches. The argument may be omitted,

in which case it applies to the containing iteration. If the argument includes

parentheses or character string self defining values, they must be closed.

The ITERATION pseudo-function is only valid within an iteration

(for example, one cannot branch out of a loop and refer to ITERATION
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to see how many times the loop was executed). The for- specification con-

ditional, WHILE conditional, DOING statement, and the initial expressions

in a set former or vector former are all considered to be within the loop.

For example, the first 20 members of a set may be converted to a vector

by arbitrarily ordering the members by:

{(ITERATION, x), Vx e S WHILE ITERATION < 2 0}

(the simpler [x, Vx £ S WHILE ITERATION ^20] accomplishes the same

thing).
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6. 5. 8 Iteration Summary and Examples

General Form

STARTING stmt
x

for- specification WHILE cond DOING stmt 2 stmt
3

For- specifications

1. (Itemized) Vx = list
I
C(x)

2. (Counting) m ^Vi ^n | C(i), etc.

3. (Set) VxeS BY next I C(x)

Multiple Iterations

Vxg S, VyeP
VxfcSlCp m<Vi<nlc

2 ,
Vj = 3, 5, ..., 19

etc.

Uses of Iterators

1. Statement repetition: iterator statement

2. Set former: [expr, iterator}

3. Vector former: (expr, iterator)

4. Universal predicate: iterator:conditional

Examples

The set of the first 100 primes:

[p, STARTING k = lj Vp> 2 I [2 <Vi <p : REM(p,i) 4 0]

WHILE k <100 DOING k = k + 1}

The first Fibonacci numbers ^100:

{n, STARTING m = n = 1; WHILE n <100 DOING (n, m) = (m+n, n)}

238



9. Input /Output

Input/output in ASL is modeled after that of PL/I stream I/O.

The PL/I record I/O is not included because that is essentially the same

as reading or writing with A (alphanumeric) format, the main difference

being one of efficiency. No random access I/O capability (such as the

now-defunct PL/I SAVE and RESTORE statements, or a declaration

to the effect that a variable's values are to be disk resident) is provided,

because the highest level way to incorporate such a capability is via

paging or something similar. This is the highest level possible because

it requires absolutely no dictions to be coded into a program to obtain

its benefits, and of course this fact is largely the reason for its success.

What is needed in ASL is a way to communicate with the external

world, and for the present we concentrate exclusively on a narrow

aspect of that. We concentrate on the reading in of data that has been

prepared in advance of execution time, and the writing out of data so that

it can be printed or otherwise displayed for human consumption.

Our input activity is always computer-initiated; that is, we do

not yet address the problem of how to write programs that can be alerted

by "attention" signals, or converse with several terminals simultaneously,

or read instruments. These capabilities are very much needed in ASL

(to code prototype real time systems), but are best planned together

with multitasking capabilities, and that whole issue is being deferred.
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9. 1 Files

Files are referenced by a character string expression. The

value of the expression is the same as the name used for the file in

the job control language.

We think of the file as corresponding to an I/O device. The I/O

device is basically typewriter-like, although it is capable of handling a

few simple page-oriented functions such as starting a new page (on

output). The typewriter-to-computer connection consists, in principle,

only of a data path, which may be one character wide.

We defer the ASL design for dealing with control characters such

as backspace, line feed, delete, etc. , and assume that the typewriter

has only one control character: new-line (we consider "space" to be a

print character). However, the underlying I/O routines in some instal-

lations may employ such control characters. For example, they might

use horizontal tab for high-speed spacing, and overprinting to improve

the appearance of output (e. g. ,
printing the null set as zero, backspace,

slash). The point is that these control characters are not (at present)

explicitly available to the ASL programmer without going out of the

language.

The new-line character is used as follows. If the input device is

a typewriter (an uncommon case since reading is always computer-

initiated), depressing carrier return ('which is presumed to also cause

a line feed) inserts a new-line character into the data stream. This
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signals the computer that the line has been completely composed and

processing of it may begin. When cards are being read, the underlying

system routine inserts a new-line character into the input stream between

each two cards. There is no particular "record size" associated with

input or output; in ASL we prefer the term "line", and lines are of

varying and arbitrary length.

On output, the new-line character is normally inserted into the

output stream by explicit instructions in the ASL program. However, if

the program attempts to write a line that is too long for the device, then

a new line will be started at the appropriate point. Exactly how this is

accomplished depends on the I/O device, but in any case it is not a bur-

den on the ASL programmer.

There are several built-in procedures that may be used to reference

various file attributes and states. These are:

PAGESIZE(file) COLUMNNUM(file)
LINESIZE(file) ENDINFO(file)
PAGENUM(file) ERROR(file)
LINENUM( file)

PAGESIZE and LINESIZE return the maximum number of lines

and the maximum number of characters per line for the specified file.

These functions may be used in sinister mode to set the parameters,

PAGESIZE may only be used for output or unopened files (if not yet

opened, PAGESIZE causes it to be opened for output). If the file has

margins (ml, m2) (see below), then LINESIZE returns m2-ml + l.
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PAGENUM, LINENUM, and COLUMNNUM return the current

"cursor" position for the named file. The cursor position is the position

to be used for the next data character, except in the case that the last

character was printed in the last column, in which case COLUMNNUM

(file) is LINESIZE(file) + 1. The reason for this has to do with the meaning

of the CR (carrier return) control format item, which is used for over-

printing.

ENDINFO(file) may only be used for input files. It returns TRUE

if it was attempted to read past the end of information point, and FALSE

otherwise. If it is attempted to read a file that has reached the end of

information point, the data items are given the undefined state.

There is an ambiguity in the meaning of end of information that

may occasionally be troublesome. ENDINFO means the file is definitely

at the end; all characters have been read (or skipped over), and further-

more an attempt was made to read more data. If a file is unopened, or

positioned so that all that remains are blanks and comments, then

ENDINFO(file) is FALSE. This is because the following characters

may be read with A (alphanumeric) format. However, if the subsequent

READ operation uses simple (formatless) I/O, then the data items will

be made undefined, as for this type of READ there is no more information.

This operation will not normally be troublesome, as one normally tests

for end of information after a READ and before it is attempted to use any

of the data items.
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The ERROR function returns a very crude indication that some

sort of error occurred in a READ or WRITE operation. Its value is the

undefined state for a file that has not been opened (and it may be used

as a test for this condition), and otherwise is:

0: last READ or WRITE was normal

1: software error occurred

2: hardware error occurred

A "software error" results if the data did not agree with the format,

for either input or output. A "hardware error" is a parity error,

timeout, not-ready state, etc., which the I/O system is unable to cor-

rect. The precise state of the I/O device and software is not yet defined

for either of these errors (e.g., where is the cursor after a software

error? ),

The ERROR routine may be invoked in sinister mode, provided

the right-hand side is 0, 1, or 2. Also, if an I/O operation is attempted

while the file's error state is nonzero, the run is terminated. The

normal use of these properties is to allow checking for an error, pre-

sumably doing something about it, resetting the error status to zero,

and resuming I/O operations. On the other hand, a program that does

not check for errors will be terminated if one occurs, which is probably

desirable. One might set the error code to 1 or 2 for debugging reasons.

An alternative design in common use is to have the error routine

reset its status to zero when invoked (in a right-hand context). This
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design was not chosen for ASL because of a general distaste for side

effects. In ASL a program with the following structure will work:

IF ERROR(f) = 1 THEN DO . . . END

ELSE IF ERROR(f) = 2 THEN DO . . . END

This would not work with the side effect approach, because the first

call to ERROR would reset it to zero. Also, in ASL an optimizer may

factor calls to ERROR in cases such as the above.

There are four I/O statements: READ, WRITE, PAGE, and

FORMAT. The PAGE statement sets certain page formatting data

associated with the file. The other I/O statements have roughly the

PL/I - FORTRAN meaning.
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9. 2 PAGE Statement

The general form of the PAGE statement is:

PAGE FILE f MARGIN(ml, m2) AT nl stmtl ...

AT nn stmtnn

All clauses are optional. The file f is a character string expression.

Its default is the standard print unit, which is installation defined (e. g. ,

'SYSPRINT', or 'OUTPUT', etc. )„

The margins ml and m2 are positive integer expressions, with

ml <^m2, that give the left and right margins, respectively, for reading

or writing. On reading, data before character ml or after character

m2 on each line are ignored. On writing, ml - 1 blanks are inserted

at the beginning of each line, and a new line is begun if it is attempted

to write into column m2 + 1. The defaults for ml and m2 are installation

and device dependent. For example, they might be (1, 72) for the standard

input unit and (1, 130) for the standard output unit. (Column one is not

used for format control in ASL„ Hence, for some operating systems,

such as SCOPE, our "column 1" will actually be column 2 on the printer

but column 1 on the card punch. There is no way in ASL to directly

exploit this column 1 convention. )

The AT clauses are used to specify actions to be taken when the

specified line number is reached. For example, a page heading on the

standard output unit can be provided with the statement:

PAGE AT 1 WRITE 'HEADING' FORMAT(A).
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The ni must be distinct integers such that 1 ^ni <^PAGESIZE(f ), where

PAGESIZE(f) is the page size of the file for which the PAGE statement

applies. The AT statement, which may be a statement group, is executed

just before the character that causes the internal line counter to become

equal to n is acted on. A page-eject causes the AT- statements for all

passed-over lines to be executed, because page ejection is (conceptually)

executed as a series of new-line and blank characters.

The line number expressions ni are evaluated at the time of execution

of the PAGE statement.

The AT- statement, or statement group, may not contain a GO TO

out of the AT-group. It is executed as a parameterless subroutine in

which all variables are SHARED with the containing routine. The AT-

groups are enabled when the PAGE statement is executed, and are

disabled when the subroutine containing the PAGE statement returns

(at the recursion level in which the PAGE statement was executed).

After executing a PAGE statement, another procedure may be

invoked that performs some I/O operations. The AT-statements defined

back in the calling procedure then are executed when the appropriate

line numbers are reached. The AT-statements may alter various var-

iables including some that are shared with the procedure that initiated

the I/O operation. This is a situation similar to PL/I interrupts, with

its attendant optimization problems: an I/O statement may cause access

(set or use) of variables that are not explicitly given in the I/O statement.

However, the situation is not as bad as that in PL/I, because the flow of
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control is simpler: the AT-group can only return or terminate execution.

An AT-group may, however, be entered recursively, and it may

contain a PAGE statement To prevent every AT-group that initiates

I/O operations on the file being processed from becoming an infinite

recursion, the effect of the AT is suppressed until one data character

is transmitted, and it is then reinstated.

The information in a PAGE statement is stacked if a new PAGE

statement is executed for the same file after a procedure call or during

the processing of an AT-group. Upon return, the old PAGE information

becomes active. However, if two PAGE statements are executed by the

same procedure (at the same level of control), then the new information

completely erases and overrides the first. This is similar to the handling

of PL/I ON-units. After a procedure call, one can be sure that the PAGE

information has not been altered (except possibly by shared/external

linkage to variables mentioned in AT- statements).

Input data is assumed to be on one page (which might be very long).

Hence the AT- statements are of little utility here. However, they can be

used on input. For example, one can guard against an excessive amount

of input data without explicitly counting lines by means of:

PAGE FILE INPUT AT 10000 STOP.

The statement "PAGE" causes defaults to apply, i. e. , the file is

the standard print unit, the margins are the implementation-defined

defaults for it, and no AT-groups are effective.
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9. 3 READ and WRITE Statements

ASL has three modes of I/O, which are called simple, name, and

format directed (these correspond to the PL/I LIST, DATA, and EDIT

directed). The general forms of the READ and WRITE statements are:

READ [data list]
FILE f

STRING cl

COPY g
COPY STRING d.

