

 SETL User Manual

 David Shields

 SETL Project
 Department of Computer Science
 New York University
 Courant Institute
 251 Mercer Street
 New York, New York 10012

 Version: 30

 24 July 1984

 The user manual describes the NYU LITTLE implementation
 of SETL as defined by THE SETL PROGRAMMING LANGUAGE by
 Robert B. K. Dewar, March 12, 1980.
	

 SETL USER MANUAL PAGE 2

 1.0 Introduction . 3
 1.1 Features Not Implemented 3
 1.2 Features Implemented Differently 4
 1.3 Additional Features 4
 2.0 Standard Procedures 5
 3.0 Input/output 10
 4.0 Additional Features 11
 4.1 Listing Control Commands 11
 4.2 Remote Text Inclusion 11
 4.3 Macro Processor 12
 4.4 Synonyms . 13
 4.5 CONST Name 13
 4.6 FORALL Permitted For Iterators 13
 4.7 ARB In CASE Tag 13
 4.8 Backtracking 13
 4.9 Representation Sublanguage 16
 4.10 Structuring Large Programs 18
 5.0 Compilation And Execution Errors 21
 5.1 Translation Errors 21
 5.2 Execution Errors 21
 5.3 TRACE Statement 22
 5.4 DEBUG Statement (System Checkout) 22
 5.5 Expiration Check 24
 6.0 Program Parameters 25
 6.1 Debugging Parameters 33
 7.0 Interface To Procedures Not Written In SETL . . . 34
 7.1 Representation Of Values, Datatypes Supported . 35
 7.2 SETL Interface Procedures 36
 7.4 Sharing Of Data, Implementation Notes 37
 7.5 Sample Program 38
 8.0 Reserved Words 41
 9.0 Implementation Dependent Information 42
 9.1 DEC VAX-11 VMS Implementation 42
 9.2 DEC VAX-11 UNIX Implementation 51
 9.3 Amdahl UTS Implementation 53
 9.4 CDC 6000 Implementation 56
 9.5 DEC DECsystem-10 Implementation 59
 9.6 IBM System/370 CMS Implementation 62
 9.7 IBM System/370 MTS Implementation 65

 APPENDIX A SEMANTIC DEFINITIONS OF STRING PRIMITIVES

 APPENDIX B CHANGES EFFECTED IN RECENT VERSIONS

	

 INTRODUCTION PAGE 3

 1.0 Introduction

 This document describes the NYU LITTLE implementation of the SETL
 Language; it is organized so that material common to all
 implementations is presented first, followed by material applicable to
 particular implementations.

 The system consists of a translation phase and an execution phase. The
 translation phase transforms SETL source into an internal form known as
 Q2. The execution phase consists of an interpreter which interprets the
 generated Q2 instructions. The translation phase consists of three
 subphases, known as PRS, SEM and COD. The execution phase is known as
 LIB.

 The system is written in an implementation language called LITTLE. The
 use of LITTLE is usually transparent to the SETL user, but does show up
 in some areas such as program parameters and input/output. Certain
 arbitrary limits are also imposed, though these should not be
 encountered in ordinary use.

 This implementation supports the language as described in the SETL
 Language Reference Manual (March 12th, 1980), except as noted below:

 1.1 Features Not Implemented

 1. CASE OF variant of CASE statement

 2. CASE OF variant of CASE expression

 3. FROMB, FROME for string right operand

 4. VAL

 5. REVERSE

 6. REPLACE

 7. Multiple uses of names.
 A name used in a PROGRAM statement cannot be used to name a
 variable or other procedure. A name used in a VAR statement
 cannot be used as the name of a formal parameter.

 8. EOF for GET
 EOF doesn't work for GET. You must test the argument, which is
 set to OM when the end of the file is reached:

 GET(afile,datum);
 IF datum=OM then ... end-processing ; end if;

	

 INTRODUCTION PAGE 4

 1.2 Features Implemented Differently

 1. Several input/output features implemented differently. See
 section 3 for details.

 2. The ELSE clause in CASE expression is required.

 3. Assignments of the form:

 [x,y] := z;

 where z is OM or not a tuple cause compile or run-time errors.

 4. The semantics of the assert statement

 assert left_hand_side := expression;

 is defined to mean 'test whether left_hand_side equals
 expression; if they are unequal, print an error message and
 assign expression to left_hand_side.' This feature is useful
 during debugging of programs, in particular in connection with
 the run-time error limit feature described below.

 1.3 Additional Features

 These are described in section 4. Note also that section 4 describes
 procedures which are implemented, but not yet described in the language
 reference manual.
	

 STANDARD PROCEDURES PAGE 5

 2.0 Standard Procedures

 This section describes the standard procedures of the SETL system, which
 should be available in all implementations. It includes all the
 standard procedures, including some which are also described in the
 Reference Manual, in which case the description here describes how the
 procedures operate in this implementation.

 The implementation provides several "pattern match" procedures based on
 those of the SNOBOL4 language. The procedures are ANY, BREAK, LEN,
 LPAD, MATCH, NOTANY, RANY, RBREAK, RLEN, RMATCH, RNOTANY, RPAD, RSPAN
 and SPAN. They have the form:

 proc(RW str, RD exp)

 The first argument is a string and the second argument is either a
 string or integer. The procedure attempts to match part of the first
 operand string. If the match can be done, the procedure "succeeds" and
 returns the matched substring, and also removes the matched string from
 the argument. If the match cannot be done, the procedure "fails" and
 returns OM. Appendix A contains definitions of these procedures in
 SETL.

 For historical reasons, the implementation supports several procedures
 which are recognized but are to be considered undefined. They will not
 be described here. Pending their removal, the only effect of their
 presence is that their names are reserved words, as follows:

 GETK PUTK REWIND

 ANY(RW str, str)

 ANY is a pattern match which succeeds if the first character of
 the first argument occurs in the second operand. ANY fails if
 the first argument is null.

 BREAK(RW str, str)

 BREAK is a pattern match which succeeds if the first argument
 contains a character which is in the second argument. BREAK
 matches the initial substring of the first argument which does
 not contain any characters which are in the second argument.

 CLOSE(file)

 CLOSE terminates the input/output to a file initiated by a prior
 call to OPEN.
	

 STANDARD PROCEDURES PAGE 6

 EJECT() or EJECT(filename)

 EJECT causes a page eject on the specified file. If no argument
 is specified, the eject occurs on the standard output file. If
 the specified file is not the standard output file, it must have
 been opened with 'PRINT' specified as second argument to OPEN.

 EOF

 EOF returns TRUE if the last input operation encountered end of
 data; otherwise EOF returns FALSE.

 GET(file, WR lhs, ...)

 GET reads successive lines from the specified file, and assigns
 them as strings to the corresponding left hand sides. Any input
 values which were not available because of encountering the end
 of file cause the corresponding arguments to be set to undefined
 (OM).

 GETB(file, WR lhs, ...)

 GETB reads binary values from the file specified by the first
 argument. GETB should be used only for files created using the
 PUTB binary output procedure. Any input values which were not
 available because of encountering the end of file cause the
 corresponding arguments to be set to undefined (OM).

 GETEM(WR lhs, WR lhs)

 GETEM assigns the current run-time error mode to its first
 argument and assigns the current run-time error limit to its
 second argument. See section 5 for further information.

 GETIPP(str)

 GETIPP obtains a program parameter value specified by its
 argument, which has the form

 'NAME=DEFVAL/ALTVAL'

 GETIPP makes available to the user the same scheme used to
 obtain program parameters that is used by the SETL system, as
 described in section 6. GETIPP returns an integer value.

 GETSPP(str)

 GETSPP is similar to GETIPP except that it returns a string.

 HOST() or HOST(...)

 The usual, and always acceptable, implementation is for HOST to
 return the undefined value (OM). Particular implementations may
 provide other features; consult section 8 for details.
	

 STANDARD PROCEDURES PAGE 7

 LEN(RW str, int)

 LEN is a pattern match procedure. It succeeds if the first
 argument length is as large as the second argument. An error
 occurs if the second argument is negative.

 LPAD(str, int)

 LPAD returns the result of padding the first argument to the
 length given by the second argument. Blanks are added, as
 needed, to the left. If the length of the first argument
 exceeds the value of the second argument, the first argument is
 returned unchanged.

 MATCH(RW str, str)

 MATCH is a pattern match which succeeds if the second argument
 occurs as an initial substring of the first argument.

 NOTANY(RW str, str)

 NOTANY is a pattern match that succeeds if both arguments are
 not null, and the first argument begins with a character not
 contained in the second argument.

 OPEN(file, mode)

 OPEN opens a file specified by the first argument. The
 acceptable forms of the first argument are machine-dependent in
 that the value is a file name as defined by the execution
 environment. The second argument is a string, and must be one
 of the following:

 'BINARY-IN' binary input
 'BINARY' same as 'BINARY-IN'
 'BINARY-OUT' binary output
 'TEXT-IN' text input
 'TEXT' same as 'TEXT-IN'
 'TEXT-OUT' text output
 'CODED' same as 'TEXT'
 'CODED-IN' same as 'TEXT-IN'
 'CODED-OUT' same as 'TEXT-OUT'
 'PRINT' text file for printing

 The second argument specifies the format of the file and also
 whether the file is to be read or written. In mixed-case
 implementations, the second argument can be written using all
 upper-case or all lower-case characters; for example, 'TEXT' or
 'text', but not 'Text'. Open may be used as a logical function.
 It returns TRUE if it was able to open the file, and FALSE if it
 was not. Attempting to use the file in an illegal manner will
 produce a run time error.
	

 STANDARD PROCEDURES PAGE 8

 PRINT(expr, ...)

 PRINT converts its arguments into strings as appropriate and
 writes them to the standard output file.

 PRINTA(file, expr, ...)

 PRINTA is similar to PRINT, except that output is sent to the
 file specified by the first argument.

 PUT(file, expr, ...)

 PUT writes text lines to the file specified by the first
 argument. Each expression argument must be a string and results
 in a single line being written to the specified file.

 PUTB(file, expr, ...)

 PUTB writes binary values to the file specified the first
 argument. Each expression is written in an appropriate internal
 form which can later be read in using the GETB procedure.

 RANY(RW str, str)

 RANY is similar to ANY except that it matches from the right.

 RBREAK(RW str, str)

 RBREAK is similar to BREAK except that it matches from the
 right.

 READ(WR lhs, ...)

 READ reads values from the standard input file. Any input
 values which were not available because of encountering the end
 of file cause the corresponding arguments to be set to undefined
 (OM).

 READA(file, WR lhs, ...)

 READA is similar to READ except the first argument specifies the
 file which is to be read.

 RLEN(RW str, len)

 RLEN is similar to LEN except that it matches from the right.

 RMATCH(RW str, str)

 RMATCH is similar to MATCH except that it matches from the
 right.
	

 STANDARD PROCEDURES PAGE 9

 RNOTANY(RW str, str)

 RNOTANY is similar to NOTANY except that it matches from the
 right.

 RPAD(str, int)

 RPAD is similar to LPAD except that any needed blanks are added
 to the right of the first argument value.

 RSPAN(RW str, str)

 RSPAN is similar to SPAN except that it matches from the right.

 SETEM(integer, integer)

 SETEM sets the values of the run-time error mode and error limit
 according to the values of its first and second arguments,
 respectively. See section 5 for further information.

 SPAN(str, str)

 SPAN is a pattern match which matches the longest initial
 substring of its first argument which consists solely of
 characters in the second argument. SPAN must match at least one
 character if it succeeds.