[POSITION(control format list)] [
NAMES 1.
[FORMAT (format list)J

WRITE [data list] 1"^^ * [POSITION(control format list)]
Lo I RUNG c J

NAMES 1

FORMAT(format list)] '

The data list is a sequence of expressions separated by commas.

For the READ statement, they must be value receiving expressions.

The data list is optional. If absent then presumably the POSITION

specification would be given, otherwise the READ or WRITE is a no-operation.

The data list must be written immediately after the word READ or

WRITE. It should not be in parentheses unless the intent is to assign to,

or write out, a vector.

Within the context of a READ or WRITE statement, the words

FILE, STRING, COPY, POSITION, NAMES, and FORMAT are reserved

words.
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The brackets in the above general forms denote optional material.

For items written one above the other, at most one may be selected.

The file to be read or written is given by f, which is a character

string expression. This expression (and all others in the READ or

WRITE statement) is evaluated each time the statement is executed.

The FILE specification may be omitted; the default is the standard input

unit for READ and the standard output unit for WRITE.

STRING c may be specified, rather than FILE f. If STRING is

specified, no input/output operation takes place. Instead, character

string c takes the place of the file. For READ. .. STRING c, c must

be a character string expression. The I/O routines then treat c as if

it were text from the input medium. Characters from c are extracted

and converted, according to the format if one is given. The resulting

data items are assigned to the value receiving expressions in the data

list, as in a READ. . . FILE operation. String c may contain new-line

characters, which are treated in the normal way (skipped over).

For WRITE. .. STRING c, c must be a value receiving expression.

The data list is converted to a character string as it would be if FILE

were specified, but the resulting character string is assigned to c.

If the format specifies that more than one line is to be written, then c

will contain embedded new-line characters. If no new line is explicitly

specified in a format list (or POSITION specification), then c will not

contain any new-line characters, no matter how long the string is (unless
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of course a data item is a source of a new-line character).

COPY provides a convenient way to obtain a record of what was

read. It may only be used for READ operations. All characters from

the source file or string are transmitted to the named file or string,

a line at a time, including those skipped over with control format spec-

ifications such as X, LINE, etc. Data that is reread (by using the carrier

return control format item) is only copied once. If COPY is not specified,

no copying is done. If COPY is specified but the file g is omitted, then

the copying is done to the standard print unit. The statement READ FILE(f)

COPY STRING d assigns to d a string containing the input data up to the

next NL character. It is very similar to the PL/I READ FILE(f) INTO(d);

(record I/O).

The POSITION specification is used to specify control format

items, which are discussed below, to be acted on before data is read

or written. For example, POSITIONAL, X 10) causes an advance to

the next line (if not already at the beginning of a new line), and an in-

dentation of ten spaces. On input, characters skipped over are ignored.

On output, an NL character and ten blanks are supplied (the NL character

has no effect if the device is already positioned at the beginning of a line).

If there is only one control format item, it need not be enclosed in

parentheses, e.g., POSITION PAGE.

Data is read or written in the order given by the data list until

either the data list or the format list is exhausted, whichever occurs
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first. If neither NAMES nor FORMAT is given in a WRITE statement

(simple I/O), the current values of the expressions in the data list are

written out, separated by a single space. If NAMES is specified, then

each value is preceded by the expression that corresponds to it and

" = ", and followed by a semicolon and a space. For example, if x is

a certain character string and y is a certain integer, then WRITE x, y,

y+1 and WRITE x, y, y+1 NAMES give, respectively:

•abc 1 12 13

x = 'abc 1

; y = 12; y+1 = 13; .

FORMAT directed I/O is discussed below under the FORMAT statement.

On input, the format for simple and name I/O data is relaxed

somewhat. There can be any number of spaces, and one optional comma,

between items. Comments may also appear in the input stream, and they

are ignored (treated as a space).

For NAMES input, the data names in both the READ data list and

the input stream must be simple unsubscripted names. A sparse matrix

may be read in by representing it as a set. The READ continues until

all items in the data list have been assigned.
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9. 4 FORMAT Statement

The general form of a FORMAT statement is:

FORMAT(format list);

Normally this statement would have one or more labels, but it need not

have any. The FORMAT statement is non-executable. If control passes

to it, either by normal sequential flow or by a GO TO, it acts as a no-

operation. It may be located anywhere in a procedure.

The "format list" is a sequence of any of the following, separated

by commas:

item

n item

nfformat list)

Each "item" is a format item, as described below. The letter "n"

designates an arithmetic expression that is an iteration factor. It must

be separated from the format item by a delimiter, generally a blank or

a parenthesis. The iteration factor specifies that the associated format

item or list is to be used n successive times (as long as data remains

to be transmitted). The value of n must be an integer, and a zero or

negative factor specifies that the associated iteration factor is to be

skipped (the data list item will be associated with the next format item).

The iteration factor is evaluated once for each set of iterations.

There are three types of format items: control format items,
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data format items, and the remote format item. Control format items

specify the page, line, column, and spacing operations. The control

format items may be used in the list of a POSITION specification, as

well as in a format list. Data format items specify the external forms

that the data are to take. The remote format item allows format items

to be specified in a separate FORMAT statement, located elsewhere in

the procedure.

Control Format Items

The control format items are:

PAGE

LINE n

NL

CR

LF

C n

Start new page

Advance to line n

New line

Carrier return

Line feed

Column n

X n Space n

The PAGE and LINE format items apply only to output files. The

NL, CR, LF, C, and X format items apply to both input and output files.

The only control format items valid in the STRING form of a READ or

WRITE statement are the NL and X items.

In a format list, the control format items are executed as they are

encountered, just prior to data transmission. When the data list is
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exhausted, no further control format items are executed. The control

format items in a POSITION specification, however, are executed before

any data is transmitted, even if there is no data. Hence WRITE FORMAT

(PAGE) is a no-operation, but WRITE POSITION(PAGE) causes the

standard print unit to be positioned to the start of a page.

PAGE Format Item

This format item specifies that a new page is to be established.

It is valid only on output files. The first character after starting a new

page is printed at line 1 column 1. If the output unit is already positioned

at line 1 column 1, then PAGE has no effect (two PAGE's in a row do

not create a blank page).

LINE Format Item

The specification LINE n specifies the line number on an output

file on which the next data item is to be printed. After executing LINE

n, the file is positioned at line n column 1.

The expression n must be enclosed in parentheses if it is anything

other than a self-defining value or a subscripted variable (LINE x+1

would be parsed as (LINE x) + 1, which is invalid). For the LINE

specification to be valid, we must have n an integer such that 1 ^n^

PAGESIZE(f), where f is the applicable file.

If the file is already positioned at line n column 1, then LINE n
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has no effect. If the file is already positioned after line n column 1,

then it is repositioned to line n column 1 on the following page.

NL, CR, and LF Format Items

The NL format item causes the file to be positioned at column 1

of the following line; however, if it is already at column 1 then no action

takes place.

The CR format item causes the file to be positioned at the start

of the current line. For an output operation, subsequent characters will

overprint those already on the line, if the device is capable of doing this

(some displays, for example, are not). For an input operation, a line will

be reread. If the last character transmitted went to the rightmost position

on the line, then CR still does cause overprinting or rereading.

The LF format item causes the file to be positioned at the following

line, at the current column number. On input, characters skipped over are

ignored. On output, blanks are supplied. LF is equivalent to X (LINESIZE(f)),

where f is the applicable file.

C and X Format Items

The specification C n causes the file position to be advanced to column

n, unless it is already at that position. If n is less than the current column

number, then the position advances to the following line.

The specification X n causes the file position to be advanced by n

character positions. This may cause the position to be advanced by one or more

lines.
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For both C and X
f
blanks are supplied on output and characters passed

over on input are ignored. The new-line character is not counted on either

input or output.

The expression n must be enclosed in parentheses if it is anything

other than a self-defining value or a subscripted variable. The value of n

must be an integer. For X(n), we must have n ^ 0, and for C(n), we must have

1 <n ^LINESIZE(f), where f is the applicable file. For the X specification

n may be omitted, in which case 1 is assumed.

The X and NL format items are the only control format items that

may be used in the STRING form of a READ or WRITE statement.

Data Format Items

A data format item describes the external (character string) form of

a single data item. The data format items are:

N w Numeric, exact

N (w, d) Numeric, approximate, fixed point form

N (w, d, e) Numeric, approximate, exponential form

Al w Single symbol

Bl w Truth value
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A w Character string

B w Boolean string

G w General (data directed)

The data format items all have an optional field width w. This is a

nonnegative integer expression that specifies the number of character

positions on the I/O device (or STRING, for STRING I/O) to use for a

data item. No additional spaces or other punctuation is inserted between

items, in format directed I/O.

If the width w is zero on output, the format item and the associated

data item are skipped (this action differs from that of a zero repetition

factor, for which only the format item is skipped). On input, w may be

zero only for the S, V, A, and B format items, in which case the data

item is set equal to 0.

In all cases except A format on input, w may be omitted, in which case

a value appropriate for the data item is used. If w is omitted in an input

operation, the string is scanned for a non-blank, non-double-quote, character,

and this is taken to be the first character of the next data item. If a

double quote is encountered, the scan continues, skipping characters until

after a matching double quote. In other words, the input stream may contain

comments in format I/O when in scan mode.

The field width w and the d and e expressions are evaluated each

time the format item is used.
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N Format Item

There are three forms of the numeric data format item. On

output, an appropriate form must be used depending on whether the

data item is exact or approximate. Some examples of output follow,

where "a" denotes a blank.

N(5): aaA aO ^-123 A.-3/5 12/49
N(5, 2): aO. 00 aO. 12 -1.23

N(9, 3, 2): aO. 000E00 AO. 123E-1 -1.234E12

The numbers are always converted to or from decimal. On input,

the number may be anywhere in the field of width w. It may not contain

embedded blanks or commas. If the entire field is blank, it is treated as

an exact zero. If w is omitted, the read routine scans for a number.

The d and e fields are ignored on input; if the number is approximate it

must have a decimal point. Numbers to be read in are written in the

same form as a self-defining number in a program; see section 2. 2. 2. 1.

In addition, an exact rational may be entered as a ratio of integers, e.g.

3/2, -3E-3/27, etc.

On output, if the d and e parameters are omitted, then the data

item must be exact. Alternatively, it must be approximate. However,

a number that is approximate but is within the tolerance of an integer may

be written with the N(w) format.

258



The parameter d specifies the number of digits to print after the

decimal point, and e specifies the number of digits to print for the exponent

field. The parameters must satisfy d ^ 1, e^ 1 {if given), w^ d+2

for N(w, d), and w ^ d+e + 3 for N(w, d, e). This assures room for a decimal

point, a leading digit, and the letter E in the case of N(w, d, e).

Parameter e is interpreted as a minimum. If the exponent field, with

its sign if negative, does not fit within the e field, then e is effectively

incremented by one, with w and d remaining the same. This is repeated

until the exponent fits or the inequality w ^ d+e + 3 is violated. For

example, appropriate values printed with N(7, 1, 2) might print as

/U. 0E99 or 1. 0E100.

For a nonzero data item, the value of the exponent is always adjusted

so there is exactly one significant digit to the left of the decimal point. Hence

there are always d+1 significant digits printed.

The converted number is right-adjusted in the field of width w. If

w is too small, truncation occurs on the left, -with an * placed in the

leftmost position to indicate that truncation occurred (provided w > 0).

Al and Bl Format Items

The Al and Bl format items are used for input/output of single

symbols (characters) and truth values, respectively. Examples of output:

Al(3): ?/s,v

Bl(3): T/va F/v/v

Bl(5): TRUEa FALSE
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On input, we must have w > 1. For the Al format, the rightmost

character in the field is used, and the others are ignored. For the Bl

format, the field must contain a single T or F, or the words TRUE or

FALSE, located anywhere in the field. If w is omitted, the read

routine scans for a non-blank symbol. The data item is set equal to the

symbol for Al format. For Bl, the symbol must be T or F, and the

read routine skips over the next characters if they form TRUE or FALSE.

On output, if w is omitted then W=l is assumed. For the Al

format, the single symbol is left-adjusted in the field. For the Bl format,

if w < 5 a T or F is left-adjusted in the field. If w ^ 5 then TRUE or

FALSE is left-adjusted in the field.

Q Format Item

The Q format item is used for printing pointer values. It may

only be used for output or WRITE STRING. It would normally be used

only for debugging. Examples:

Q(7): A^03677 ^f3F78E

The value is right-adjusted in the field of width w. It consists of

an up arrow symbol followed by an installation-dependent representation

of the pointer value. This would typically be a machine address

printed in octal or hexadecirrri.
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If w is omitted, the value assumed for it is installation dependent.

If w is too small but nonzero, truncation occurs on the left with an * placed

in the leftmost position to indicate that truncation occurred.

P Format Item

The P format item is used for printing procedure values. It may

only be used for output or WRITE STRING. It would normally be used

for debugging. Examples:

P(6): MYPROC SORT^

The value is the procedure name, left adjusted in the field of width

w. Note that the procedure name does not uniquely identify the procedure,

because the ASL name scoping rules allow multiple procedures with the

same name.

If w is omitted, the value assumed for it is the number of characters

in the procedure name. If w is too small but nonzero, truncation occurs

on the right with an * placed in the rightmost position to indicate that

truncation has occurred.

S and V Format Items

The S and V format items are used for the input/output of sets

and vectors, respectively. Examples of output:
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S(10): 0aa^aaaaaa {'ABCD'}
/NA {1, 2, 3}A

V(10): ^aa/s^aaa ('ABCD',)a (1, 2, 3)a fu 2 )@3

The members of the set, or components of the vector, are in D

(data-defined) format, which is discussed below.

On input, if w=0 no characters are read, and the data item is

set equal to 0. Otherwise, if w is given, then exactly w characters are

read. This field must contain a set or vector written in the same

manner as the non-iterative set or vector self-defining value is

written in a program. The vector may be written with square brackets.

The null set may be written as either or { }, and the null vector as

0, (), or [ ] . However, " and "B cannot be used with S or V format.

If the width w is omitted, then the input stream is scanned for the first

non-blank character, which must be the beginning of a valid set or vector.

On output, the set or vector is left-adjusted in the field. If w is

too small, it is truncated on the right and the rightmost position is

made an *,

The S format may be used for vectors, character strings, etc.
,

and it causes them to be transmitted as sets. For example, after

x = "ABC
WRITE x FORMAT S

the item written is f(l,'A'), (2,'B'), (3,'C)} . Similarly, the V

format may be used for character strings and Boolean strings, and it

causes them to be transmitted as vectors. This applies to input, output,

and the STRING option.
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A and B Format Items

The A and B format items are used for input/output of character

strings and Boolean strings, respectively. Some examples of output

of strings of lengths 0, 2, and 3:

A(3): aa.a A/sa ABC
B(3): aaa Iaa 101

On input, if w=0 no characters are read, and the data item is set

equal to 0. For the A format, w must be given. Exactly w characters

are read, which may be anything in the data character set, and the

quote-doubling convention is not used. NL characters in the input

stream are skipped over, as always, and $o not form part of the string.

The resulting string is of length w.

For input under B(w) format, the w characters must consist of

a dense string of 0's and l's, which may be located anywhere in the

field. The resulting string length is the number of 0's and l's found,

which may be zero. For B format, w may be omitted, in which case the

input stream is scanned for the first non-blank character. This must

be a or 1, and scanning continues until a character other than or 1

is encountered.

On output, for B format the Boolean string is first converted to

a character string of 0's and Vs of the same length as the Boolean

string. Then, for either A or B format, the string is left -adjusted in
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the field and transmitted to the output stream. No indication of

truncation is given.

G Format Item

The G format item causes an item to be transmitted in the same

manner as in simple I/O except that a field width w may be given, and

no space or other punctuation is inserted between items. Examples of

output:

G(5): aa123 a 1. 23 1.4E9 ' ? 'aa TRUEa
*7700 SUBAA [1}AA (1, )A 'ABC 'll'B

On input, the string is scanned for an item, skipping over blanks and

comments. If the item is a single character or character string, it must

be delimited by single quote marks, with each internal quote mark

indicated by two single quote marks. Boolean strings must be written

with surrounding quotes and a suffix B, as in the example above. Numeric

data, sets, and vectors are written as they are in a program. Pointer

and procedure values may not be read in. The width w may be omitted,

but it is an error to have w ^ or to have w > with an entirely blank

field.

On output, the data item is converted to a character string, as

in simple I/O. For approximate numeric data, either fixed point or

exponential format is chosen, whichever shows more significant digits.
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There is a maximum number of significant digits that ever results,

which is implementation dependent. The maximum is used if w is omitted.

The left- or right-adjustment and truncation indication is provided,

as in the case of the other format items.

Remote (R) Format Item

The remote format item is written R n, or R(n), where n is an

integer expression for a line number of a FORMAT statement in the

procedure containing the R format item. The effect is the same as if

the referenced format list were inserted at the point of the R format

item. The expression n is evaluated each time the R format item is

encountered.

As a simple example of its use, suppose a data line or card

image contains a (or blank) or a 1 in column 1 to indicate which of

two formats to use for the following data item. Then the card could

be read as follows:

READ I, X FORMAT (NL, N 1, R(I + 1))

L: FORMAT (G)

FORMAT (A 71)

Here column 1 is read in, assigned to I, and used to select

either format L or L+l for the data item X. (This could also be

accomplished by reading column 1, testing it with an IF statement,

and then reading the rest of the line with either of two READ statements.
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This is possible because a READ does not necessarily advance the file

position by one line).

Matching Data Items to Format Items

Data items are matched with format items in the same way as in

PL/I. The first item is evaluated (if it is an output operation). The

format list is then scanned from left to right, executing any control

format items encountered. If a repetition factor is encountered, it is

evaluated and scanning continues as if the item or list replicated were

written repeatedly the specified number of times (i.e., 3(NL, A) acts

like NL A NL A NL A)„ When a data format item is encountered, the

data item is transmitted from the input stream, converted, and

assigned to the data item (READ) or converted and transmitted to the

output stream (WRITE). This continues until either the data list or the

format list is exhausted, whichever occurs first.

If the data list has two or more items and is enclosed in

parentheses, it becomes a single item (a vector).

Data lists may not have repetition terms such the DO specification:

of PL/I.
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Examples

Let v = ('a 1

, 13, TRUE). Then

WRITE v POSITION(NL) prints

WRITE v FORMAT(NL, G) prints

WRITE v(l), v(2), v(3) prints

FORMAT [NL, Al, N(3), Bl(6)]

WRITE v(l), v(2), v(3)

FORMAT CNL, 3 G]

WRITE v(l), v(2), v(3) prints

FORMAT CNL, 3(X, G)]

WRITE v(l), v(2), v(3) prints

FORMAT [3(NL, G)]

('a', 13, TRUE)

('a', 13, TRUE)

a 13 TRUE

prints 'a' 13TRUE

a 1 13 TRUE

13

TRUE

The PL/I:

PUT EDIT (X(I), Y(I) DO I = 1 TO 10) (10(COLUMN( 1), F, X, F))

may be coded in ASL:

(1 ^VI <10) WRITE X(I), Y(I) FORMAT(NL, N, X, N)

The statement READ I, A(I) will read in a value for I, and then use

that value for indexing A (if A is a map or is undefined) or for a sinister

call to A (if A is a procedure).
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1 3. Using the Compiler

1 3. 1 Input and Listing Control Commands

There are a few instructions that affect how the compiler reads

source text and prints the program listing. These are summarized

below.

MARGIN(i, j); For each line read from this point on, pass only

columns i through j to the compiler (with a new-line character
appended after column j), but print the whole line. The parameters
i and j are unsigned integer constants.

LISTING(ON); (or OFF) Enables or suppresses the listing of

the source text.

EJECT; Eject to a new page, if not already at the top of a page.

SKIP(n); Skip n lines (or to a new page if that comes first). The
parameter n is an unsigned integer constant.

INDENT(ON); (or OFF) When printing, adjust columns i through

j so that each statement starts on a new line, and indenting is used
to reflect the structure of blocks, IF's, explicit loops, etc.

OVERPRINT(ON); (or OFF) Use overprinting to more closely

approximate the ASL characters. For example, print -•= as 4,

NULL as (using the EBCDIC character set), etc.

LOWERCASE (ON); (or OFF) Change all non-keywords to lower
case before printing and before compiling (columns i through j only).

NEATER(ON); (or OFF) Same as INDENT + OVERPRINT,

268



1 5. Differences Between ASL and SETL

15.1 Summary

Considering the whole spectrum of computer languages, or even

limiting the view to the procedural algebraic languages, ASL is very

similar to SETL. The goals and intended users (professional programmers,

including mathematicians and analysts) are certainly the same.

The differences stem mainly from an increased emphasis on read-

ability, and a closer alignment to standard mathematical practice. By

"standard mathematical practice" I place more emphasis on the kind of

mathematics used in science and engineering, and less on that found in

a subject such as the algebraic theory of languages or the foundations

of mathematics, where deviations from conventional notations are more

apt to occur.

ASL pays more attention to numerical work than does SETL, although

this does not detract from its expressivity in non-numerical work. Although

non-numerical work is on the increase, relatively, I believe that computers

will be finding sines and cosines and inverting matrices for a long time to

come, and SETL ought to support numerical work at least to the extent

that PL/I does. This is necessary for prototyping many large programs,

such as command and control systems.

Another theme that leads to differences between ASL and SETL is

that an attempt has been made in ASL to keep the language simple and
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free of paradoxes. These will be mentioned below as they arise.

15.2 Syntax

The main change to the syntax is that ASL employs many more

symbols, there being 58 special characters in ASL and 26 in SETL.

This is an attempt to bring the notation closer to standard mathematics

and to improve readability. SETL suffers on both counts by using the

same symbol for different things much too often. For example, + in

SETL denotes addition of numbers, string and tuple concatenation, and

set union. ASL uses +, £, and U for these three quite distinct operations.

Employing a larger alphabet not only improves readability but also

enhances the possibilities for the optimization of minimizing run time

type checking by inferring data types. For example, after A = B + C,

one knows little about the data type of A in SETL. But in ASL it would

be known that A is numeric or a map (although it may be integral,

rational, or floating point). Furthermore, the amount of type checking

required is less in ASL, because each operation is valid for fewer data

types.

Besides these matters of readability and optimizability (which so often

seem to go hand in hand), the enriched syntax may affect the way one uses

the language. For example, ASL employs the symbols J5", R, and jl for

domain, range, and inverse. SETL has no such symbols; instead of ^S

one would write £x(l), x£ S}. Originally V, R, and-^ were suggested
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simply because these are very common operations in mathematics,

particularly & However, in my limited experience with ASL so far,

I find I use $ and $L even more often than I had anticipated. It seems

that just because they are there and are so easy to write, one thinks in

terms of them and uses them often. They probably should be given special

attention in the implementation. For example, in contexts where copying

is not required, 27 and R. could be almost as fast as #S (which, it is assumed,

merely retrieves a precalculated number) with a representation of func-

tions as follows. A function is a triple (D, C, R) where D is the

domain, R is the range, and C is a correspondence between members

of D and members of R. D and R could be stored as standard sets, for

example hash tables. C would then be a vector of integers that serve as

pointers into R' s hash table. To illustrate, the function f = -{(a, b), (c, d),

(e, f), (g, h)} might be stored as:

f:



The use of special characters in ASL is given in section 2. 1. 1.

We mention here a few of the main differences.