 TITLE() or TITLE(str)

 TITLE with no arguments disables generation of titles. TITLE
 with an argument enables titling and establishes the argument as
 the title string of the next page. The implementation differs
 from the definition in that TITLE does not cause a page eject
 but leaves the standard output file on the last line of the
 current page so that the next print statement causes a page
 eject. Hence several calls to TITLE, without intervening
 actions that create output, just establish the argument of the
 last call, if it is not null, as the title of the next page.

	

 INPUT/OUTPUT PAGE 10

 3.0 Input/output

 The implementation of the input/output features differs in a number of
 ways from the definition.

 If READ or READA are used to input a real value with an exponent, the
 letter "E" must be specified in upper case.
	

 ADDITIONAL FEATURES PAGE 11

 4.0 Additional Features

 The implementation includes several additional features.

 These include listing control, remote text inclusion, a macro processor,
 and error values. Error values are described in section 5.

 4.1 Listing Control Commands

 Listing control commands are used to alter the form of the source
 program listing. They have no other effect on compilation or execution.
 They always occur on a separate line which begins with the characters
 " .". The listing control commands are as follows:

 .LIST
 Causes listing of following lines.

 .NOLIST
 Disables listing of following lines.

 .EJECT
 Causes generation of a new page on the standard output file.

 .TITLE
 Gives a title which will appear at the top of subsequent pages.
 The AT program parameter may be used to request "automatic
 titling" which causes each new procedure definition to force an
 eject with a title derived from the line containing the
 procedure definition header. The title text cannot contain the
 delimiting apostrophe character.

 4.2 Remote Text Inclusion

 Remote text can be merged with the standard input file during
 compilation using the .COPY command (recall that the command begins with
 ' .' in the first two columns.). The command line has the form

 .COPY 'name'

 and causes the specified remote text to be effectively substituted in
 place of the .COPY command. The remote text must be in an inclusion
 library. Sections of an inclusion library are specified by a line which
 begins with ' .=MEMBER name". A section is terminated by the next
 following MEMBER line or the end of the library.

 The remote text may contain .COPY commands. However, the depth of
 nested copies is limited to five.
	

 ADDITIONAL FEATURES PAGE 12

 The ILIB program parameter specifies the file containing the inclusion
 library.

 4.3 Macro Processor

 The compiler provides a macro processor which supports macros with
 parameters and generated local symbols.

 A macro definition has one of the following forms:

 MACRO macro_name; macro_body ENDM;
 MACRO macro_name (arglist); macro_body ENDM;

 The keyword ENDM may be followed by the macro name to increase
 readability. In both these forms macro_name is the macro name and
 macro_body is any sequence of text not containing macro_name. The
 argument list consists of a list of names of formal parameters and
 generated parameters:

 (fp1, fp2...; gp1, gp2...)

 At least one formal or generated parameter must be present. The
 semicolon appears only if there is at least one generated parameter.

 A macro with no arguments is invoked by writing its name, which is then
 replaced with the macro body. A macro with arguments is invoked in the
 form

 macro_name(ap1, ap2...)

 where the number of actual parameters is the same as the number of
 formal parameters. Each actual parameter is any sequence of tokens not
 containing a comma which is not included within parentheses. An
 invocation is replaced by the macro body, with each instance of a formal
 parameter replaced by the corresponding actual parameter.

 Macros with generated arguments are expanded similarly, except that a
 unique name is generated for each generated parameter, and each instance
 of the generated parameter is replaced by the corresponding name.

 The text of a macro with arguments may contain embedded macro
 definitions; these definitions become active when the macro is invoked.
 Macro expansion is recursive, and outside-in.

 Macros are undefined using the form:

 DROP macro_name1, macro_name2, ... macro_namen;

 which undefines each of the specified names.
	

 ADDITIONAL FEATURES PAGE 13

 4.4 Synonyms

 Several synonyms are recognized: OPERATOR for OP, PROCEDURE for PROC,
 and WHERE for ST.

 4.5 CONST Name

 The form "CONST name;" where name has not been previously declared is
 taken to be:

 CONST name='name';

 i.e., a constant string.

 4.6 FORALL Permitted For Iterators

 To provide compatibility with previous versions, FORALL may be used to
 begin iterators:

 (FOR x IN S)... END;
 (FORALL x IN s)...END;

 are equivalent.

 4.7 ARB In CASE Tag

 A CASE tag may have the form ARB S, where S is a constant set.

 4.8 Backtracking

 Backtracking is a powerful means of expressing search algorithms. The
 backtracking primitives are the OK operator, the LEV operator, the FAIL
 statement and the SUCCEED statement.

 OK is a niladic operator which saves the current values of all variables
 declared with the BACK attribute. The current position within the
 program is also saved.

 The FAIL statement has the form:

 FAIL;

 The values of all variables saved by the last OK are restored. The
 value of the last OK is set to FALSE and execution continues.

 LEV is a niladic operator which returns the number of environments
 currently being saved.
	

 ADDITIONAL FEATURES PAGE 14

 The SUCCEED statement has the form:

 SUCCEED;

 If a program performs a series of OK's and never reaches a FAIL then the
 saved values will tend to overflow memory. The SUCCEED statement
 releases the memory used for the last OK. It asserts that the program
 will never try to fail out of the OK.

 4.8.1 Demonstration Program Using Backtracking

 $ The 8 queens problem : E. Schonberg, NYU

 PROGRAM queens;

 VAR numqueens, boardsize, board;

 print('number of queens : '); read(numqueens);
 print('board size : '); read(boardsize);

 board := { [i,j] : i IN [1..boardsize], j IN [1..boardsize] };
 queens_backt(); $ backtracking version .
 STOP;

 PROC queens_backt;

 VAR used , possible : BACK;

 used := {};

 (WHILE #used < numqueens)
 possible := safe(used);
 IF (EXISTS pos IN possible ST OK) THEN
 used WITH:= pos;
 ELSE FAIL;
 END IF;
 END WHILE;

 printboard(used);

 END PROC;

 PROC safe(used);

 $ this utility procedure produces the board positions that are
 $ not under attack, after the positions in -used-
 $ have been occupied.

 RETURN
 {pos IN board ST (FORALL u IN used ST NOT attack(pos,u)) };
 END;
	

 ADDITIONAL FEATURES PAGE 15

 PROC attack(p1, p2);

 $ this utility checks whether positions p1 and p2 are
 $ mutually threatening.

 RETURN
 (p1(1) = p2(1)) OR $ same row.
 (p1(2) = p2(2)) OR $ same column .
 ((p1(1) - p1(2)) = (p2(1) - p2(2))) OR $ same up diagonal.
 ((p1(1) + p1(2)) = (p2(1) + p2(2))); $ same down diagonal.
 END;

 PROC printboard(used);

 top := boardsize * '__' + '_';
 row := boardsize * 'I_' + 'I';

 print; print;
 print(top);

 (FORALL rownum IN [1..boardsize])
 nextrow := row;
 (FORALL colpos IN used{rownum})
 nextrow(2*colpos) := '*';
 END;
 print(nextrow);
 END FORALL;

 print; print;

 END PROC;

 END PROGRAM;
	

 ADDITIONAL FEATURES PAGE 16

 4.9 Representation Sublanguage

 Representation declarations are used to indicate the representation of
 variables, procedures, operators, and symbolic constants.

 Each series of declarations can be followed by a REPR clause which has
 the format:

 REPR
 <repr clauses>
 END [REPR];

 4.9.1 Location Of Representation Declarations

 Representations for all variables and constants declared in a directory
 must occur after all global declarations and interface statements within
 the directory.

 Representations for all variables and constants declared at the
 beginning of a library, program or module must occur immediately after
 all global-to-library, global-to-program, or global-to-module
 declarations and the optional interface statements within the same
 library, program or module.

 Representations for library procedures must occur at the start of the
 library after the global variable declarations.

 Procedures exported by programs and modules must have their
 representations declared in the directory. Procedures which are local
 to a library, program or module are declared in the library, program or
 module.

 Formal parameters are represented implicitly by giving the
 representation of their procedure. These representation declarations
 can be duplicated within the procedure itself. Such duplicate
 representation declarations are checked for consistency.

 4.9.2 Restrictions

 Library procedures cannot have based arguments or return a based value.

 Variables declared to have LOCAL basing on a base B must have their
 representations declared in the same scope as B. Formal parameters can
 only be based on bases global to module or global to directory.

 Formal parameters can have LOCAL basing if their procedures are not
 recursive. Local variables can have LOCAL basing if their procedures
 are not recursive and if the variables are not backtracked.
	

 ADDITIONAL FEATURES PAGE 17

 4.9.3 REPR Statement

 The REPR declaration statement consists of a series of clauses. Each
 clause is a BASE clause, a PLEX BASE clause, a MODE clause, or a
 representation clause.

 The BASE clause declares a series of names to be bases. Its format is:

 BASE <base name list> : <mode>;

 A base name is either a name or the name of a constant set which has
 already appeared in a CONST statement.

 The PLEX BASE clause declares a series of names to be plex bases. It is
 similar to the base clause, but begins with the word PLEX, i.e.

 PLEX BASE <base name list>;

 The MODE clause creates a new name for a mode. Its form
 is:

 MODE <name> : <mode> ;

 A representation clause gives the types of variables, symbolic
 constants, procedures and user defined operators, and has the form:

 <name list> : <mode>;

 4.9.4 Modes

 This section gives an informal description of the productions for <mode>
 along with their meanings.

 general variable can have any type
 * synonym for general
 ELMT <name> element of base
 <name> mode declared in prior MODE clause
 INTEGER integer
 INTEGER cexp ... cexp integer in range cexp...cexp
 REAL
 STRING
 ATOM
 ERROR
 UNTYPED REAL
 UNTYPED INTEGER
 SET(mode)
 SET set(*)
 TUPLE(mode) tuple of mode
 TUPLE(mode) (n) tuple of mode, estimated length n
 TUPLE tuple(*)
 TUPLE(m1, ..., mn) mixed tuple : component i has mode mi
	

 ADDITIONAL FEATURES PAGE 18

 MAP(m1, ..., mn) mn+1 (ambiguous) map
 SMAP(m1, ..., mn) mn+1 single valued map
 MMAP{m1, ..., mn} mn+1 map likely to be multivalued
 MAP synonym for MAP(*) *
 SMAP synonym for SMAP(*) *
 MMAP synonym for MMAP{*} *
 MAP(m1, ..., mn) synonym for MAP(m1, ..., mn) *
 SMAP(m1, ..., mn) synonym for SMAP(m1, ..., mn) *
 MMAP(m1, ..., mn) synonym for MMAP{m1, ..., mn} set(*)
 MMAP(m1, ..., mn) mn+1 synonym for MMAP{m1, ..., mn} set(mn+1)
 LOCAL <set or map mode>
 REMOTE <set or map mode>
 SPARSE <set or map mode>
 PACKED <tuple or map mode>

 PROC(m1, ..., mn) mn+1 procedure
 PROC(m1, ..., mn)
 PROC
 PROC() m

 OP(m1, ..., mn) mn+1 Operator
 OP(m1, ..., mn)
 OP

 4.10 Structuring Large Programs

 This section uses the syntax conventions of chapter 8 of the reference
 manual to describe the means provided for organizing large SETL
 programs.

 A SETL program may consist of a directory, a program unit and also
 module and library units.

 module_prog {library_unit}
 direc_unit prog_unit
 {module_unit}
 {decl_repr}

 direc_unit DIRECTORY tok_nam ;
 {decl}
 PROGRAM tok_nam - tok_nam : dir_spec
 {MODULE tok_nam - tok_nam : dir_spec }
 END [DIRECTORY [...]] ;

 decl VAR tok_nam {, tok_nam} [: BACK] ; |
 CONST declcon {, declcon} ; |
 INIT tok_nam := constant
 {, tok_nam := constant} ; |

 declcon toknam [= constant]

 decl_repr REPR repr {repr} END [REPR [...]] ;
	

 ADDITIONAL FEATURES PAGE 19

 The DIRECTORY unit gives the relationships between the other units and
 includes the declarations of any global variables and constants. The
 PROGRAM unit contains the main program. The MODULE and LIBRARY units
 contain groups of related procedures.
 Units referenced within the directory have names of the form:

 dir_name - unit_name

 dir_name is the name given in the DIRECTORY statement, and unit_name is
 the name of the unit.