The SETL e_£, It, etc. is replaced by =, <C , etc. In ASL these can

be strung out, for example A <^ B ^C means A <C B & B ^C. The SETL

and , or , not is replaced by &, >• , -». ASL includes symbols for all the

nontrivial Boolean functions of two variables, e. g. ft for nand. The SETL

nl, nult , nulc , and nulb is replaced by 0, as these are all the same in ASL.

There is no symbol in ASL for the SETL A . To test for being undefined,

one writes 3x instead of x neJl . In ASL vector concatenation is written

vl £ v2, rather than vl + v2 (in both languages the same symbol is used

for vectors and strings, but in ASL there's a compelling reason: strings

are vectors). In ASL the origin of a vector may be shifted by the expression

v @ i. This has no counterpart in SETL. Both SETL and ASL denote

substrings by s(i:j). However, in ASL j denotes the upper limit, whereas

in SETL it denotes the length. The ASL way is consistent with the way

we code DO-loops and the mathematician's 2_i=m , and I think it is preferable

independently of this.

ASL writes set intersection as SlH S2, rather than the SETL S1*S2.

ASL includes the four set relations SIC S2, S 1 C. S2, etc. , whereas SETL

uses the symbols <C ^, etc. for these (there is for some reason also incs

in SETL).

The SETL iterators Vxe S and m S^Vi ^n are present in ASL, and

in ASL there is one that has no counterpart in SETL: the ellipsis. One
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writes, for example, Vi = 2, 4, 6, . . . . In ASL the V symbol is written

in the iterator of set and vector former expressions. SETL drops it in

these contexts and has no vector former of the iterative type. The SETL

vector former <x, y, z> is written (x, y, z) in ASL. Square brackets in ASL

are equivalent to parentheses; hence the vector may also be written

[x, y, z]. In SETL the brackets have special significance, and are used

only in t'.ie contexts f[S] and [op: xg S]e(x). The SETL notations f{x} and

f[S] are not present in ASL. The notation [op: x£ S]e(x) also has no

counterpart in ASL, but this situation should be rectified. Perhaps the

APL-like notation op/v, where v is a vector, would be reasonable for

ASL. By combining this with the vector former, one could write, for

example, +/[e(x), VxeS|C(x)].

ASL has the property that any value that can be calculated can also

be written as a self-defining value (or "constant"). SETL misses this

by the arbitrary exclusion of sparse tuples, i. e.
, <x,/l, z> is invalid in

SETL, but would be written (x, , z) in ASL. This kind of completeness

is convenient at times in ordinary coding, and is important when writing

programs that write other programs. It also allows the unification of the

syntax of self-defining values for programs and for data to be read in by

a program (which would presumably allow sparse vectors).

In ASL keywords are written in capitals, whereas in SETL they are

in lower case and many of them are underlined. Capitals were chosen to

make keypunched ASL close to published ASL. An algorithm reproduced
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from a computer printout can be published and it will look almost as good

as one that was typeset, but will be a little more believeable. This opinion

may be shortsighted, because small letters are gradually being used to a

greater extent in computing, and possibly before long virtually all data

entry devices and printers will handle them. But the underlining in SETL

strikes me as very unrealistic, like the bold face type of Algol.

In ASL statements are written without a terminating semicolon,

unless there is more than one on the same line. The end of a line is marked

by a character that is treated like a semicolon (it may be effectively cancelled

by preceding it with four periods).

Comments are written in ASL between quotation marks, e. g. ,

"comment", whereas in SETL it is /*comment*/. Comments should be

delimited by as few characters as possible, to encourage their use and

to improve appearance. ASL requires two characters for delimiting,

whereas SETL requires four, or six if you like a space separating the

delimiters from the comment. ASL has the disadvantage that by forgetting

a quotation mark the rest of the program is inverted with respect to what

is a comment and what is to be compiled, but I don't think this is a sig-

nificant objection. That's the kind of annoyance that happens once in a

while, and you correct it very quickly and easily. The same problem

exists with character string self-defining values in both languages.

The procedure headings in ASL are FUNCTION and OPERATOR;

in SETL they are "define" and "definef". The SETL "define" is used for
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subroutines and "definef" for functions and operators. ASL allows only-

binary user-defined operators, and allows the user the option of specifying

the precedence (which must be the same left and right). SETL allows

unary (prefix) and binary user-defined operators, and does not allow the

user to specify precedence. In SETL user-defined operators are denoted

by underlining, or a trailing period in any presently possible implementation.

The same notation is used for some built-in operators, e. g. abs , min . In

ASL user-defined operators are delimited by periods, e. g. .OP. , and

. + . , in both the "official" and (presumably) any implementation of the lan-

guage. No built-in operator is written this way (except in implementations

lacking a sufficient character set), and hence a reader knows immediately

whether an operator is built-in or user-defined. The reason ASL does

not allow user-defined prefix operators is that it is often hard to remember

whether something that is spelled out with letters was defined as a prefix

operator or as a function is it .OP. x or OP(x)? In SETL confusion

exists even with the built-in operators, as there is log x and sin(x). Also,

in ASL it is not necessary to put parentheses around a single argument;

sin(x) and sin x are equivalent (as is sin((x)), (sin) x, etc. ).

This brings us to the ASL use of parentheses. They denote grouping

only. Grouping expressions separated by commas is understood to denote

a vector. The notation (x) is the same as x as long as x is a single "ex-

pression". It is assumed that the parser will use the parentheses to force

the structure of the parse tree, but will not put any indication of the
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parentheses in the tree. This is of course done before statements are

recognized. Hence one could put parentheses around the word IF of an

IF statement, but one cannot write (IF x = y) THEN . . . , as this alters

the structure of the IF statement. SETL has a more conventional use

of parentheses, in which they must be put around the arguments of a

function reference, around a "while" header, and a few other places in

the language.

The ASL IF statement follows PL/I in that the THEN and ELSE

clauses are single statements or groups. The groups may be delimited

by DO. ..END, BEGIN. .. END, or by parentheses. The SETL "if" has

the "then" clause terminated by the word "else" if present, and the whole

"if" is terminated by an extra semicolon, or by "end;", or "end if;". This

in itself is not too bad, but I do find it a little unnatural to have an extra

semicolon when there's only one statement in the "then" or "else" clause.

Moreover it precludes the possibility of a null statement in the language,

which is sometimes convenient to have, particularly when a preprocessor

is involved (ASL allows the null statement). But the worst thing about the

SETL "if" is that it follows the Algol style, approximately (unlike Algol,

SETL allows "then if"). That is, if an "else if" appears, then only one

extra semicolon terminates the whole "if". For example, the statement

"if CI then a = b; else if C2 then c = d;;" is valid SETL. Now consider

how to write the PL/I

IF CI THEN A = B;

ELSE DO; IF C2 THEN C = D;

E = F;

END;
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This cannot be expressed in SETL without resorting to parentheses around

statements. The attempt "if CI then a = b; else if C2 then c = d; e = f;;"

fails because the "e = f" is under both CI and C2 rather than only CI, and

the attempt "if CI then a = b; else if C2 then c = d;; e = f;" fails because

the "e = f" is under neither CI nor C2. This is a very confusing situation

to encounter in practice. Although IF statements nested more deeply than

about two deep are confusing no matter how you write them, it is my feeling

that the block-oriented structure of PL/I and ASL is much more easily

fathomed than the strung-out structure of Algol and SETL.

Statement iterators are terminated by an extra semicolon in SETL,

but in ASL the iteration is understood to apply to a single statement or

statement group. A more significant syntactic difference is that SETL

has basically two iterators: the "while" and the "for all" loops. ASL

combines these into a single one (following PL/I) in which the "while"

and "for all" parts may both be present, e. g. 1 ^ Vi ^#S WHILE s(i) 4- h

DO . . . END scans a string s until either the end is reached or a blank

character is encountered. There are semantic differences between the

SETL and ASL iterators, which are discussed below.

In both ASL and SETL something has been done to raise the expressivity

of the language for complicated decision processes. SETL has the unique

"flow" statement. ASL suggests instead the use of decision tables, and

also includes a CASE statement. The flow statement is quite popular

with most programmers at NYU who have used it, but I find it not very
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appealing. To explain -why, I should first point out that there are two

ways to use the flow statement. One is to place the decisions and actions

directly in the flow tree, and the other is to refer to them indirectly using

labels. The trouble with the former is that one soon runs out of space

on a line, and one is limited to decision processes with only three or four

actions. For these the if-then-else is not too bad, and the flow statement

hardly seems worth having. The other style is to use labels. Usually

they are heavily used, and the flow statement was designed primarily with

this in mind. One can then code decision processes with typically eight

or ten decisions and five or six leaves on the tree, before running out of

space. The trouble with this is the indirectness itself: the coder is forced

to think up a lot of trite label names, and che reader has trouble following

through the tree and at the same time scanning the text below it to find

the decisions and actions.

Another problem with the flow statement, besides the indirectness

and the lack of room, is that many decision processes are simply not

tree-like. The flowchart joins together after spreading apart, for instance.

Or there may be a small number of "actions", but various combinations

of the actions are to be done in various cases. The flow statement does

not help at all in this situation. An attempt is made in SETL to make up

for the logical lack of expressivity by adding various gimmicks to the basic

flow statement. Thus one can place actions in amongst the nodes, including

a branch to another node in the tree, detail decisions with the subflow
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option, etc. But all this is insufficient: if used with restraint it is

inadequate, and if used freely one risks creating an unfathomable maze.

The decision table, on the other hand, is at its best when various

actions are to be executed in combinations according to the outcome of

the decisions. For sufficiently complicated situations, the decision table

is superior to a carefully drawn flowchart, complete with boxes and arrows.

Hence in these situations it is far superior to the flow statement, which

emulates the flow chart but is essentially restricted to a tree-like structure.

Good examples of decision tables may be found in Appendix I of the SCOPE

operating system manual. Here there are several tables describing the

action of certain low level I/O routines for operations on magnetic tape.

The decisions are recording format (standard binary, standard coded,

X binary, etc. ). The actions are to exit if insufficient room in the buffer

for the maximum size record, to read one record into PP memory, to

process end-of-file if applicable, etc. A few moments contemplation

of these decision tables reveals how superior they are to flowcharts.

By comparing columns one can readily grasp the similarities and differences

between the handling of the different tape formats. Reading across a

row reveals precisely for which formats a certain action is executed.

No flowchart does this.

With decision tables it is less often necessary to resort to indirectness,

as most of the line (and subsequent lines if necessary) is available for

coding each decision and action. It is also never necessary to code a decision

or an action more than once, unless order of execution is significant.
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The main trouble with decision tables is that they don't begin to

pay off until the logic gets very complicated. It is too much trouble to

study columns and rows when there are only three or four decisions and

actions. I think this is the main reason why decision tables have never

really caught on: in most fields of programming we seldom encounter

situations sufficiently complicated to require them. This includes numerical

work, compiler writing, combinatorics, etc. One field that does benefit

greatly from decision tables is I/O programming, both at the interrupt

processing level and at the higher level of buffer management, device

dependent actions, and possibly something like format-directed conversion

routines. I understand that another area is "business programming",

although I have no experience here. In fact, it is only in business pro-

gramming that decision tables have received significant attention.

On reflection it seems possible that decision tables are only useful

in "real world" problems, and not so much in programming with a more

mathematical flavor. I include I/O in the real world category, particularly

when it is device dependent. If it is true that decision tables are not useful

in problems with a "mathematical flavor", then they will never catch on

in a university. But it would be incorrect to conclude that they have no

place in SETL just because SETL has such a mathematical style. This

is because SETL is a general purpose language, and building a prototype

of an I/O interruption processor or an inventory management system is

within its intended range of application.
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Getting back to the flow statement, it is possible that there is a

gap between what is reasonable for the if-then-else and what is reasonable

for decision tables, that can be filled by the flow statement. If this is

the case, then I would suggest toning down the flow statement by omitting

the gimmicks referred to above.

Another syntactic difference between SETL and ASL is that in SETL

declarations follow the FORTRAN and Algol style, whereas in ASL they

follow the PL/I style. Declarations play a small role in both SETL and

ASL; they are found mostly in the "elaboration language". But the difference

I am getting at is that FORTRAN, Algol, and SETL encourage the grouping

of all variables with a given attribute, whereas PL/I and ASL encourage

the grouping of all the attributes associated with a given variable.

Contrast, for example,

INTEGER A, B DECLARE A(10) FIXED EXTERNAL;
DIMENSION A(I0), B(20) DECLARE B(20) FIXED EXTERNAL;
COMMON A, B

The PL/I style is, in my opinion, definitely superior, because it does

not force the reader to search through a large body of declarative material

to find all the declared attributes of a given variable. This is something

you want to know more often than, for example, all the integer variables

in a program. The PL/I style requires more writing, generally, but

this is not a serious objection, and it is minimized by factoring of attributes

(which ASL also allows), for example DECLARE (A(10), B(20)) FIXED

EXTERNAL.
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Some of the built-in operators and functions of SETL have been

omitted in ASL in the interest of simplicity. These are listed below,

with an indication of the ASL substitute.

SETL ASL

S with x SU(x|

S less x S - £x}

x in S; x e S;

x out S; x 4. S;

x from S

;

x = 3 S ; x 4- S

;

hd x x(l)

tlx x(2:)

dec , oct , bitr use "string" form of I/O

S lesf x {Vt £ S I t( 1 ) i x}

f[x] (p(2), Vp £ f
|
p(l) =x}

fCS] [p(2), Vps f
|
p(l)e S}

is no counterpart

There are a few features of SETL that have not been mentioned

for ASL but which would be available in the form of library routines.

This includes pow, npow, and compile . It is also suggested that ASL

be provided with a library of math routines similar to that of PL/I, so

that one has available ATAN(x), SINH(x), etc.
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15. 3 Data Types

A fundamental change is that ASL attempts to simplify the structure

of SETL by minimizing the number of distinct concepts in the language.

For example, the number of data types has been reduced, and the same

class of expressions may be used in any value receiving context.

The data types of both languages are:

SETL ASL

integer



annoying distinction between floating point and integers. On the other

hand one can, without difficulty, express approximate numerical cal-

culations in ASL and thereby avoid huge rationals by having the implemen-

tation employ (presumably) floating point.

In place of SETL's character strings and Boolean strings, ASL

has the single character and the single Boolean value. One forms strings

of these by forming dense, one-origin vectors of characters or bits.

This approach, which follows Algol 68, is done largely for aesthetic

reasons, but I think it also elevates the level of the language somewhat.

On the aesthetic side, it just makes sense that if one can have a string

of objects one ought to be able to have the objects themselves. SETL

is inconsistent in that the notation s(i) denotes the i'th component of s

if s is a tuple, but it denotes a substring (of length one) if s is a string.

Put another way, s(i) = s(i:l) for strings but not for tuples. On the

more practical side, consider the question "Does SETL allow sparse

strings?" That is, after s = 'abc\ is s(2) = fi a valid assignment?

If one searches the manual long enough and is lucky, he will find that

the answer is "no". This is an arbitrary restriction with no basis in

fundamentals; it is probably based on efficiency considerations. In

ASL, however, one would immediately know that the answer is "yes",

because strings are vectors, which are maps, and a map may have any

domain.
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In SETL one can create an n-tuple of character strings of length

one. Such an object behaves just like a character string for the purposes

of indexing and substring referencing, except that it may be sparse.

It occupies more space, but indexing it would be a faster operation on

some machines because of the lack of unpacking. Someone is sure to

discover this fact and write a program that deals -with n-tuples of char-

acters, and find that his program won't mesh with a part written by

someone else, or it is cluttered with conversions from one type of

object to the other. In ASL this type of difficulty is less likely to occur.

ASL does not have the label data type. Instead, labels are "declared

constants" whose values are line numbers (integers). This is done

merely to save a data type, and to avoid defining how labels print out,

whether or not they may be put in sets, what happens on recursion (does

their value somehow change, as in PL/I?), etc.

In place of SETL's subroutine and function data types, ASL has

only the procedure. ASL does not distinguish between subroutines and

functions by data type, and the operator-procedure may not be a data

value.

In place of SETL's blank atom ASL has the pointer data type.

This permits the straightforward description of algorithms involving

"control blocks", which is awkward to do in SETL. The pointer may

also be used as a blank atom: the SETL x = newat ; may be written x = 10;

(any expression whose value is defined could be used). It is possible

that ASL should have the blank atom as well as the pointer, merely to
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avoid this unnatural use of pointers.

An important difference between SETL and ASL is that in ASL the

tuple is not a distinct data type. A tuple (which is called a vector in

ASL) is regarded as a map from integers to other objects (the components),

and it is represented as a map, i. e. , a set of ordered pairs. This

change is suggested for a number of reasons. One is that it is simply

aesthetically appealing to be able to reduce all data structures to a single

data type. Of course one should give it up if it leads too far away from

what one would expect. This was the case in an early version of SETL,

in which the pair <x, y> was defined to be {[x] , {x, y}} , as is sometimes

done in mathematics (the n-tuple was defined as right-nested pairs,

i. e. ,
<x, y, z> = <x, <y, z>> , etc. ). However, this definition of a pair

was later rejected because it is not useful in helping one to think about

his data structures, it does not simplify the language beyond the fact

that it eliminates a data type, and it would be a nuisance to implement

the capability of being able to switch from one representation to another,

when this capability would practically never be used.

Furthermore, the above trick, found in studies of the foundations

of mathematics, does not reflect what a vector really is. What it is,

in my opinion, is a map from integers to arbitrary objects. If this is

in fact what it is, then it ought to be formally treated as such in a very

high level programming language.

The present SETL definition of a tuple as a distinct data type is

not too bad, but the ASL definition, a set of ordered pairs each of whose
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first component is a distinct integer, has the advantage that the set

operators automatically apply to vectors in an obvious way. The most

important is of course the selection of the image of x under f, denoted

by f(x). As another example, #v gives the number of defined components

in vector v. In SETL the # operator also applies to tuples as well as

sets, but through a separate definition. One must decide how it is to

work with sparse tuples, and in SETL #v is arbitrarily defined to be the

index of the highest defined component of v. ASL uses the unary function

HI(v) (highest index of v) for this, and also includes LI(v) and LENGTH(v),

all of which are absent in SETL.

An operation such as set union on vectors is not very useful in

coding, and in fact it might be regarded as strange and hence undesirable

that ASL allows it (SETL does not). However, it can be useful in matters

of definition. For example, vector concatenation is defined as vl £ v2 =

vl U (v2 @ HI(vl)+l). The @ operator causes "shifting" of the vector

so that the first component of v@i is numbered i. The above definition

concisely shows exactly how concatenation works with vectors that are

other than one-origin.

This brings us to another difference between SETL and ASL. In

SETL tuples may only be one-origin. However, since they can be sparse,

it might be said to allow i-origin for i ^ 1. But it was not really intended

to have tuples of other than one-origin, and the others are not supported

to any extent. For example, LI(v) is missing, concatenation with an
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i-origin vector on the right works in a way that implies that it is really

one-origin (exactly i- 1 undefined slots are left between the two parts

of the result), and an i-origin vector is printed with i- 1 "undefined"

indications at the beginning. In ASL a vector may be i-origin for any

integer i (quite possibly subject to an implementation restriction, such

as lit <2 32
). This capability is found in PL/I and Algol, and I think

it is used often enough to justify its existence, particularly zero-origin.

In ASL one may have arbitrary-origin and sparse character strings

and Boolean strings (although strictly speaking they are not called "strings"),

features that are absent from PL/I and Algol.

Since in ASL the character string and Boolean string are vectors

of single characters and single bits, set operations such as f(x) and #x

automatically apply to these objects in an obvious way. In SETL they

require a separate definition.

In SETL one may of course have a set of pairs whose first components

are distinct integers. Such an object is called a "sequence", and it

behaves very similarly to a tuple. So similarly, in fact, that it may

be a disadvantage to have two such similar objects, because it presents

an opportunity for programs to fail to operate together.

ASL formally recognizes the "array", whereas SETL does not.

An array is a map whose domain consists of equal-length regular vectors

of integers. An array is not a distinct data type in ASL; it is merely

recognized in that there is a declaration to that effect in the elaboration
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language, they are iterated over in a certain order, a few built-in operators

apply to arrays but not to maps in general, and they would be stored

in the usual way in which the indexes are not explicitly stored, in a

substantial implementation. In ASL the matrix, vector, and string are

in the same category as the array, in that they are all merely formally

recognized sets of a certain structure, rather than distinct data types.

15.4 Expressions

15. 4. 1 Built-in Operators

In ASL several of the built-in operators are extended to apply to

maps of certain types. Standard mathematical practice is usually followed,

although it is generalized slightly. For example, it is usual practice

to define the sum of two vectors or matrices to be the sum of their

corresponding components, provided the extents are the same. In ASL

we generalize this slightly by permitting maps in general to be added,

provided their domains are the same. Addition is then applied recursively

to the corresponding members in the range of the maps; hence one can

add arrays of vectors, etc. , provided the domains match up correctly.

Multiplication of a map by a scalar follows the usual mathematical

practice. For vector and matrix multiplication ASL uses the inner

product and standard matrix product. Division of matrices is allowed,

based on calculating inverses, but division by vectors or other maps

is not allowed. Exponentiation also follows the usual practice (however,
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ASL does not allow matrices to be raised to fractional powers). The

absolute value notation is also used for the "norm" of a map, which

in ASL is the Euclidian length of a vector. (Some have taken issue with

ASL's confusing these two concepts. However, in my opinion they are

very similar, as a norm is anything that satisfies llxll ^> for x 4 0,

Hull = 0, llcxll = |cl • ||x|| for numeric c, and |lx + y|| <^T ||xll + ||y|| , and

absolute value satisfies these relations).

ASL includes the factorial, whereas SETL does not.

The comparison operators <^, «^, etc. , are restricted in ASL

to apply to numbers (as in mathematics, usually). In SETL they have

been given peculiar meanings for Boolean strings, and are used for

subset, etc. , for sets.

In SETL the Boolean operators and , or , etc. apply to Boolean

strings on a bit parallel basis, with the shorter operand being left-

extended with zeros. In ASL they apply to maps of bits, or maps of

maps of bits, etc. , but the domains must match. I believe that zero-

extending is of marginal utility, half the time it will be done on the

wrong end, and it is best avoided anyway because it leads to paradoxes

such as DeMorgan's law failing.

Unlike SETL, in ASL the Boolean expressions are evaluated from

left to right, and evaluation stops as soon as the result is apparent.

For example, "m 4 h. a/m <C 5" is valid in ASL.

ASL has two pointer operators, ]x and |x, which SETL of course
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does not have.

The set operators (union, membership test, etc. ) work the same

in ASL and SETL*, only the syntax has been changed.

As was already discussed, ASL has the P~ , IP-, and Jt operators,

which are absent (and in fact unprogrammable) in SETL. As was also

mentioned, ASL has the @ operator for changing the origin of a vector

or array, whereas this is absent in SETL. Vector concatenation works

slightly differently in ASL (when the vector on the right has missing

initial components).

15. 4. 2 Function Referencing

The use of a set as a map is a key concept in SETL. The SETL

approach is that any set is a potential map. The notation f(x) means

to search f for an n-tuple, n ^ 2, whose first component is x. The

result is its second component, if n = 2, and the vector of its remaining

components, if n> 2. The result is undefined if zero or two or more

n-tuples begin with x.