 4.10.1 Directory Specification

 A directory specification has the form;

 dir_spec {dir_item} {decl_repr}

 dir_item reads_item | writes_item |
 exports_item | imports_item

 reads_item READS tok_nam {, tok_nam} ; |
 READS ALL;

 writes_item WRITES tok_nam {, tok_nam} ; |
 WRITES ALL;

 imports_item IMPORTS pspec {, pspec} ;

 exports_item EXPORTS pspec {, pspec} ;

 lib_item LIBRARIES tok_nam {, tok_nam} ;

 pspec tok_nam [(pspeca {, pspeca})] |
 tok_nam [({pspeca ,} pspeca (*)]

 pspeca RD [tok_nam]
 WR [tok_nam]
 RW [tok_nam]
 [tok_nam]

 A reads_item lists the global variables and constants which may be read
 within a unit. A writes_item lists the global variables to which new
 values may be assigned within a unit.

 An imports_item lists the procedures defined elsewhere which are used
 within a unit. An exports_item lists the procedures defined within the
 unit which can be imported by other units.

 A lib_item lists the libraries used within a unit and causes all of the
 procedures of the library to be imported.
	

 ADDITIONAL FEATURES PAGE 20

 4.10.2 PROGRAM Unit

 The program unit defines the main program:

 prog_unit PROGRAM tok_nam - tok_nam ;
 {lib_item}
 dir_spec
 {decl decl_repr}
 {stmt}
 {refine}
 {routine}
 END [PROGRAM [...]] ;

 The program unit is similar to the program part of a short SETL program
 which consists solely of a program unit and procedures.

 4.10.3 MODULE Unit

 A module_unit contains a set of related procedures:

 module_unit MODULE tok_nam - tok_nam ;
 {lib_item}
 dir_spec
 {decl decl_repr}
 routine
 {routine}
 END [MODULE [...]] ;

 The procedures may access global variables declared in the directory.
 Directory specifications within the MODULE may be included for
 documentary purposes. If given, they must agree with the specifications
 in the DIRECTORY.

 4.10.4 LIBRARY Unit

 A library unit has the form:

 library_unit LIBRARY tok_nam ;
 {lib_item}
 {exports_item}
 {decl decl_repr}
 routine
 {routine}
 END [LIBRARY [...]] ;

 A library_unit is similar to a module_unit except that it may not access
 global variables.
	

 ERRORS PAGE 21

 5.0 Compilation And Execution Errors

 During the course of translation or execution the system may detect an
 error.

 5.1 Translation Errors

 Translation errors cause generation of an error message on the standard
 output file. Since the compiler runs in three phases, three distinct
 listing files may be produced. Most ordinary syntactic errors will be
 caught by the first (PRS) phase. Errors uncovered by the SEM and COD
 phases are usually more global in nature. The error recovery scheme
 used is quite weak, and error messages after the first few may not be
 too reliable.

 Several program parameters are related to error processing. The PEL,
 SEL and CEL parameters respectively specify the maximum number of errors
 permitted during the PRS, SEM and COD phases. A choice of low values
 can force compilation to terminate after the detection of a small number
 of errors. The UV option can be used to identify undeclared variables.

 The compiler contains a number of tables which in some cases may
 overflow. Overflow is reported by the generation of an error message,
 usually containing the internal name of the table, and compilation is
 abnormally terminated. Errors of this sort require that the program be
 made "smaller", for example, by dividing a large procedure into several
 smaller procedures.

 5.2 Execution Errors

 Processing of errors during execution (run-time) is controlled by the
 REL and REM program parameters, and by the GETEM and SETEM builtin
 procedures. The system deals with errors according to the error mode in
 effect. Certain errors (deemed "fatal") always cause execution to
 abnormally terminate. Otherwise error handling depends on current error
 mode and error limit, as follows:

 1. EM=1

 Ignore error if possible, yield OM as value.

 2. EM=2

 Print error message, increment error count. If the cumulative
 error count exceeds the error limit, abnormally terminate
 execution. Otherwise, yield OM as value and continue
 execution.
	

 ERRORS PAGE 22

 3. EM=3

 Increment error count, continue execution. This mode is used
 by the SETL optimizer; its use is not suggested.

 4. EM=4

 Print error message, increment error count. If the cumulative
 error count exceeds the error limit, abnormally terminate
 execution. Otherwise, return a special "error value" and
 continue execution. An error value is a special internal
 object which contains an encoding of the point in the program
 at which the error occurred. Error values may be printed, in
 which case the description of the program point is converted
 into readable form.

 The initial error mode is specified by the REM program parameter. The
 initial error limit is specified by the REL program parameter. The
 procedure GETEM(a, b) assigns the current error mode to a and the
 current error limit to b. The procedure SETEM(a, b) sets the error mode
 to a and the error limit to b.

 5.3 TRACE Statement

 The current implementation recognizes but does not fully process a trace
 statement which has the form:

 trace_stmt trace_key trace_opt {,trace_opt}
 trace_key TRACE | NOTRACE
 trace_opt CALLS | STATEMENTS | name

 This feature is not fully working. The CALLS and STATEMENTS traces are
 available. TRACE name is available in experimental form on some but not
 all systems.

 5.4 DEBUG Statement (System Checkout)

 The current implementation includes a debugging statement used for
 system checkout which has the form:

 DEBUG dopt {, dopt};

 It is not needed for ordinary use; it is described here for
 completeness. Users of an experimental bent can use it to probe system
 innards; also on occasion requests may be made to use this feature to
 assist in remote diagnosis of a problem. Not all options need to work
 on every system.
	

 ERRORS PAGE 23

 5.4.1 PRS Options

 The options that apply to PRS are:

 PTRM0 disable macro-processor trace
 PTRM1 enable macro-processor trace
 PTRP0 disable parser trace
 PTRP1 enable parser trace
 PTRT0 disable token trace
 PTRT1 enable token trace
 PRSOD list "open" tokens
 PRSPD list polish and x-polish tables
 PRSSD list symbol table

 5.4.2 SEM Options

 The options that apply to SEM are:

 STRE0 disable entry trace
 STRE1 enable entry trace.
 STRS0 disable ASTACK trace. ASTACK is the argument stack.
 STRS1 enable ASTACK trace
 SQ1CD list Q1 code
 SQ1SD list Q1 symbol table
 SCSTD list CSTACK.

 5.4.3 COD Options

 The options that apply to COD are:

 CQ1CD list Q1 code
 CQ1SD list Q1 symbol table
 CQ2CD list Q2 code

 5.4.4 LIB Options

 The options that apply to LIB are:

 RTRE0 disable entry trace of SETL LIB procedures
 RTRE1 enable entry trace to procedures in SETL LIB
 RTRC0 disable code trace
 RTRC1 enable code trace
 RTRG0 disable garbage collector trace
 RTRG1 enable garbage collector trace
 RGCD0 disable dynamic storage dumps during garbage collection
 RGCD1 enable dynamic storage dumps during garbage collection
	

 ERRORS PAGE 24

 RDUMP dump dynamic storage to file specified by DUMP= program
 parameter for later examination using DMP program
 RGARB force a garbage collection

 5.5 Expiration Check

 The distributed system may contain an expiration check. During the
 month before expiration, a warning message of the form

 nnn DAYS TO EXPIRATION.

 is generated at the start of the standard output file. Consult the
 system manager if this message appears, so arrangements to acquire a new
 copy of the SETL system can be made before expiration. Expiration is
 signaled by issuing the message

 EXPIRED, OBTAIN NEW COPY.

 and then execution is abnormally terminated.
	

 PROGRAM PARAMETERS PAGE 25

 6.0 Program Parameters

 This section describes the program parameters supported by the compiler
 and interpreter. These parameters are specified as part of the command
 line used to invoke the SETL system. The system program parameters are
 described in the LITTLE format

 NAME=DEFVAL/ALTVAL

 where NAME is the parameter value, DEFVAL is the default value if the
 parameter is not otherwise specified, and ALTVAL is the value taken if
 the parameter name alone is given. Parameter values are either decimal
 integers or character strings. For example, given

 P=0/1

 then if P not mentioned, value 0 is implied. If P alone specified, then
 value 1 is implied. If P=n specified, the value n is implied.

 A number of parameters have the form NAME=0/1. Such values are logical
 switches in that they select one of two cases, according as value is
 zero or non-zero. In the latter case, the option is said to be ENABLED
 or SELECTED.

 Each parameter description mentions the phases for which the parameter
 has meaning. Note that the parameter codes have been chosen so that the
 same list can be passed to all phases; i.e., the same parameter does
 not have differing meanings in different phases.

 Parameter values are sought left to right so that, for example,

 P=1,LIST,P=2

 yields value 1 for parameter P.

 Parameters specifying files tend to be machine-dependent; see section 8
 for the conventions and defaults used for a particular implementation.

 ASM=0/1 (COD)

 Controls whether assembly code output for hard code is produced.

 ASSERT=1/2 (LIB)

 Specifies processing of ASSERT statements, as follows:

 0 - Treat all assertions as no-ops; the expression of the
 assert statement is not evaluated.
 1 - Test all assertions, yield error on assertion failure.
 2 - Test all assertions, print true assertions, yield error
 on assertion failure.

	

 PROGRAM PARAMETERS PAGE 26

 AT=0/1 (PRS)

 Controls whether automatic titling is in effect. This option is
 enabled by AT=1. If enabled, then each new procedure causes a
 new page on the listing. Note that a listing is produced only
 if the listing option (LIST=1) is specified.

 BACK=0/1 (COD)

 Controls whether code supporting backtracking is generated.
 This option must be selected if the program uses backtracking.

 BIND=0/filename (SEM)

 Specifies BINDer file used to merge results of prior
 compilations. This feature is intended to permit separate
 compilation. It is under development and will not be described
 further.

 CA=0/0 (COD)

 Gives length of constants area. If zero specified, value used
 is half that given by H= parameter. A value less than 1024 is
 multiplied by 1024; for example CA=2 is equivalent to CA=2048.

 CEL=1000/1000 (COD)

 Specifies the COD error limit. If more than the specified
 number of errors are detected by the COD phase, compilation is
 terminated.

 CSET=EXT/POR (PRS)

 Specifies character set of SETL source, as follows:

 POR Portable character set
 << for left set bracket
 >> for right set bracket
 (/ for left tuple bracket
 /) for right tuple bracket

 EXT Extended set, consisting of portable set plus
 { for left set bracket
 } for right set brace
 [for left tuple bracket
] for right tuple bracket
 | for ST
 ! for ST

 The above characters are the standard ASCII extended set. The
 actual character available is of course machine dependent.

	

 PROGRAM PARAMETERS PAGE 27

 CTRACE=0/1 (LIB)

 Controls whether the procedure call trace feature of the SETL
 Debugger is activated. This feature is under development.

 DEBUG=0/1 (LIB)

 Controls whether the SETL Debugger is activated. This feature
 is under development.

 DITER=0/1 (SEM)

 Controls whether compiler may assume that within loops objects
 being iterated over are not modified. The default value is
 consistent with the definition in that iterations always cause a
 copy to be made of the object being iterated over, thus
 permitting modification of the object. When selected, the
 compiler will not cause the copy to be made.