The ASL approach is much more restrictive. For a set to be

used as a map it must consist entirely of pairs and no two pairs may

have the same first component. This is the approach usually used in

mathematics, and I think it is better because it is more paradox free,

it leads to more transparent algorithms, and it permits a simpler and

more efficient implementation of functional application.
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One paradox of SETL is that it is impossible to identify the domain,

range, and inverse of a function. This is because if the function includes

the triple <x, y, z>, it is not known whether it maps x to <y, z> or x, y

to z, since it can be used either way. This has the practical consequence

that one cannot write algorithms that deal with functions in general.

As a simple example, besides domain, range, and inverse, one cannot

code a routine that calculates the "product" of two functions. In ASL

this can be done, and in fact is so simple it hardly deserves to be a

procedure: ((x, f(g(x)) ), Vxg 5?"f}.

Another paradox of SETL is that two functions for which a domain

is defined in some way may have the same domain, and for every member

of the common domain its image may be the same, and yet the functions

do not compare equal. This is because the functions may contain non-

tuples.

In ASL all function references involve a single argument. In the

notation f(x, y), (x, y) is a vector. This is true whether f is an itemized

map or a procedure. SETL employs the more conventional approach

in which the argument list is not a single object. The ASL approach is

a language simplification in that (x, y) denotes a vector no matter what

the context, and linkage conventions will probably be simpler. It also

leads to a natural way to code procedures that apparently can be called

with missing arguments, or with an arbitrarily large number of them.
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ASL includes the "sinister" (left-hand side) calls of SETL. The

semantics are essentially the same, but in ASL the meaning of left-hand

composition of functions is derived rather than postulated. This provides

a specification of how they work in the presence of side effects, which

SETL does not pin down.

ASL allows the sinister call f(x) = y with f undefined, whereas

SETL does not. This is important because it, together with the fact

that in ASL there is no distinction between the null set, null tuple, null

character string, and null Boolean string, avoids what is essentially

a bug in SETL.

Consider building up a map by assignments such as A(l) = y. In

SETL A would first have to be initialized to either nl, nult, nulc , or

nulb , because otherwise there is no way to tell which type of object

to create for A (the right-hand side can be used to eliminate either the

character string or the Boolean string as a possibility, but that is all.

After A(l) = 'a' we could have A = 'a*, A = <'a'>, or A = {<1, 'a'>} if

A were not initialized). In ASL if A is undefined we treat A(l) = y the

same as if A were initialized to 0. This works because the null set,

null vector, etc. , are all the same. So far this is merely a convenience.

Now suppose we are building up a more complicated structure

and the first assignment is (A(l))(l) = y. The meaning of this is:

t = A(l)

t(D = y
A(i) = t.
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In SETL, initializing A to a null object is inadequate because t would

then be undefined and the second assignment would not be allowed.

A must be initialized to < nult> or (<1, nulb>} , or some such thing.

But the problems do not end here. Suppose the initial assignment

is (A(m))(l) = y. Then A would have to be initialized to <nl, nl , . . . , nl>,

or some such thing, which can be most inconvenient if there is no

reasonable bound on m. This, I think, is a bug in the present SETL

definition. It is hard to fix because one cannot simply say that in f(x) = y,

if f is undefined it is treated as null, because you don't know which null

object to pick. In my opinion this situation offers concrete evidence

that the ASL treatment of vectors and strings is the "right" one

or at least more right than SETL's.

In ASL right-hand side function and operator references never

change their arguments. In addition there is, formally, no such thing

as a subroutine-procedure. There are only function- and operator-

procedures. However, the effect of a subroutine call (something that

may change arguments) is achieved by the minor syntactic trick of

treating the statement "expr;" as equivalent to "expr = TRUE;", where

expr is any value receiving expression. Hence sub(x); is equivalent to

sub(x) = TRUE;, which is a sinister function reference and hence may

cause a change to x. If "sub" is only used as a subroutine, then it would

presumably ignor the right-hand side.

With this gimmick one can also set a switch to TRUE by simply
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writing "x;". A few built-in operators can be called in sinister mode,

for example writing x £ S; is equivalent to x £ S = TRUE; which causes

the membership test routine to put x in set S.

15.4.3 Other Expressions

ASL includes a set former that is essentially the same as SETL's,

but a larger variety of iterator clauses may be used. For example,

in ASL we can write {x, Vx = Z, 4, . . . , n} and (e(x), Vx e S WHILE Cl(x)

I
C2(x)} . The use of a WHILE clause in a set former is not of very

much utility, but it is permitted merely to have the same iteration

expression valid in all contexts.

ASL also includes a vector former of the iterative type, which

SETL does not. For example, if S is a character string then

(c, V(i, c) £ S I c 4 h) is the same string with blanks deleted and characters

shifted to the left accordingly.

This example points out another difference: in ASL any value

receiving expression may be used as the iteration variable. Also,

iteration over strings is treated like set iteration, but it proceeds in

left to right order.

Both ASL and SETL include existential and universal quantifier

expressions, which are similar. However, the ASL existential expression

does not have the side effect of assigning a value to the iteration variable

if the result is "true". Admittedly this is often convenient in SETL,
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but in ASL we prefer not to have hidden assignments.

A point in ASL which I am not sure is good or bad is that in the

set former the iteration variable is not a bound variable. It is in some

ways like a bound variable and in some ways like a free one. The inter-

ested reader is referred to section 4. 10. 2.

ASL includes a "search expression", which is written like an

existential or universal predicate without the jor V symbol, and the

value of the expression is the object found (rather than TRUE or FALSE).

For example, "y = x e S ; C(x);" assigns to y a member of S that satisfies

C(x), if there is one. In SETL this would be coded "y = 3 [x a S I C(x)};".

ASL includes cross section expressions that are written in the

PL/I style, e.g., A(*, j) and A(i, *). SETL allows something similar

to cross sections but the *'s are not written, and their implied positions

must all be to the right. But the concepts are not the same, because

they operate on structures of different types. For example, a matrix in

ASL is a set whose members are of the form ((i, j), x). But in SETL,

for "cross sections" to apply, they would have to be of the form (i, j, x)

or (i, (j,x)), neither of which is a bona fide array, in my opinion.

In ASL the substring notation s(i:j) is generalized to apply to

arrays (as in Algol 68), e. g. , A(i:j, m:n). As was already mentioned,

in ASL the j and n are indexes, whereas in SETL the variable after the

colon is a length.

The class of expressions that may be used in a value receiving
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context is approximately the same in ASL and SETL. One possible

difference (I am not sure about SETL) is that in f(x) = y, f may be an

explicitly displayed set (or vector). For example, the effect of (a, b)(i)

= x is to assign x to a if i = 1, and to b if i = 2. This somewhat surprising

result falls out of the sinister call definitions. One can also code assign-

ments such as ^('a',x), ('b',y)}(c) = z, which depends on ASL's map

assignments, which is a generalization of vector assignments.

An interesting fundamental issue of language design that came

out of ASL is its use of compiler generated temporaries. In an effort

to live with side effects as comfortably as possible, before the evaluation

of any expression, the variables are first assigned to temporaries, and

the expression is evaluated in terms of the temporaries. For assignments,

temporaries are introduced for both sides, and then after doing the

assignment in terms of temporaries the target variables are assigned

to the appropriate temporaries. This approach has many interesting

effects. One is that the meaning of sinister composition of functions

may be derived from it. The interested reader is referred to sections

4. 10. 2 and 5. 2. 3.
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15.5 Statements

ASL combines the miscellaneous declarative statements of SETL

into one: DECLARE. This is seldom used except with the elaboration

language. However, it is used for a few things of more significance

than efficiency, such as giving a variable the STATIC attribute and

declaring the precedence of a user-defined operator.

ASL includes the FORMAT, STOP, EXECUTE, ENTRY, and null

statements, and the remainder are essentially those of SETL. The

EXECUTE statement is analogous to the execute instruction found on

some computers. The target is a statement or statement group within

the procedure containing the EXECUTE, which is executed, and then

control returns. The statement group may not have a GO TO out of it.

The ENTRY statement is similar to that of FORTRAN IV and PL/I.

As was mentioned, the meaning of the assignment statement has

been expanded slightly. In ASL an assignment such as

{(a,b), (c,d)} = e

is allowed. It means (essentially) b = e(a) and d = e(c). As a special case

we have (x, y) = e meaning x = e(l) and y = e(2) (in ASL the notation

(x, y) means {(l,x), (2, y)}).
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15.6 Statement Brackets and Headers

Similarly to Algol 68, statements in ASL may be grouped with

parentheses, DO . . . END, or BEGIN . . . END, all of which have the

same meaning. In SETL only parentheses may be used.

ASL takes the view that THEN, ELSE, iteration, and INITIALLY

are all "headers" that take a single statement as an object, and do not

in themselves require an "end" token. However, the "statement" may

be a statement group. SETL takes the view that these "headers" act

like left parentheses, and require a closing right parenthesis, for which

an extra semicolon is used.

ASL includes a CASE statement, whereas SETL does not.

In SETL the iteration variable is bound, but in ASL it is free and

may be used outside the loop. In fact, ASL goes to great lengths to

give what is believed to be the most natural interpretation to the value

of the variable on exit from the loop, and the effect of changing the

upper limit while iterating, etc.

ASL includes an ITERATION pseudo-function, which allows one

to conveniently obtain a count of the number of times a loop has been

executed, even if the loop is not of the counting type. This can be used

for a first-time switch, a reasonableness test, etc.
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15.7 Procedures

As has already been mentioned, ASL has procedures of the function

and operator type, but not subroutines (in a formal sense). Following

Algol 68, every procedure is assumed to begin with a system- supplied

prologue, which initializes many keyword variables, e. g. PI = 3. 14159',

SQRT = SYS. SQRT; etc. Most of these variables have library procedures

as values. Although they have not all been defined by a long shot, it

is anticipated that they may number about fifty to a hundred. The Algol

68 technique allows the coder to use them if he knows about them, and

at the same time he won't get in trouble if he happens to inadvertently

pick one for a variable or label name. It is probably reasonable for

it to be standard practice for an implementation to add to the predefined

variable list.

Parameter matching in ASL follows the same rules as vector

assignment.

15.8 Name Scoping

At this point the name scoping rules in ASL are very simple.

All variables are local to the procedure in which they are mentioned,

unless they are declared "external" in one procedure and "shared" in

the procedure to which they are local. Sharing variables by other than

parameter linkage requires two-way cooperation. This approach is

taken to enhance readability, but it may not be satisfactory for large
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programs in which a good deal of sharing is involved,

SETL has a more complicated approach in which one declares

"name scopes" in a nested manner, and one can declare that a certain

variable name designates the same variable within a scope. Hence

one can declare on page 5 of a program's listing that the "x" on page

20 is the same as the "x" in a different procedure on page 30. The

author has acquired a great distaste for this, but it may be a necessary

evil.

15. 9 Input/Output

The I/O facilities of SETL are very primitive. One can write

"print x, y, z", and the current values are printed, even if they are deeply

nested structures. But one has no control over the format. In SETL

one cannot even print a column of right adjusted integers, or a character

string without delimiting quote marks.

The ASL I/O facilities are modeled after the PL/I LIST, DATA,

and EDIT directed I/O. A very weak point of both languages is that

at present there are no facilities to help one to write a program that

converses with one or more users at terminals.
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15. 10 Macro Preprocessor

The macro, or preprocessor, for ASL has not yet been specified.