 DUMP=filename (LIB)

 Specifies file to receive internal dump of SETL heap; this
 feature used for system checkout. This feature also permits
 programs with a lengthy initialization process to be run with
 the initialization done only once. For example, consider the
 program

 program main;
 initialize();
 debug rgarb; debug rdump;
 mainbody();
 ...

 Then if the program is run and the DUMP file is specified,
 further runs can be done by using the DUMP file generated as the
 Q2 file.

 ETIM=0/1 (all)

 Specifies whether elapsed execution time should be reported on
 the standard listing file.

 H=0/0 (COD,LIB)

 Specifies initial heap length. A value less than 1024 is
 multiplied by 1024; for example, H=2 is equivalent to H=2048.
 This value need be specified only to set an initial large heap
 size in order to prevent system expanding heap in steps when
 prior runs have revealed that a large heap is needed. The
 default of zero specifies that the SETL system is to set up a
 heap of reasonable size that should be sufficient for most
 applications.

	

 PROGRAM PARAMETERS PAGE 28

 I=filename (LTL)

 Specifies the standard input file.

 ILIB=filename (LTL)

 Specifies the file containing the inclusion library. This
 parameter has meaning only if the .COPY command is used to
 include remote text.

 LCP=0/1 (all)

 Controls whether program parameters are listed on the standard
 listing file.

 LCS=1/0 (all)

 Controls whether execution statistics are listed on the standard
 listing file.

 L=filename (LTL)

 Specifies name of standard output (listing) file.

 LIST=0/1 (PRS)

 Controls whether listing of source program is produced. LIST=1
 must be selected to produce a listing.

 MAX_HEAP=0/ (LIB)

 Allow heap expansion to specified number of SETL words. Zero,
 the default, is interpreted as 'take what is left in the
 process' address space minus what is expected to be needed for
 i/o buffers' (cf. NOF program parameter).

 MEAS=0/1 (PRS)

 Controls whether program measurements are to be made of time
 spent in LIB phases. This feature is under development and is
 currently not of interest to the ordinary user.

 MLEN=1000/ (PRS)

 Gives maximum number of tokens allowed in single macro body.

 NOF=5/ (LIB)

 Number Of Files that are open simultaneously. This parameter
 assures that the dynamic storage management routines leave
 enough address space to the operating system so that the user
 can have NOF open files.

	

 PROGRAM PARAMETERS PAGE 29

 OPT=0/1 (PRS, SEM, OPT, COD)

 Controls whether global optimization is in effect. This option
 has effect only if the SETL optimizer is available.

 PEL=1000/1000 (PRS)

 Gives the PRS error limit. If more than the specified number of
 errors are detected during the PRS phase, compilation is
 abnormally terminated.

 PFCC=1/0 (LTL)

 Controls whether standard output file contains carriage control
 information. If PFCC=0 selected, then no carriage control is
 provided.

 PFCL=0/80 (LTL)

 Specifies characters per line of standard output file, including
 the column used for carriage control. PCFL=0 specifies the
 default line length. PFCL=80 useful when output is directed to
 terminal.

 PFLL=0/0 (LTL)

 Controls, in conjunction with PFPL parameter, whether a line
 limit control is to be enforced on the standard output file (see
 description of PFPL parameter).

 PFLP=60/0 (LTL)

 Specifies number of lines per page on the standard output file.

 PFPL=100/0 (LTL)

 Specifies print file page limit for standard output file. This
 parameter, in conjunction with PFLL parameter, controls whether
 a page limit control is to be enforced on the standard output
 file. There are several cases, as follows:

 PFPL=0,PFLL=0
 no limits enforced
 PFPL=n,PFLL=0 (n>0)
 limit of n pages or n*PFLP lines enforced
 PFPL=0,PFLL=n (n>0)
 limit of n lines enforced
 PFPL=n,PFLL=m (n>0,m>0)
 limit of n pages or m lines enforced

 The default may be set to PFPL=0,PFLL=0 for a particular site if
 it is not customary to enforce print file limits.

	

 PROGRAM PARAMETERS PAGE 30

 POL=filename (PRS, SEM)

 Specifies the intermediate "Polish" file created by PRS and read
 by SEM.

 Q1=filename (SEM,COD)

 Specifies the intermediate Q1 file created by SEM and read by
 COD.

 Q2=filename (COD,LIB)

 Specifies the Q2 file created by COD and read by LIB.

 REL=0/0 (LIB)

 Specifies the Run-time Error Limit. When more than specified
 number of errors are detected, execution is abnormally
 terminated. See also the section on "errors".

 REM=2/2 (COD)

 Specifies the run-time error mode. The need for a value other
 than the default should not arise in usual practice. See
 section on "errors" for more information.

 REPRS=1/1 (SEM, COD)

 Controls effect of declared representations on code generation.
 REPRS=0 causes compiler to ignore any representation
 declarations as much as possible, though declarations are
 checked for consistency. Specify REPRS=2 to give same result as
 REPRS=1 with additional effect of printing a message during code
 generation for each conversion generated between non-primitive
 values; this requires use of LIST qualifier to have any effect.

 SB={}/<<>> (LIB)

 Specifies characters for printing set brackets.

 SEL=1000/1000 (SEM)

 SEM Error Limit which, if exceeded, causes SEM to abnormally
 terminate.

 SEQ=LS (PRS)

 Selects whether line numbers (SEQ=L), statement numbers (SEQ=S),
 both (SEQ=LS), or neither (SEQ=), are listed in source listing.

 SIF=0/1 (SEM, COD)

 Controls whether intermediate files are to be saved. The
 default is to drop intermediate files. However, SIF=1 must be
 specified to save the Q1 file when the binder is used.
	

 PROGRAM PARAMETERS PAGE 31

 SNAP=0/1 (LIB)

 Controls whether SNAP dump of recent values of variables is to
 be produced when run-time error detected. Specify zero value to
 suppress this dump.

 SOCASE=0/0 (LIB)

 Controls the case in which values of string-valued primitives
 are returned. SOCASE=0 specifies the default case; SOCASE=1
 specifies lower case; SOCASE=2 specifies upper case. This
 option is useful in porting programs between two systems which
 have different default cases; for example, VAX VMS
 implementation has upper case as default while VAX UNIX
 implementation has lower case as default. Currently this option
 affects only the case of values returned by TYPE operator. In
 general, TYPE can be avoided by using

 IS_INTEGER x

 instead of

 TYPE x = 'INTEGER'

 SQ1=filename (SEM, OPT, COD)

 Specifies the file containing SQ1 form of program text. This is
 used by the SETL optimizer, which is under development, and will
 not be needed for normal use.

 SSM=filename (PRS, OPT)

 Specifies the file to contain source listing in form of SETL
 map. This file is used by the SETL optimizer and also by some
 of the SETL measurement facilities.

 ST=0/0 (COD)

 Specifies the initial length of run-time symbol table. If ST=0
 is specified, the system makes a reasonable guess; otherwise
 the specified number of words are allocated for the run-time
 symbol table. To simplify writing of large values,
 specification of ST=n where n<1024 is taken as though ST=n*1024
 had been written.

 STLO=1/1 (COD)

 Specifies initial statement number for measurement. Used in
 conjunction with MEAS and STHI parameters.

 STHI=0/0 (COD)

 Specifies final statement number for measurement. Used in
 conjunction with MEAS and STLO parameters.
	

 PROGRAM PARAMETERS PAGE 32

 STMT=1/2 (COD)

 Controls generation of Q2 STMT quadruples used to record program
 position during execution. STMT=0 causes no STMT quadruples to
 be generated, so that error messages will indicate first
 statement in the procedure in which the error occurred. STMT=1
 causes a STMT quadruple to be generated for each statement.
 STMT=2 causes an additional STMT quadruple to be generated after
 each procedure call; this is only needed for more accuracy in
 program profiles generated using the various SETL measurement
 facilities.

 STRACE=0/1 (LIB)

 Controls whether dynamic trace giving statement number of each
 statement executed is produced. The statement numbers are given
 in the PRS listing (which is generated only if the LIST option
 selected).

 TB=[]/() (LIB)

 Specifies the characters for "tuple brackets" to be used when
 printing values.

 TERM=filename (LTL)

 Identifies the file to receive "terminal" output. If requested,
 this file will contain copies of error messages, warnings, etc.,
 written to standard output file (see L= parameter). Note that
 implementations for interactive systems will usually produce a
 terminal file which will be sent to the user's terminal. Other
 implementation will produce the output on a separate file. The
 option TERM=0 always suppresses the terminal output.

 TERMH=0/1 (LTL)

 Controls whether a terminal "header line" is to be sent to the
 terminal when a program starts up.

 TERMP=implementation-dependent (LTL)

 Specifies the prompt character for terminal input. TERMP=0
 gives no prompt. The default is to prompt on terminal input;
 the prompt character varies from implementation to
 implementation.

 TITLE=0/1 (LIB)

 Controls whether LIB will produce standard output file which is
 divided into pages and has title for each page.

	

 PROGRAM PARAMETERS PAGE 33

 TP=0/0 (PRS)

 Controls whether PRS is to terminate compilation if any errors
 detected.

 UPD=0/1 (PRS)

 Controls whether source file is assumed to be in LITTLE UPD
 library format (UPD=1), permitting direct compilation of such
 library files.

 UR=0/1 (SEM)

 Controls whether SEM will give warning message for variables for
 which no representation declaration has been given. This option
 has meaning only if REPRS=1 is in effect.

 UV=0/1 (SEM)

 Controls whether SEM will give warning message for undeclared
 variables.

 XPOL=filename (PRS,SEM)

 Specifies the intermediate "X-Polish" file created by PRS and
 read by SEM.

 6.1 Debugging Parameters

 The system recognizes a number of program parameters which are used for
 system checkout and should not be needed in normal use. Note however,
 that the system will search for these parameters in the option string so
 that, for example, GDUMP can not be used as name of user parameter for
 GETIPP or GETSPP.

 CHK SEM check code fragments
 CQ1CD COD list Q1 code
 CQ1SD COD list Q1 symbol table
 CQ2CD COD list Q2 code
 CQ2SD COD list Q2 symbol table
 CTRE COD trace entry to procedures
 DUMP LIB names file to receive storage dump
 ENTRY LIB procedure entry trace
 ET all obtain dumps after errors
 GDUMP LIB save dynamic storage image on file
 GTRACE LIB trace garbage collector
 IDUMP LIB generate initial dynamic storage dump
 MT PRS trace macro processor
 PD PRS dump polish text
 PT PRS parser trace
 SD PRS symbol table dump
	

 PROGRAM PARAMETERS PAGE 34

 SQ1CD SEM list Q1 code
 SQ1SD SEM list Q1 symbol table
 STORES LIB enable stores trace
 TRE SEM trace procedure entry
 TRP SEM trace polish file
 TRS SEM trace astack
 TT PRS trace token stream

 7.0 Interface To Procedures Not Written In SETL

 The interface described in this section is currently available only for
 the VAX/VMS implementation and the description is for this
 implementation. It is planned to make the interface available for other
 SETL implementations, at which time the documentation will be suitably
 revised.

 The SETL programmer can access procedures written in other languages,
 such as FORTRAN or MACRO, thus making it possible to use system features
 not available in the standard SETL system and to install high-efficiency
 options.

 On the VAX it is particularly easy to call procedures written in a
 variety of other languages, since VAX VMS uses a standard system-wide
 calling sequence. This description will emphasize use of FORTRAN as the
 language used to construct a SETL-to-external facilities interface.
 However, the same methods can be readily adapted for use with other
 languages.

 The system works as follows. A FORTRAN 'driver' program passes to SETL
 an array giving the addresses of the FORTRAN procedures which are to be
 made available. Communication between SETL and FORTRAN involves three
 new SETL primitives: PUTF, CALLF and GETF. PUTF stores SETL values in
 a communication area. CALLF passes control to a FORTRAN procedure whose
 argument list is formed from a specified slice of the communication
 area. GETF is then used to retrieve values from the communication area
 and make them available to SETL. The types of values that can be
 communicated are SETL integers, reals, strings, tuples of integers or
 tuples of reals.

 The variant SETL LIB, supplemented with the user-provided procedures,
 can then be run by using the standard SETLX command. All this permits
 the user to provide his own extension to SETL.

 To use the interface, the user must supply the main program which
 identifies the external procedures to be called using PUTF. This is
 done by passing an array whose components are the addresses of the
 procedures to be invoked; the I-th entry of this array must be the
 address of the procedure to be called when PUTF is called with a first
 argument having value I.

 For example, the following shows the FORTRAN main program text needed to
 define procedures SUB1 and SUB2 as the first and second procedures,
	

 Interface to procedures not written in SETL PAGE 35

 respectively, to be accessed using PUTF:

 EXTERNAL SUB1,SUB2
 INTEGER EARA(2)
 EARA(1) = %LOC(SUB1) ! ADDRESS OF FIRST PROCEDURE
 EARA(2) = %LOC(SUB2) ! ADDRESS OF SECOND PROCEDURE
 CALL STLINT(EARA,2) ! PASS TWO EXTENSION PROCEDURE
 ! TO SETL
 END

 7.1 Representation Of Values, Datatypes Supported

 The interface uses data representations which reflect the basic hardware
 representation of numeric and string quantities. SETL values are put
 into this form when presented to interface procedures; results returned
 from interface procedures initially use the same form, but are then
 converted into the internal form used by the SETL system.

 The interface supports the following SETL data types: integer, real,
 string, tuple of integers, or tuple of reals.

 1. Scalar Integer SETL integers are represented as VAX longwords;
 the value spans the full hardware range except for the special
 'undefined integer' value used by SETL (which has hex value
 '80000000'). In FORTRAN, an integer value must be declared as
 INTEGER*4.

 2. Scalar Real A SETL real is represented as a VAX longword; the
 value spans the full hardware range except for the special
 'undefined real' value used by SETL for 'untyped real' (which
 has hex value '00000001'). In FORTRAN, a real value must be
 represented as REAL.

 3. Tuple of Integer or Real A tuple of integers or reals is
 represented as an array of longwords. The tuple must contain
 no undefined elements, or 'holes'; ie., no element can be the
 undefined value OM. When passing values from SETL to the
 interface, the type of the tuple is determined from the type of
 the first component, which must be an integer or real. The
 remaining elements of the tuple must all have the same type.
 When returning values from the interface to SETL, all
 components of the tuple are interpreted according to the type
 specified.

 4. Scalar String A SETL string is represented to FORTRAN as a
 character string.

	

 Interface to procedures not written in SETL PAGE 36

 7.2 SETL Interface Procedures

 SETL procedure PUTF passes SETL values to a communication area. CALLF
 calls a FORTRAN procedure. GETF makes available results computed by the
 interface procedure.

 7.2.1 PUTF(int,exp...exp)

 The first integer argument of this new primitive gives the starting
 index in the communication tuple. The remaining arguments are then used
 to assign new values to the components of the communication tuple,
 starting at the specified index. The value of the first argument must
 be no greater than the length of the communication tuple, except that it
 can have value one greater than the length of the communication tuple
 (which is initially null), in which case new values are added to the
 communication tuple. The expression arguments of PUTF must all be
 defined (not OM).

 Result values computed by FORTRAN procedures must have same type and
 structure as corresponding entry in communication tuple. In particular,
 output variables must have their type and structure indicated before
 CALLF is invoked. For example, if a procedure is to return an array of
 two integers, then the communication entry which it will use for the
 data which it returns must be initialized to the tuple [0,0].

 7.2.2 CALLF(int,int,int)

 The first argument of CALLF identifies the interface procedure be
 called. The second argument gives the starting index in the
 communication area at which the arguments of the FORTRAN procedure to be
 invoked have been placed, and the third argument gives the number of
 arguments to be passed. The components selected in the communication
 tuple are used to construct a standard FORTRAN argument list and the
 selected interface procedure is then called.

 7.2.3 GETF(int,lhs...lhs)

 The first argument to GETF identifies the starting index in the
 communication tuple from which values supplied by a FORTRAN procedure
 are to be read. Successive values are then retrieved from the
 communication tuple and assigned to the remaining arguments of GETF, in
 the order specified.
	

 Interface to procedures not written in SETL PAGE 37

 7.3 Using The Interface

 To use the interface, you must supply a FORTRAN main program and
 auxiliary procedures which you wish to make available. Assume, to be
 specific, that all FORTRAN text is in file F.FOR, the SETL program in
 file F.STL. Compile your FORTRAN code to obtain F.OBJ, and your SETL
 program to get F.COD. Then link to obtain F.EXE as follows:

 $ LINK F+'STLLIB

 Once this step has built your SETL extension, the resulting EXE file can
 be executed directly. You can also substitute your modified SETL for
 the standard SETL interpreter by executing the following assignment:

 $ SETL_LIB :== $DISK_SPEC:F

 where DISK_SPEC must specify device and directory containing the file.
 (The full specification MUST be supplied due to the VMS conventions for
 defining 'foreign' commands.)

 7.4 Sharing Of Data, Implementation Notes

 The SETL system uses its own internal representation of values to
 maintain type information required for dynamic typing and to support
 dynamic storage management. The interface has been designed to pass
 values without needless copying; when necessary, copies of values are
 made in a work area maintained by the system. In general, copies in the
 work area are needed for all data types except strings and tuples of
 'untyped' integers of reals. Values returned from the interface are
 always copied back into SETL dynamic storage.

 NOTE

 Addresses of values passed from PUTF to
 the interface should not be saved by any
 FORTRAN procedure for use in a subsequent
 call to an interface procedure, as a SETL
 garbage collection may occur, thus voiding
 any saved addresses, which will then most
 likely refer to other values.

 Aside from the cost of creating 'yet another SETL variant', the major
 cost of using this feature results from the need to include a full copy
 of the SETL run-time system in the executable program; this copy in
 turn includes a copy of the LITTLE system and system procedures
 themselves. These costs are avoided by default using the VAX/VMS
 system, which supports 'shared libraries'.
	

 Interface to procedures not written in SETL PAGE 38

 7.5 Sample Program

 This section contains an example of the interface. Three features are
 provided by the SETL extension defined in our example:

 1. String to integer conversion. This feature converts a string
 to an integer, and is useful since SETL VAL is not implemented.

 2. Real to string formatting. SETL provides no formatting
 features for printing real values. This extension provides
 access to FORTRAN F-format formatting features.

 3. Minimum element of tuple. This part of our example shows how
 to access and return tuple values.

 A SETL program DEMO1.STL demonstrating this is as follows:

 PROGRAM demo1;
 $ This variant supports the following PUTF calls:
 $ PUTF(1,STRING)
 $ converts the second argument to integer
 $ PUTF(2,REAL,INTEGER,INTEGER);
 $ converts second argument to string using FORTRAN F format.
 $ The third argument is the field length. The fourth argument
 $ is the number of digits desired after the decimal point.
 $ point.
 $ PUTF(3,TUP)
 $ searches the first argument, which must be integer tuple,
 $ returns tuple whose first component is minimum value, and
 $ whose second component is the index of the first element
 $ in the input tuple having the minimum value.
 $ If the input is the null tuple, the output is the tuple
 [0,0].
 LOOP DO
 PRINT('enter putf function number (1:3)');
 READ(n);
 IF EOF THEN QUIT; END IF;
 IF NOT IS_INTEGER n OR n<1 OR n>3 THEN CONTINUE; END IF;
 CASE n OF
 (1): PRINT('enter string');
 READ(s);
 PUTF(1,s,0); CALLF(1,1,2); GETF(2,r);
 (2): PRINT('enter real, field length, fract');
 READ(rv,fld,fract);
 PUTF(1,rv,fld,fract,' '*40); CALLF(2,1,4); getf(4,r);
 (3): PRINT('enter tuple');
 READ(tup);
 PUTF(1,tup,#tup,[0,0]); CALLF(3,1,3); GETF(3,r);
 END CASE;
 PRINT('result type, value: ', type r, r);
 END LOOP;
 END PROGRAM;

 The FORTRAN program DEMO1.FOR defining the extension is as follows:
	

 Interface to procedures not written in SETL PAGE 39

 external pimki,pifrs,pimin
 integer eara(3)
 eara(1) = %loc(pimki)
 eara(2) = %loc(pifrs)
 eara(3) = %loc(pimin)
 call STLINT(eara, 3)
 end
 subroutine pimki(str,iv)
 ! convert input string to integer
 character*(*) str
 integer*4 iv
 call for$cnv_in_i(str, iv)
 return
 end
 subroutine pifrs(rv,length,fract,str)
 ! convert real value to string
 ! first arg is real, second arg is field length,
 ! third arg is number of places after decimal point
 double precision dv
 real rv
 character*(*) str
 integer iv,fract,length
 dv = rv
 call for$cnv_out_f(dv, str,%val(fract),)
 return
 end
 subroutine pimin(itup,n,minr)
 ! find minimum of integer tuple. Return tuple with first
 ! component the minimum value, second component the least
 ! index of input tuple with that value
 integer*4 minr(2)
 if (n.eq.0) then ! if null tuple
 minr(1) = 0
 minr(2) = 0
 else
 call pimin1(itup,n,minr)
 endif
 return
 end
 subroutine pimin1(ia,na,minr)
 integer*4 na,ia(na),minr(2)
 minr(1) = ia(1)
 minr(2) = 1
 do 1 i = 1,na
 if (ia(i).lt.minr(1)) then
 minr(1) = ia(i)
 minr(2) = i
 endif
 1 continue
 return
 end

 The standard library procedures used in the preceding code are described
 in the VAX VMS Common Run-time Procedures Manual.
	

 Interface to procedures not written in SETL PAGE 40

 The demonstration program is built by the following command sequence:

 $ FORTRAN DEMO1 ! compile FORTRAN text
 $ SETL DEMO1/NORUN ! compile SETL text
 $ LINK DEMO1+'STLLIB

 and is run by executing

 $ RUN DEMO1

 In response to the prompt PARAMETERS produced by this last command, the
 user should type

 Q2=DEMO1.COD

 Sample inputs are then solicited to verify and demonstrate the correct
 operation of the extension.

 The program can also be used as the standard SETL library phase by
 executing the command

 $ setl_lib :== $file_spec:demo1

 and then executing it using

 $ setlx demo1

	

 RESERVED WORDS PAGE 41

 8.0 Reserved Words

 The following words have a predefined meaning within a SETL program, and
 should only be used for their defined purpose.

 abs false match real
 acos fix max remote
 all float min repr
 and floor mmap return
 any for mod rewind
 arb forall mode rmatch
 asin from module rnotany
 assert fromb nargs rpad
 atan frome newat rspan
 atan2 general not rw
 atom get notany set
 back getb notexists setem
 base getem notin sign
 boolean getf notrace sin
 break getipp npow smap
 callf getk odd span
 calls getspp of sparse
 case goto ok sqrt
 ceil host om st
 char if op statements
 close impl open step
 const imports operator stop
 continue in or str
 cos incs packed string
 date init pass subset
 debug integer plex succeed
 directory is_atom pow tan
 div is_boolean print tanh
 do is_integer printa term
 doing is_map proc then
 domain is_real procedure time
 drop is_set prog title
 eject is_string program trace
 elmt is_tuple put true
 else len putb tuple
 elseif less putf type
 end lessf putk until
 endm lev quit untyped
 eof lib random val
 error libraries range var
 even library rany where
 exists local rbreak while
 exit loop rd with
 exports lpad read wr
 expr macro reada writes
 fail map reads yield

	

 IMPLEMENTATION-DEPENDENT INFORMATION PAGE 42

 9.0 Implementation Dependent Information

 Substantial work has been done to make the NYU LITTLE implementation
 portable so that implementations for different machines will be
 compatible. Some features, such as file names, command line format, and
 so forth, are necessarily machine dependent, and are described in this
 section.