SETL has a macro capability that consists of simple text replacement

with parameters. That is, one can define a macro M that causes the

replacement of a string M(x, y) with an arbitrary string involving x and

y. It is believed that something with more flexibility is appropriate,

and it is suggested to model a preprocessor after that of PL/I, but of

course paralleling ASL. This would provide conditional assembly, which

is a very significant capability for a preprocessor. One should also

provide macro calls with a variable number of parameters (as in ASL

itself), and a symbol generation capability. It is possible that ASL

should go farther than this and expand macros based on some quite

general pattern matching scheme. As a simple example, one might

want to code a macro that would cause 2 + 31 to be translated into the

vector (x, 2, 3), where x is a blank atom that flags the vector as designating

a complex value. Of course other language extension facilities would

be needed to allow the user to define his own data types, and no work

in ASL has been done in this direction (a small amount of such work

has been done in SETL).
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15.11 Elaboration Facilities

The basic approach of the elaboration facilities is different in

SETL and ASL. In SETL the elaborations are partly declaratory and

partly executable. They are very direct, e.g. , "store such and such

a set as a hash table", and "from this point (in time) on, set S will not

change very much".

The ASL approach is to try to get more mileage out of the elaborations

by making them helpful to a human reader as well as to the compiler.

They are at a higher level, and the emphasis is on telling the reader

and compiler something about a program, rather than explicit instructions

on how to compile something. For example, in SETL one might say

"store I in ten bits and set S as a fixed block of five items, not hashed".

In ASL one would instead say "the maximum magnitude of I is 500 and

the maximum size of set S is five items". The compiler is then required

to make its own decisions on how to best use the extra information. The

decisions may depend on other factors, such as whether one is optimizing

for speed or storage.

The SETL approach will probably lead to more efficient programs,

and is certainly more easily implemented, but nevertheless I think it's

a shame to pass up an opportunity to help the human reader and instead

hinder him by littering the program with a lot of clutter.
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16. Programming Examples

Integer Square Root Routine

SETL

ASL

definef ISQRT n; /* Integer square root operator. */

if n le 1 then return n;;

x = n/2;

(while (x*x)_g_t n)

x = (x + n/x)/2;;

return x;

end ISORT;

FUNCTION ISQRT(n) "Integer square root."

IF n ^ 1 THEN RETURN n

x = n/2

WHILE x**2> n DO
x = FLOOR[(x + n/x)/2]

END
RETURN x

END ISQRT
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Simple Insertion Sort

Reference: Knuth Volume 3, page 80.

PL/I

INSSORT: PROCEDURE (SEQ);

DECLARE SEQ(*) FIXED BINARY,
T FIXED BINARY;

DO J = 2 TO DIM(SEQ, 1);

T = SEQ(J);

I = J - 1;

DO WHILE (I>=1 & T < SEQ(I));

SEQ(I + 1) = SEQ(I);

1=1-1;
END;

SEQfl + 1) = T;

END;
END INSSORT;

ASL

FUNCTION INSSORT(SEQ)
2 <Vj ^#SEQ DO

t = SEQ(j)

i = j-1
WHILE (i > 1 & t < SEQ(i)) DOING i = i - 1

SEQ(i + l) = SEQ(i)

SEQ(i + l) = t

END Vj

RETURN SEQ
END INSSORT;
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TOPOLOGICAL SORT

Problem

Suppose we are given a set S of arbitrary objects together with a

partial ordering P on S P is given as a set of pairs (a, b) with a, b fe S.

Arrange the members of S into a vector V such that if a = V(i) and

b = V(j), and (a, b) e P (meaning a ^ b), then i < j.

Solution

1. We select an arbitrary member x of S which has no predecessor,
and append that to V (V is initially null).

2. Having successfully placed x in V, we delete x from S and also

delete all pairs beginning with x from P (if any exist).

3. We continue this process until S is null.

Example

Suppose S = {a, b, c, d, e} and P = {(a, b), (a, c), (d, e)}.

Diagramatically, P is:

^ (d

On the first iteration, either a or d might be selected. Suppose it is d.

Then af^er the first iteration, the situation is:

V = (d, ); S = {a, b, c, eV> P = {(a, b), (a, c)}.

Diagramatically, P is:

Next, either a or e could be selected. Suppose it is a. Then after the

second iteration-

V = (d,a); S ={b,c,e}; P = 0.

In the last three iterations, b, c, and e are selected in an arbitrary order.

The final vector returned might be V = (d, a, c, e, b).
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Topological Sort

SETL

ASL

definef TOPSORT(P, S);

PI = P;

SI = S;

V = nult ;

(while SI ne nl)

y = ){xeSl | not (3p e P I p(2) eq^x)};

V(#V+1) = y;

SI = SI less y;

PI = PI - fp 6 P I p(l) eo^y};

end while;

return V;

end TOPSORT;

FUNCTION TOPSORT(P.S)
V =

WHILE S i DO
y = x s S : i(3p e P : p(2) = x)

V(#V+1) = y
S = S - fy)

P = P - {p e P I p(l) = y}
END WHILE

RETURN V
END TOPSORT
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Ford-Johnson Tournament Sort

References:

1. Knuth Volume 3, page 185.

2. Ford and Johnson, American Mathematical Monthly,

Volume 66, 1959, page 387.

This algorithm sorts in the fewest number of comparisons of any

algorithm known, in the minimax sense (not in the average sense). To
illustrate how it works, assume we are given 25 items vl, v2, . . . , v25.

We start by comparing items in pairs vl:v2, v3:v4, . . . , v23:v24. We
place the larger of each pair in a vector A, and the smaller in a vector

B. We then sort A, using this algorithm recursively, and rearrange B

in the same way that A was permuted. The odd item v25 is then added

to the right end of B, so the situation may be illustrated:

ai — a-> a? a.A ac a^ — ... —

a

1?

/ / / / / / /
bi b

2
b
3

b 4 b 5
b 6 b 12

b 13

where the smaller items are to the left and below.

We now merge items from list B into list A. Since b\ is smaller

than any of the a's, it is immediately placed on the left end of A, giving:

a &1 a
2 p a4 a

5
a6— ... a 12

b 2 b 3
b 4 b

5
b^ b 12 b 13

We continue merging items from B into A in what may be the most

efficient way possible. We use binary searching, which is at its most

efficient when the number of items being searched is of the form 2n - 1.

The pattern to be described is always searching a list of this length,

for worst-case data, except possibly on the last pass.

Observe that b 3 can be placed by considering a list of three items:

a , a 1? and a 2 . It is placed next, using two comparisons. After that, b 2

is placed. If b 3 went somewhere to the left of a 2 (worst case), then b 2

must also be inserted in a list of three items. If b 3
went to the right of

a2 , then we are lucky, although in this case two comparisons may still

be required to insert b 2 . After inserting b 3 and b 2 , the situation is:
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a. 2— a. j— a a
x

a
2

a
3

a
4

a
5

a
&
— . . . a 12

b 4 b
5

b 6 b 12
b
13

It is now most efficient to insert into a list of length seven, namely
a _, a_ , , . . . , a .. Item be may be inserted, and then b^ also is placed
in a list of length seven (assuming b^ goes to the left of £4). The situation

is then:

a-4~ a -3~' ' ' — a 5
,

a
6 fl ,

a
8 ,

a
9

/a 10—a ll— a 12

b 6 b 7 b
8

b Q b 10 bn b
12 b 13

At this point the list length is 15, namely a_^, a,. . . . , a^Q.

Into this we insert b.i first, then bjQ, b Q , . . . , b^. This leaves us with:

a -10_a -9
-

- • •
a 5 a 6 a 7 a8 a 9 a 10

— an— a i2

b
12

b 13

On the last pass, we insert b^, followed by b^ 2 . The number of

comparisons required for the whole process is 86 (worst case). This

consists of the initial 12, 30 for the recursive call, and 44 for the binary
insertion steps outlined. The last two items were not inserted particularly

efficiently, which leaves one with the feeling that there may be a better

way to do it.
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Ford-Johnson Tournament Sort

(Merge Insertion)

FUNCTION FORDJ(V)

"The parameter V is a vector of items to be sorted. The value

returned is a vector containing the items of V in increasing order.

To compare two items, this procedure references an operator

.LE. , which must be supplied by the user. "

IF #V < 1 THEN RETURN V "Trivial cases."

"Scan the components of V two at a time. Put the larger of each

pair in a vector AU (A unsorted), and the smaller of each pair in

a vector BU. "

STARTING AU = BU = 0; Vi = 1, 3 #V - 1 DO
a = V(i)

b = V(i + 1)

IF a .LE. b THEN (a, b) = (b, a) "Make a the larger."

AU(#AU+1) = a

BU(#BU + 1) = b

END Vi

oddone = V(i+2) "Only exists if #V is odd. "

"Sort the half-length vector A, using this routine recursively. "

A = FORDJ(AU)

"Now rearrange BU in the same way that AU was rearranged."

1 <Vj <#ADO
n = 1 ^n ^ #A : AU(n) = A(j) "n= position where A(j) came"
AU(n) =

; "from. Erase AU(n) so this"

B(i) = BU(n) "n won't be used again. "

END Vj

B(#B+1) = oddone
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"Now merge the components of B into A using a binary search.
Vector A will grow on the left. The components of B are picked

up in an order that maximizes the efficiency of the binary search
by always merging into a list of 2**n-l elements (or less under
fortuitous circumstances), for some n. The steps below place

B(l) on the left end of A with no comparisons done. The order of

picking up B's is 1; 3, 2; 5, 4; 11, 10 6; 21, 20, ... 12; .... "

STARTING jbot = 1 "jbot = 1, 2, 4, 6, 12, ..."

jtop = 1 "jtop = 1, 3, 5, 11, 21 #B'

length = 1 "length = 1, 3, 7, 15, 31, ..."
WHILE jbot ^ #B DO

V
J = J toP. jtop-1 jbot DO

"Merge B(j) into list A(LI A : j-1). "

low = LI A - 1 "One lower than leftmost item. "

high =
j "One higher than rightmost."

WHILE high-low > 1 DO
mid = FLOOR((high+low)/2)
IF B(j) .LE. A(mid) THEN high = mid; ELSE low = mid
END

"B(j) goes between low and high (even in the cases where it

goes on an end). "

(LI A <Vi < low) A(i-l) = A(i)

A(low) = B(j)

END Vj

jbot = jtop + 1 "Set indexes for next pass."
length = 2*length + 1

jtop = MIN(LI A + length, HI B)

END WHILE jbot < #B

RETURN A@l
END FORDJ
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An ordered tree is a descendent function desc(node, j) defined

for j in some finite (possibly null) range.

A binary tree is a pair of descendent functions L and R (left and

right descendents).

The ordered and binary trees stand in an interesting 1-1 relationship

that is illustrated below.