 9.1 DEC VAX-11 VMS Implementation

 9.1.1 Configuration Requirements

 This implementation runs on the Digital Equipment Corporation VAX-11
 using the VMS V2 operating system. The operating system must have been
 configured with a value for VIRTUALPAGECNT not less than 8192, which
 provides for a per-process virtual address space of at least 4
 megabytes.

 9.1.2 Operating Instructions

 Symbol definitions and command files for using SETL are available in
 file NYU$SETL:SETLDEF.COM. The easiest way to access them is to add

 $ @NYU$SETL:SETLDEF

 to your LOGIN.COM file.

 Individual phases may be run by using the symbolic names SETL_PRS,
 SETL_SEM, SETL_COD and SETL_LIB. However, for most applications the
 SETL and SETLX commands are more convenient.

 Command SETL compiles and executes a SETL program. The form of the
 command line is:

 $ setl [sourcefile][inputfile][datafile][option...]

 Sourcefile is the SETL source file. The sourcefile by default has
 extension "STL", so specification of this extension is unnecessary.
 Normally, the source file is compiled and executed. A code file is
 generated that has the name of the input file and the extension "COD".

 The SETL command permits specification of the program parameters in
 standard VMS format.

 /HARD
 Specifies that the code file is to be assembled into VAX machine
 code. The resulting executable file has extension "EXE".

 /CODE[=file] (D)
 /NOCODE
	

 DEC VAX VMS IMPLEMENTATION PAGE 43

 The code option indicates whether a code file is to be generated
 by the code generation phase (COD). The default is to generate
 such a file using the name of the input file and the default
 extension "COD". With the code option an explicit file may be
 specified; the default extension is "COD".

 /DATA=file
 Specifies the data file to be used in the interpreter phase
 (LIB). If not specified the data input file is assumed to be
 SYS$INPUT. Specification using this option overrides that
 specified by providing the datafile name to the SETL or SETLX
 commands. No default extension is provided. Any required
 extension must be given.

 /LIST[=file]
 /NOLIST (D)
 The option /LIST is used to obtain a listing of the source file.
 If no file is specified, then the input file name together with
 the default extension "LIS" will be used. If an explicit
 listing file is given, the extension may be omitted, in which
 case the default, "LIS", will be used. The option /NOLIST
 signifies that no listing file is to be generated. If the
 program is executed then the listing will be written to the file
 specified, unless it is desired to have the execution output
 appear on a different file, in which case the XLIST option can
 be used to specify the file to receive the execution listing.

 /PARM=
 Specifies string to be included in parameter list passed to all
 compiler phases. If the string begins "NO", then these
 characters are removed, and the characters "=0" added at the end
 before passing along the argument. For example, /PARM=NOUV is
 translated to UV=0 which disables check for undeclared
 variables.

 /RUN (D)
 /NORUN
 Specifies that the program is to be executed (interpreted).

 /XLIST[=file]
 Specifies the execution listing file, if it is desired that the
 execution listing be on a file different from that specified by
 the LIST option. If this option is not given, the default
 listing file is SYS$OUTPUT. When given, the default extension
 is "LIS". If /XLIST is specified without a file, then the
 source file name (SETL) or the input file name (SETLX) is used
 for the list file name, with extension "LIS".

 /xxxFILE[=file]
 This is a file specification parameter for SETL LIB execution.
 The 'xxx' denotes a one to three character extension, for
 example, 'DAT', the the file is assumed to have by default. The
 file specification may be absent, in which the source file name
 (SETL) or the input file name (SETLX) is used. The procedure
 call GETSPP('xxxFILE=/') may be used to interrogate this option
	

 DEC VAX VMS IMPLEMENTATION PAGE 44

 within the program.

 Command SETLX executes a previously compiled SETL program.

 The form of the command line is:

 SETLX [codefile][inputfile][datafile][option...]

 The code file is either a SETL 'code' file or an executable file with
 extension "EXE". If no explicit extension is given, then an executable
 file (with extension "EXE") is used if it exists; otherwise a code file
 with extension "COD" is assumed.

 The input file is the standard SETL input file. If no file is
 specified, then SYS$INPUT is assumed. The data file is an alternate
 input file, identified through the SETL call GETSPP('DATA=/') in the
 program. If not specified, then SYS$INPUT is assumed.

 In addition to any user supplied options, the following options
 described under the SETL command are relevant to SETLX:

 /ASSERT /GTRACE /H=n /LIST /REL=n
 /SNAP /STRACE /TITLE /xxxFILE

 9.1.3 Specifying Parameters

 Program parameters for the SETL and SETLX command are specified in
 standard VMS fashion. The maximum length of the parameter list is 300
 characters; the maximum length of a single parameter is 63 characters.
 When running the individual phases separately, the parameter list may be
 entered on the command line which invokes the program; if not entered,
 the program will prompt for parameters.
 For example,

 $ SETL_PRS I=T.STL

 9.1.4 Character Set

 Full ASCII character set with upper and lower case letters.

 9.1.5 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text. Instances of horizontal tabs and form feeds in the source
	

 DEC VAX VMS IMPLEMENTATION PAGE 45

 are processed in the same way as blanks. The "such that" character ST
 can be represented using either vertical bar or the exclamation mark.

 9.1.6 Input/Output

 All input/output features are implemented. Text lines cannot exceed 132
 characters.

 On text output, trailing blanks and tabs are removed, except for files
 created using PUT.

 The implementation has default PFPL=0/0 so that print file limits are
 not enforced by default.

 9.1.7 Default File Names

 Default file names are as follows:

 I SYS$INPUT/
 ILIB SYSLIB/
 L SYS$OUTPUT/
 TERM SYS$ERROR/
 POL POL.TMP/
 XPOL XPOL.TMP/
 Q1 Q1.TMP/
 Q2 Q2.TMP/
 SQ1 0/SQ1.TMP
 SSM 0/SSM.TMP

 9.1.8 HOST Extensions

 This implementation includes some special features provided by the HOST
 function.

 NOTE

 HOST features are not necessarily provided
 in other implementations of SETL. Also,
 these features may change or disappear as
 new releases of SETL appear.

 The features are grouped into related functions, called "packages", and
 the first argument of HOST is an integer used to select the package.
 The packages are as follows:
	

 DEC VAX VMS IMPLEMENTATION PAGE 46

 9.1.8.1 Device-dependent Terminal Input/Output

 HOST(1, 1)

 returns a string of length one containing the next character
 typed at the terminal

 HOST(1,2,str...str)

 writes strings to terminal

 No extra characters are added or removed, so that user must issue
 carriage returns, line feeds, as needed. All characters can be read
 except control-s, control-q, control-y, control-c, and control-o, which
 are intercepted and processed by the terminal driver in the usual way.
 Note that this is "raw" i/o and problems may arise if other means are
 used to communicate with the terminal. For example, using these
 procedures and PRINT procedure will probably cause problems.

 Useful initialization statements that may be needed:

 ccbel := char 7; $ bell
 ccbs := char 8; $ backspace
 ccht := char 9; $ horizontal tab
 cclf := char 10; $ line feed
 cccr := char 13; $ carriage return
 ccesc := char 27; $ escape

 For example, to send line with normal carriage control to terminal, use

 HOST(1,2,line,cccr,cclf);

 9.1.8.2 Substring Search

 HOST(2, str, str)

 Searches the third argument for an instance of the second
 argument. Yields the position of the first (leftmost)
 occurrence if the search succeeds, or yields zero if no
 occurrence found. Yields zero if the second or third argument
 is the null string.

	

 DEC VAX VMS IMPLEMENTATION PAGE 47

 9.1.8.3 Case Conversion

 HOST(3, int, str)

 Converts case of third argument according to value of second
 argument. If second argument is zero, the result is the third
 argument converted to lower case; otherwise, the result is the
 third argument converted to upper case.

 9.1.8.4 Execute Commands

 HOST(4, str, str ... str)

 The argument strings are executed in a subprocess using the
 system service program LIB$SPAWN.

 For example,

 HOST(4,'setl x'); $ compiles program
 HOST(4,'dir/out=d.out'); $ gets directory

 N.B. each 'str' is spawned as a separate subprocess.

 9.1.8.5 Device-independent Terminal Input/Output

 These procedures permit device-independent communication with the
 terminal. The screen is addressed by giving a line number and a column
 number. The top line has line number one; the first character in a
 line has column number one.

 These procedures use the VMS Run-time Library procedures in the
 "Terminal Independent Screen Procedures" package described in Section
 3.2 of the Run-time Library Manual. The terminal types supported are
 the standard DEC types VT52 and VT100, as well as any "foreign"
 terminals supported by your site (see your system manager for a list of
 such types; they are types known to VMS SET TERMINAL/FT command.) These
 functions can be used with non-terminal devices, in which case cursor
 control features are ignored.

 HOST(5, 0, string)

 Displays prompt given by third argument, then reads line from
 the terminal (terminated with RETURN), and yields the string
 read in.

 HOST(5, 1, string)
	

 DEC VAX VMS IMPLEMENTATION PAGE 48

 Displays the third argument.

 HOST(5, 2)

 Erases the screen to end of page.

 HOST(5, 3)

 Erases the screen to end of line.

 HOST(5, 4, integer, integer)

 Positions the cursor at line given by third argument, column
 given by fourth argument.

 HOST(5, 5)

 Does "reverse index". The cursor is moved up one line, unless
 it is in the top line, in which case all lines are moved down
 one line, the top line is replaced with a blank line and the the
 data that was on the bottom is lost.

 9.1.9 'Mapped Heap Files'

 The compiler for VAX/VMS produces a representation of the program in a
 form known as 'Q2' which is interpreted. Interpreted execution begins
 by reading in miscellaneous variables and the initial contents of the
 SETL heap, which also includes the Q2 code. These values are read in
 using binary input. For large programs, especially when run
 interactively, there is a delay since the entire intermediate text must
 be read in before interpreted execution can begin.

 VMS permits the user to define disk files containing the initial data
 for a program in a form which can be 'mapped' into the program virtual
 address space; indeed, this is the mechanism used for the executable
 files produced by the loader. This note outlines a simple scheme for
 using the mapping primitive to effect more efficient initialization of
 the execution phase of SETL programs.

 The basic idea is to split the standard Q2 file into two files: the
 'Q2H' file contains the heap data in a form which permits direct mapping
 to virtual memory using the VMS system service 'crmpsc'. The 'Q2E' file
 consists of the other data in the Q2 file.

 To initialize using a mapped heap file, the Q2E file is used instead of
 the standard Q2 file and the Q2H file is specified.

	

 DEC VAX VMS IMPLEMENTATION PAGE 49

 9.1.9.1 Relevant Program Parameters

 The following new program parameters are recognized by SETL LIB

 Q2INIT=0/1 initialization type
 Q2E=Q2E/ Q2E file name
 Q2H=Q2H/ Q2H file name
 HFTRACE=0/1 nonzero to trace hf procedures

 9.1.9.2 Usage

 The Q2INIT option determines how heap initialized:

 Q2INIT=0
 Read in heap data from Q2 file (default)

 Q2INIT=1
 Map heap data from file specified by Q2H option; read
 other data from Q2 file (actually Q2E file produced in
 case 2).

 Q2INIT=2
 Read in Q2 file, create mapped heap file and write
 modified Q2 file to files specified by Q2H and Q2E
 options, respectively. Execution terminates after these
 files created.

 Example:

 Given program T.STL, compile to get T.COD. Then to get Q2H and Q2E
 files, do

 $ SETLX T/Q2INIT=2/Q2E=T.Q2E/Q2H=T.Q2H

 To execute using Q2H and Q2E files:

 $ SETLX T.Q2E/Q2INIT=1/Q2H=T.Q2H/Q2E=T.Q2E

 9.1.10 SETL Hard Code System

 The hard code system makes possible more efficient execution of SETL
 programs by producing a machine language file which can be directly
 executed. This alternate means of effecting execution emphasizes
 execution speed at the expense of space; the hard code version should
 run faster, though more space will usually be needed.
	

 DEC VAX VMS IMPLEMENTATION PAGE 50

 To use the hard code system, a program must be compiled using the HARD
 qualifier. This will produce an executable file (with type .EXE) as
 output and also a Q2 file. The executable file is complete and may be
 used in place of the SETL interpreter. The format of the Q2 files
 produced by standard compilation and compilation with hard code is
 incompatible; a Q2 file produced by hard code compilation cannot be
 used with the interpreter, and a Q2 file produced by standard
 compilation cannot be used with a hard code .EXE file. For VAX/VMS, the
 system is used as follows. First, compile using the HARD qualifier:

 $ setl X/hard/norun

 This will produce X.EXE and X.COD. The SETLX command knows about .EXE
 files and will use such a file if it exists.

 The option SIF may be specified to retain the intermediate files
 produced by the translation. The program parameters related to the hard
 code system are as follows:

 HQ2F=0/1
 Controls whether the intermediate listing file, of type .HCL,
 contains the static frequency of the Q2 opcodes in the Q2 (.COD)
 file.

 ASMTR=0/1
 Controls whether the ASM phase of the hard code translation
 generates debugging output.

 HXSTMT=0/1
 Controls whether the code generated for Q2 STMT opcodes is
 entered and executed. The default is not to enter the code.
 Specify HXSTMT=1 to execute the full statement code; this
 specification must be made if you want to use features such as
 STRACE or if you want the statement number correctly reported in
 the event of an error.

 The parameters of most interest to the ordinary user are STMT and
 HXSTMT. The Q2 form of the program includes a STMT opcode to record the
 position within a program; this position is used to report the point at
 which an error occurred, and also by such features as the STRACE option
 which traces statements as they are executed. However, the overhead of
 keeping track of the position can be large (it has been observed to
 consume about 20 percent of the execution time of some programs); and
 the hard code system permits a more efficient processing of the STMT
 opcodes. The setting of the STMT parameter determines if any code to
 support STMT opcodes is generated. You should use STMT=0, causing no
 code to be generated, only if you are interested in maximum performance
 and will never want to use any of the features related to the STMT
 opcodes.

 The HXSTMT parameter determines the extent to which STMT opcodes are
 recognized at runtime. Of course, if STMT=0 was specified when the file
 was translated by the hard code system, then the setting of the HXSTMT
 parameter is unimportant, as the STMT opcodes have already been
 eliminated. Given that STMT opcodes have been translated, then the
	

 DEC VAX VMS IMPLEMENTATION PAGE 51

 value of the HXSTMT parameter is kept in a register and each STMT opcode
 is translated into a test of the HXSTMT value (which is kept in a
 register) so that if HXSTMT=0 is specified the the full code to process
 the STMT opcode is branched around. To use features dependent on the
 STMT opcode, HXSTMT=1 must be specified.

 The default is HXSTMT=0, so that STMT opcodes are branched around. If
 your program terminates abnormally and you want to find where the error
 occurred, repeat execution with the specification HXSTMT=1.

 9.1.11 Restrictions

 1. Real arithmetic restricted to single (long word) precision.

 2. At most 65535 elements in set, tuple or character string.

 9.2 DEC VAX-11 UNIX Implementation

 9.2.1 Configuration Requirements

 This implementation runs on the Digital Equipment Corporation VAX-11
 using the Berkeley 4.2 BSD UNIX operating system.

 NAME
 stl - Setl compiler and interpreter
 SYNOPSIS
 stl -{cox} [-l] [-O] [-v] file [programparameters]
 DESCRIPTION
 Stl invokes the NYU Setl compiler and interpreter. Stl -c takes a Setl
 source file, suffixed `.stl', and produces a listing file `.lis', and an
 initial run-time environment file, suffixed `.cod', which is interpreted
 by stl -x. Setl-specific compile and run-time program parameters are
 supplied after the file name. A list of the program paramterers is
 given in the Setl user manual.
 FILES
 /usr/local/stl* (see definition of $SETL there)
 $SETL/user.doc, user manual
 SEE ALSO
 ``The SETL Programming Language'', R. B. K. Dewar
 ``Higher Level Programming'', R. B. K. Dewar, E. Schonberg,
 J. T. Schwartz
 BUGS
 Only the first 240 characters of the command line are
 examined by the SETL system.
	

 DEC VAX UNIX IMPLEMENTATION PAGE 52

 9.2.2 Specifying Parameters

 Program parameters are specified in standard fashion. The maximum
 length of the parameter list is 240 characters; the maximum length of a
 single parameter is 63 characters.
 For example,

 stl -c t.stl list reprs=1
 stl -x t.cod

 9.2.3 Character Set

 Full ASCII character set with upper and lower case letters.

 9.2.4 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text. Instances of horizontal tabs and form feeds in the source
 are processed in the same way as blanks. The "such that" character ST
 can be represented using either vertical bar or the exclamation mark.

 9.2.5 Input/Output

 All input/output features are implemented.

 On text output, trailing blanks and tabs are removed, except for files
 created using PUT.

 The implementation has default PFPL=0/0 so that print file limits are
 not enforced by default.

 9.2.6 Default File Names

 UNIX has no notion of file name in the SETL sense, so the implementation
 uses the following 'names' for the standard unix files: stdin, stdout
 and stderr. Default file names are as follows:

 i stdin/
 ilib syslib/
 l stdout/
 term stderr/
 pol pol.tmp/
 xpol xpol.tmp/
 q1 q1.tmp/
 q2 q2.tmp/
	

 DEC VAX UNIX IMPLEMENTATION PAGE 53

 sq1 0/sq1.tmp

 9.2.7 Restrictions

 1. Real arithmetic restricted to single (long word) precision.

 2. At most 65535 elements in set, tuple or character string.

 9.3 Amdahl UTS Implementation

 9.3.1 Configuration Requirements

 This implementation runs on the 370 architecture using the Amdahl
 Corporation UTS operating system.

 NAME
 stlc, stl - setl compiler and interpreter
 SYNOPSIS
 stlc file.stl [options]
 stl file.cod [options]
 DESCRIPTION
 Stlc and stl form the SETL system. Stlc takes a SETL source file,
 suffixed `.stl' and produces a listing file `.lis', and an object file
 `.cod', which is given to stl. Compile and run-time switches are
 supplied after the file name. A list of the switches is given in the
 SETL user manual.
 FILES
 /usr/local/stl* (see definition of $SETL there)
 $SETL/user.doc, user manual
 SEE ALSO
 ``The SETL Programming Language'', R. B. K. Dewar
 BUGS
 Only the first 240 characters of the command line are
 examined by the SETL system.

 9.3.2 Specifying Parameters

 Program parameters are specified in standard fashion. The maximum
 length of the parameter list is 240 characters; the maximum length of a
 single parameter is 63 characters.
 For example,

 stlc t.stl list reprs=1
 stl t.cod
	

 AMDAHL UTS IMPLEMENTATION PAGE 54

 9.3.3 Character Set

 Full ASCII character set with upper and lower case letters.

 9.3.4 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text. Instances of horizontal tabs and form feeds in the source
 are processed in the same way as blanks. The "such that" character ST
 can be represented using either vertical bar or the exclamation mark.

 9.3.5 Input/Output

 All input/output features are implemented.

 On text output, trailing blanks and tabs are removed, except for files
 created using PUT.

 The implementation has default PFPL=0/0 so that print file limits are
 not enforced by default.

 9.3.6 Default File Names

 UTS has no notion of file name in the SETL sense, so the implementation
 uses the following 'names' for the standard unix files: stdin, stdout
 and stderr. Default file names are as follows:

 i stdin/
 ilib syslib/
 l stdout/
 term stderr/
 pol pol.tmp/
 xpol xpol.tmp/
 q1 q1.tmp/
 q2 q2.tmp/
 sq1 0/sq1.tmp

 9.3.7 Restrictions

 1. Integer arithmetic restricted to single long word operands.
 Integer arithmetic is correct in the range -2**31+1 to 2**31-1.
 The hardware value -2**31 is reserved for the "undefined"
 integer, for example, (1 div 0) yields this value.
	

 AMDAHL UTS IMPLEMENTATION PAGE 55

 2. Real arithmetic restricted to single precision.

 3. At most 65535 elements in set, tuple or character string.

	

 CDC 6000 IMPLEMENTATION PAGE 56

 9.4 CDC 6000 Implementation

 9.4.1 Configuration Requirements

 This implementation runs on the Control Data Corporation 6000 Series
 hardware. It can be configured for NOS or NOS/BE operating systems, 63
 or 64 character set.

 The PRS, SEM and COD phases are combined into a single program SETL
 which requires about 170000B to run. The LIB phase requires 170000B
 words plus the SETL heap.

 9.4.2 Operating Instructions

 Needed files are kept in directory SETL. The control statements to
 compile and execute program on file SETLI, with listing, are as follows:

 ATTACH,SETL,STLLIB/UN=SETL.
 SETL. (I=SETLI,LIST)
 STLLIB.

 9.4.3 Specifying Parameters

 Program parameters are NOT specified in the usual CDC fashion, but are
 given in a separate list which follows program name. Parameters are
 enclosed within parentheses and separated by commas. Note that

 SETL(I=SETLIN)

 is WRONG. The correct specification is:

 SETL. (I=SETLIN)

 9.4.4 Character Set

 DISPLAY code. For 64 set sites, the per-cent character can be used
 where colon required. The following graphics (selected by the program
 parameter CSET=EXT, which is the default) are used:

 SETL DISPLAY code
 { 74 octal (at sign)
 } 75 octal (reverse slant)
 ST 67 octal (ampersand)

	

 CDC 6000 IMPLEMENTATION PAGE 57

 9.4.5 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text, and lists 90 columns to permit use with UPDATE.

 9.4.6 Default File Names

 Default file names are as follows:

 I INPUT/COMPILE
 ILIB INCLIB/
 L OUTPUT/LIST
 TERM /TERM
 POL POL/POL
 XPOL XPOL/XPOL
 Q1 Q1/Q1
 Q2 Q2/Q2
 SQ1 0/SQ1

 9.4.7 Stand-alone Parse

 Due to large size of the SETL system, your site may have installed a
 variant of SETL PRS which does only syntax analysis, and has smaller
 internal tables, but which can be run using about 100000B words. If
 available, this is used as follows:

 ATTACH,SETLP/UN=SETL.
 SETLP.

 9.4.8 Storage Allocation

 Due to large size of SETL system, users of the 6000 version may find it
 necessary to force the system to use a small initial dynamic memory area
 (heap). The heap is divided into three regions: a "constants" area
 which contains constants and the code, the run-time stack and the
 remainder which is used for values built during execution.

 The program parameters H, ST and CA can be used to determine initial
 structure of the heap. The defaults are:

 H=8000/8000 total length
 ST=0/0 symbol table length
 CA=0/0 constants area length
	

 CDC 6000 IMPLEMENTATION PAGE 58

 Specifying a small integer value less than 1024 causes multiplication by
 1024; for example H=4 taken as H=4096. Specifying 0 directs the system
 to use reasonable guesses. At present the guesses are to allocate H/2
 words for the constant area, and H/8 words for the symbol table. These
 guesses can be avoided by providing nonzero values for ST and CA
 parameters. For small programs, H=4 is suggested.