Ordered Tree Binary Tree

Descendent Function Descendent Functions

A 1 B

A 2 C

A 3 D

B 1 E

R

A B B C

BE CD
D G E F

B 2 F

D 1 G

E 1 H

E H
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Ordered To Binary Tree Transformation

SETL

ASL

definef OTB(desc);
L = {<x(l), x(3)> , x 6 desc I x(2) e^ l} ;

R = (<x(3), desc(x(l), x(2)+l)>, x e desc I desc(x(l), x(2)+l) ne a }

;

return "CL, R>;
end OTB;

FUNCTION OTB'(desc)
L = desc(*, 1

)

R = {[desc(x,i), desc(x, i+1 )] , V(x, i) £ .Ddesc I 3desc(x, i+1 )}
RETURN (L, R)

END OTB
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Ordered To Binary Tree Transformation

ASL

FUNCTION OTB(desc)
L = desc(*, 1)

R = ([desc(x, i), descfx, i + 1 )] , V(x, i)£ P desc I
3desc(x, i+1 )}

RETURN (L, R)

END OTB

PL/I

OTB: PROCEDURE (NODE) RETURNS(POINTER)

DECLARE 1 DESC BASED(NODE),
2 NAME CHAR(50) VARYING,
2 NSONS FIXED,
2 SONS(NSONS) POINTER,

1 NEW BASED(P),
2 NAME CHAR(50) VARYING,
2 LSON POINTER,
2 RSIB POINTER,

T POINTER;

T = NULL;
IF NODE -,= NULL THEN DO I = NSONS TO 1 BY -1;

ALLOCATE (NEW);
NEW. NAME = SONS(I) -> NAME;
LSON = OTB(SONS(I));

RSIB = T;

T = P;

END;
RETURN(T);
END OTB;
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Ordered To Binary Tree Transformation

Using List Structures

SETL

ASL

definef OTB(node);

t =A; bin = nl;

if node ne_A then

(#sons(node)> Vi > 1

)

p = newat ;

name2(p) = name l((sons(node))(i));

lson(p) = OTB((sons(node))(i));

rsib(p) = t;

t = p;

end Vi;

end if;

return t;

end OTB;

definef namel(p); return (ord(p))(l); end;

definef sons(p); return (ord(p))(2); end;

definef name2(p); return (bin(p))(l); end;

definef lson(p); return (bin(p))(2); end;

definef rsib(p); return (bin(p))(3); end;

FUNCTION OTB(node)
t = ;

IF 3node THEN DO
[#sons(node) > Vi > l] DO

p = 10

name2(p) = name l[(sons(node))(i)]

lson(p) = OTB[(sons(node))(i)]

rsib(p) = t

t = p
END(Vi)

END
RETURN t

END OTB

FUNCTION namel(p); RETURN (|p)(l); END
FUNCTION sons(p); RETURN (4p)(2); END
FUNCTION name2(p); RETURN (*p)(l); END
FUNCTION lson(p); RETURN (|p)(2); END
FUNCTION rsib(p); RETURN (|p)(3); END
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Procedure to read in a graph, represented as follows:

4 3 n, m = sizes of node and arc sets112 k, i, j = arc number, initial node, terminal node
2 2 3

GRAAL

procedure readone(G);

graph G;

begin integer n, m, k, i, j, $ \ set x;

read (n, m);

for i - 1 step 1 until n+m do_ x := create ;

for ft = 1 step 1 until m do
begin read (k, i, j); assign (G, atom(i) - atom(j) to atom(n+k)) end

end

ASL

FUNCTION readone(G)
READ n, m
nodes = [I, V/ = 1, 2 n}

STARTING arcs = 0; Vjg = 1, 2, . . . , m DO READ k, i, j

(i. j) £ arcs
END

G = (nodes, arcs)

RETURN
END readone(G)

If the node set were not important, and the graph were punched as:

{(1,2), (2,3), (3, 1)}

then the ASL "READ G" would suffice.
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Subgraph of G having set N of nodes

GRAAL

ASL

procedure subgraph (G. N. SubG)

;

graph G, Sub G; set N;

begin set s, x, y, a;

while N *. empty cio.

begin x: = elt (1, N); s : = subset (a in star (G, x), inc. (G,a)cN);
N:=N ^x;

il s = empty then assign (Sub G, x) else for all a in s do
begin y:= inc (G, a)~ x; if y = empty then y :

= x;

assign (Sub G, x - y to a)

end
end

end

FUNCTION subgraph (G,N)
RETURN {Va £ G

|
a(U £ N & a(2) e N}

END
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Line Graph of G

GRAAL

procedure linegraph(G, LineG);

graph G, LineG;
begin set S, R, x, a, b;

iQX aJJ. x in nodes (G) do.

begin S := R := star fG. x);

for all a iii S do

begin if x = inc_(G,a) then assign(LineG. a-a to create) :

R:= R ~ a;

for all b in R do assign(LineG. a-b ia create )

end
end

end

ASL

FUNCTION linegraph(G)

RETURN {fa, bf, Va £ G, Vb e G
|
#(a fi b) = 1

}

END

Example of the ASL algorithm

Given Graph G linegraph(G)

{{1,2}, 11$, 2}, [2,3}},

(2,3}, [{1,2}, {2,4}?,

12,4}, [[2,3"f, [2,4?},

/3,4f, ([2, 3f, [3,4}},

U) } 1(2, 4i, £3,4}},

U2,4(, 14}},

1(3,4}, 14}},

H4}} }

New Graph
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Pohl's Shortest Path

FUNCTION Pohls_shortest_path (G, start, end)

"G is a digraph containing the nodes 'start' and 'end'. The value
of this function is a vector of nodes of G defining a shortest path
in G from 'start' to 'end 1

, with each arc considered to be of unit
length. If no path exists, the result is undefined."

fset = {start}

bset = {end}

fendset - fset

bendset = bset

fback = bback -

WHILE fendsetf) bendset = DO
IF #fset^#bset THEN

'Toward search"
fnew = [y, V(x, y) e G I xg fendset & y^ fset}

IF fnew = THEN RETURN; "Undefined, no path exists."
(Vy£ fnew) fback(y) - xe fset : (x, y) e. G
fendset = fnew
fset = fsetU fendset END

ELSE DO
"Backward search. "

bnew = { x, V (x, y) £ G I yfbendset & x t bset}
IF bnew = THEN RETURN; "Undefined, no path exists. "

(Vx £ bnew) bback (x) = ye. bendset: (x, y) £ G
bendset - bnew
bset = bsetlj bendset END

END WHILE

"A path has been found - construct it explicitly. "

join = 3 (fendset f\ bendset)
path =

x = join

[WHILE 3x DOING x = bback (x)] path = (x,
)
£path

x = bback (join)

[WHILE 3x DOING x = bback (x)] path = path£(x, )

RETURN path

END Pohls shortest path
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Linear Time Median Finder

FUNCTION KTHONE(k, set)

"The value of this function is the k'th number, in ascending order, of

the given set 'set' of numbers. If k is out of range, the result is undefined.

This algorithm was discovered by Floyd, et al, in late 1971. It

runs in a time directly proportional to the number of numbers in 'set'."

IF set = THEN RETURN; "Undefined result."

WHILE #set > 3 DO
"Build set 'midpoints', the set of middle values from 'set', taking

the numbers three at a time. "

i = 2 "Initialize. "

midpoints =

Vx e set DO
i = MOD(i + l, 3) "i is 0, 1, 2, 0, 1, 2, . .

."

CASE i

0: u = x

1: v = x
2: DO "Put the median of u, v, and the current x into set

midpoints. Requires three comparisons (worst case)."

IF x < v THEN m = 1; ELSE m =

IF u < x THEN m = m + 2

IF v < u THEN m = 3 - m
"Now m must be 1, 2, or 3.

"

midpoints - midpoints U {(u, v, x)(m)}

END
END CASE i

END Vx

"As many as two members of 'set' have not been considered for

placement in 'midpoints'. But the error is not sufficient to prevent

this algorithm from working in linear time. Note that ^midpoints ^ 1,

because #set ^ 3. Now find the median of 'midpoints', in linear time

(this algorithm chooses on the low side if #midpoints is even)."

median = KTHONE [FLOOR((#midpoints + 1 )/2), midpoints]
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"Note that 'median' is somewhere in the middle third of 'set 1

. Pre-

cisely, the number of members of 'set' that are less than 'median' is

at least (n/3 - l)/2 + (n/3 + l)/2, and the number of members that are

greater is at least n/6 + (n/3 + 2)/2, where n = #set and '/' denotes

'integer division'.

Now divide 'set' into two piles; members of small_pile are ^
median, and members of big_pile are> median. "

small^jpile = {x, Vx e set I x ^ median}
big_pile = set - small_pile

"Since #set> 3, and we have thrown the median into small__pile, we

have #small_pile> 2 and #big_pile ^ 1. Now iterate by finding the

appropriate member of the appropriate pile."

IF k ^#small_pile THEN set = small__pile

ELSE (set = big_pile; k = k- #small_pile)

END WHILE #set> 3

"Now #set is 1 or 2 (it can't be zero), k may be out of range if the original

call had k out of range. "

(x, y) = (x, Vx e set) "x = one member, y = the other

(if it exists). "

IF #set = 1,



Backdominators

The concept of "backdominator" arises in the global optimization
of computer programs. Given a node in a program graph, its back-
dominators are the nodes that must be passed through to reach it.

The algorithm to be described calculates all the backdominators
of each node of a digraph. It operates in terms of the complement of

the backdominators, which is the set of nodes not needed to reach a

given node. This makes for an algorithm that is somewhat confusing,

but it is actually very simple. We describe the algorithm using the

example:

Nodes 1 and 4 are entry nodes,

they do not enter into the picture.

Any node may be an exit node;

The algorithm works by first processing the entry nodes, then

their descendants, then their descendants, etc. A set "todo" contains

the current estimate of the nodes remaining to be processed. This is

initially the set of entry nodes, and nodes are added to it and deleted
from it in a way that is described below. The graph traversing terminates
when "todo" is null.
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No node is needed to reach the entry nodes, so the graph is marked
accordingly:

l) 1,2, 3,4, 5,6

todo = {l,4J

4)1,2, 3,4, 5,6

On each pass, we choose from "todo" a node n to process. All

the nodes that are not needed to reach node n are also not needed to

reach its descendants, except possibly n itself, so this fact is recorded,

In addition, if this process causes new nodes to be associated with a

descendant, then that descendant must be reprocessed (or initially pro-

cessed), so it is added to set "todo". Suppose node 1 is selected first.

Then after processing it, we have:

n = 1

todo = {2, 3, 4}

2,3,4,5,6 (2

Node 1 was removed from "todo", and nodes 2 and 3 were added, since

they received new "not needed to reach" nodes.
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For the second pass, assume node 2 is selected. Then we have:

n = 2

todo = {3, 4, 5}

(3) 2,3,4,5,6

2, 3,4,5,6

Assume that node 4 is selected next. This propagates nodes 1

and 2 to node 5, and sets todo = {3, 5}„ If node 5 is selected next, then

its nodes except for itself, namely 1, 2, 3, 4, 6, are propagated to node 6.

The set todo at this point becomes {3, 6}. Next suppose node 6 is selected.

Then its nodes except for itself, 1, 2, 3, 4, are propagated to node 2. This

causes the addition of node 1 into the "not needed to reach" set for node

2, so node 2 is added into "todo". At this point the situation is:

n = 4, 5, then 6

todo = {2, 3}

1,2,3,4,5,6 (2

6) 1,2,3,4,6

On the last two passes, nodes 2 and 3 are processed. This does

not change the above configuration, so "todo" becomes null.
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The backdominators are given by the complements of the above

sets:

For the procedure following, the graph of this example is repre-

sented by the set:

G=f(l,(2, 3}), (2,(5}), (3, £4}), (4, {5}), (5, [6}), (6,{2})}

together with the set:

entries = {1, 4}.

The result of the calculation is:

{(1,0), (2,0), (3,{1}), (4,0), (5,0), (6, {5})}.

325



1

1

Backdominator s

FUNCTION BACKDOMS(G, entries)

"G is a digraph represented as a map from each node of G to the

set of all successors of the node. This procedure calculates a

map that associates with each node of G the set of backdominators
of the node with respect to the given set of entry points."

nntr = [(n, 0), Vn £ f?G} "Initialize not-needed-to-reach map.
(Vn e entries) nntr(n) = J^G "All nodes are not needed to reach

an entry node.

"

STARTING todo = entries

WHILE todo i DO
n = 3todo "Get next node to process."
n $ todo "Remove it from 'to do' work pile. "

"Process node n by passing on the set of nodes that are not

needed to reach n to all the successors of n, except don't pass

on n itself. If any new nodes are actually added to the set of

those not needed to reach a successor of n, then the successor
must be reprocessed."

Vs e G(n) DO "For all successors of nt "

k = #nntr(s) "Save current size of nntr(s). "

nntr(s) = nntr(s)U [nntr(n) - {xi}~\

IF #nntr(s)> k THEN s £ todo

END Vs
END WHILE

RETURN [(n, $TG-S), V(n, S) £ nntr} "Return the complement sets."

END BACKDOMS
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