 The listing file produced by the COD phase indicates the actual lengths
 of the constant area and symbol table, and should be consulted for hints
 on picking parameter values.

 9.4.9 Restrictions

 1. Integer arithmetic restricted to single word operands.
 Integer arithmetic is correct in the range -2**48-1 to 2**48-1.

 2. Real arithmetic restricted to single precision.

 3. At most 32767 elements in set, tuple or character string (if
 enough memory available!).

	

 DEC DECSYSTEM-10 IMPLEMENTATION PAGE 59

 9.5 DEC DECsystem-10 Implementation

 9.5.1 Configuration Requirements

 This implementation runs on the Digital Equipment Corporation
 DECsystem-10 hardware using the TOPS-20 operating system. The
 implementation should also be usable on TOPS-10 and TENEX, although this
 has not been verified.

 9.5.2 Operating Instructions

 At Rutgers, using TOPS-20, SETL is currently available on
 s:<setl.final>. The phases of the compiler should be run in turn. For
 example, to compile and execute X.STL, proceed as follows:

 def sys: s:<setl.final>,sys:
 stlprs(i=x.stl)
 stlsem(i=x.stl)
 stlcod(i=x.stl)
 stllib(i=x.stl)

 9.5.3 Specifying Parameters

 Program parameters are specified in the usual LITTLE fashion, i.e., as
 list enclosed in parentheses following program name. The I= parameter
 should always be specified, even if a dummy file must be created; for
 example,

 stlsem(i=foo.stl)

 The maximum length of the parameter list is 120 characters; the maximum
 length of a single parameter is 30 characters. When running the
 individual phases separately, the parameter list may be entered on the
 command line which invokes the program; if not entered, the program
 will prompt for parameters. For example,

 $ run stlprs

 Note that the parameter line is converted to upper case. This is
 generally not significant. However, arguments to the procedures GETIPP
 and GETSPP should thus be specified in upper case. For example,

 TRVAL := GETIPP('TRACE=0/1');

	

 DEC DECSYSTEM-10 IMPLEMENTATION PAGE 60

 9.5.4 Character Set

 Full ASCII character set with upper and lower case letters.

 9.5.5 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text. Instances of horizontal tabs and form feeds in the source
 are processed in the same way as blanks. The "such that" character ST
 can be represented using either vertical bar or the exclamation mark.

 9.5.6 Input/Output

 The input/output procedures GET and PUT are not implemented Text lines
 cannot exceed 132 characters. On text output, trailing blanks and tabs
 are removed.

 9.5.7 Default File Names

 Default file names are as follows:

 I *.LTL/*.LTL
 (however, see section on program parameters below)
 ILIB SYSLIB/SYSLIB
 L *.LST/*.LST
 TERM TTY:/
 POL POL/POL
 XPOL XPOL/XPOL
 Q1 Q1/Q1
 Q2 Q2/Q2
 SQ1 0/SQ1

 Note that * indicates that name given by I= parameter is used to derive
 filename and extent is then chosen based on at most first three
 characters of parameter values as shown above.

 9.5.8 Restrictions

 1. Integer arithmetic restricted to single word operands.
 Integer arithmetic is correct in the range -2**35+1 to 2**35-1.
 The hardware value -2**35 is reserved for the "undefined"
 integer, for example, 1/0 yields this value.
	

 DEC DECSYSTEM-10 IMPLEMENTATION PAGE 61

 2. Real arithmetic restricted to single (long word) precision.

 3. At most 65535 elements in set, tuple or character string.

 The following features are not implemented:

 1. exponentiation

 2. Mathematical functions SQRT, ATAN, ATAN2, COS, SIN, EXP, LOG,
 TAN and TANH.

 3. DATE is implemented but the day of week is always Wednesday.

	

 IBM SYSTEM/370 IMPLEMENTATION PAGE 62

 9.6 IBM System/370 CMS Implementation

 9.6.1 Configuration Requirements

 This implementation runs on the International Business Machines
 Corporation System/370 hardware. It is configured for the CMS operating
 system; it should be usable using OS and its extensions (MVS, etc.),
 though usage for these systems has not been tested.

 The PRS, SEM and COD phases are combined into a single program SETL.
 The LIB phase is available as STLLIB.

 9.6.2 Operating Instructions

 Needed files are kept on a minidisk of user SETL. See the system
 manager for information about accessing this disk.

 The control statements to compile and execute program on file SETLI SETL
 A1, with listing on file SETLI LISTING A1, are as follows:

 SETL SETLI (LIST RUN

 The single (required) operand of the SETL command is a file identifier
 (SETLI in the previous example) of the form:

 fn ft fm

 The default ft is the name of the program (SETL in this example). The
 default fm is A1.

 9.6.3 Specifying Parameters

 Program parameters are entered as CMS options. However, to overcome the
 CMS limitation of eight characters per argument, the parameter scanner
 also does the following:

 1. Blanks not following an equal sign are taken as commas.

 2. Blanks just after an equal sign are ignored.

 As a result, the following are equivalent:

 SETL SETLI (LIST, H=4
 SETL SETLI (LIST H=4
 SETL SETLI (LIST H= 4

 Note that the (added) parameter RUN causes SETL LIB to execute the
 program once it has been compiled. To execute an already compiled,
 program, use the command:
	

 IBM SYSTEM/370 IMPLEMENTATION PAGE 63

 STLLIB PROG (I=0

 9.6.4 Character Set

 EBCDIC with upper and lower case letters. The following graphics
 (selected by the program parameter CSET=EXT, which is the default) are
 used:

 SETL EBCDIC code
 { 8B hex
 } 9B hex
 ST 4F hex (vertical bar)
 ST 5A hex (exclamation mark)
 [AD hex
] BD hex

 Lower case letters and non-standard graphics are recognized, but are not
 generated in normal operation; they are generated only at the explicit
 request of the user, or as a result of copying lower case characters in
 source and data files.

 9.6.5 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text, and lists 80 columns to display any sequence information in
 positions 73..80.

 9.6.6 File Names

 The file names used by SETL (and specified as parameters) are DDNAMEs.
 If an explicit FILEDEF has been given for the DDNAME, it is used.
 Consistent with the normal conventions for OS compilers running under
 CMS, the following DDNAMEs are translated in the absence of a FILEDEF
 for them:

 SYSPRINT to LISTING
 SYSPUNCH to PUNCH
 SYSTERM to TERM
 SYSUTn to CMSUTn

 If an explicit FILEDEF is specified, it will be used. Otherwise, an
 implicit FILEDEF will be executed. This implicit FILEDEF will be of the
 form:

 FILEDEF ddname DISK fn ddname A1
	

 IBM SYSTEM/370 IMPLEMENTATION PAGE 64

 where fn is the filename of the operand of the command.

 If no FILEDEF is specified for SYSIN, the following is done:

 FILEDEF SYSIN DISK fn ft fm

 where fn ft fm are the components of the operand with the defaults
 supplied as described above.

 There are exceptions to the implicit FILEDEF described above. These are
 ddnames of TERMx, PRINT and PUNCH. In these cases the device
 represented by the ddname specified will be used, i.e., the following
 FILEDEF will be executed:

 FILEDEF ddname ddname

 Default file names are as follows:

 I SYSIN/SYSIN
 ILIB SYSLIB/SYSLIB
 L SYSPRINT/SYSOUT
 TERM SYSTERM/SYSTERM
 POL POL/POL
 XPOL XPOL/XPOL
 Q1 Q1/Q1
 Q2 Q2/Q2
 SQ1 0/SQ1

 9.6.7 Restrictions

 1. Integer arithmetic restricted to single word operands.
 Integer arithmetic is correct in the range -2**31+1 to 2**31-1.

 2. Real arithmetic restricted to single precision.

 3. At most 32767 elements in set, tuple or character string.

	

 IBM SYSTEM/370 IMPLEMENTATION PAGE 65

 9.7 IBM System/370 MTS Implementation

 9.7.1 Configuration Requirements

 This implementation runs on the International Business Machines
 Corporation System/370 hardware. It is configured for the MTS operating
 system, but since no work has been done after the initial bootstrap, not
 all looks the way one might like to see it.

 9.7.2 Operating Instructions

 Needed files are kept under user SETL. See the system manager for
 information about accessing these files.

 The PRS, SEM and COD phases are executed as separate phases: to compile
 a SETL program in file inFDname into a file codFDname with a listing
 into file listFDname, do the following:

 $ set libsrch=stllib+ltllib
 $ run stlprs par=i=inFDname,l=listFDname,term=0,list,at
 $ run stlsem par=i=0,l=listFDname(*l+1),term=0
 $ run stlcod par=i=0,l=listFDname(*l+1),term=0,q2=codFDname

 To execute this program, type:

 $ set libsrch=stllib+ltllib
 $ run stlint par=i=inputFDname,l=outputFDname,q2=codFDname

 where inputFDname is the standard input file (e.g. *source*), and
 outputFDname is the standard output file (e.g. *sink*). At the moment,
 the default file names are the OS file names, i.e. SYSIN and SYSPRINT.
 Likewise, the default for the 'terminal' file is SYSTERM.

 9.7.3 Specifying Parameters

 Program parameters are entered at the end of the PAR-string.

 9.7.4 Character Set

 EBCDIC with upper and lower case letters. The following graphics
 (selected by the program parameter CSET=EXT, which is the default) are
 used:

 SETL EBCDIC code
 { 8B hex
 } 9B hex
 ST 4F hex (vertical bar)
 ST 5A hex (exclamation mark)
	

 IBM SYSTEM/370 IMPLEMENTATION PAGE 66

 [AD hex
] BD hex

 Lower case letters and non-standard graphics are recognized, but are not
 generated in normal operation; they are generated only at the explicit
 request of the user, or as a result of copying lower case characters in
 source and data files.

 9.7.5 Source Program Format

 The compiler examines only the first 72 columns of each line of SETL
 source text, and lists 80 columns to display any sequence information in
 positions 73..80.

 9.7.6 Input/Output

 All input/output features are implemented.

 9.7.7 Default File Names

 The file names used by SETL (and specified as parameters) are FDnames.
 Default file names are as follows:

 I SYSIN/
 ILIB SYSLIB/
 L SYSPRINT/SYSOUT
 TERM SYSTERM/
 POL -SETLPOL/
 XPOL -SETLXPOL/
 SSM -SETLSSM/
 Q1 -SETLQ1/
 Q2 Q2/
 SQ1 0/-SETLSQ1

 9.7.8 Restrictions

 1. Real arithmetic restricted to single precision.

 2. At most 65535 elements in set, tuple or character string.

	

 APPENDIX A

 SEMANTIC DEFINITIONS OF STRING PRIMITIVES

 This section contains the semantic definitions of the string search
 primitives, in the form used in chapter 7 of the SETL reference manual.

 PROC ANY(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a > 0 AND #b > 0 AND a(1) IN b THEN
 t := a(1);
 a := a(2..);
 RETURN t;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC ANY;

 PROC BREAK(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF EXISTS i IN [1..#a] ST a(i) IN b THEN
 t := a(1..i-1);
 a := a(i..);
 RETURN t;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC BREAK;

 PROC LEN(RW a,b);
 CASE OF
 (IS_STRING a AND IS_INTEGER b AND b>=0):
 IF b<#a THEN
 RETURN OM;
 ELSE
 t := a(1..b);
 a := a(b+1..);
 RETURN t;
	

 SEMANTIC DEFINITIONS OF STRING PRIMITIVES PAGE A-2

 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC LEN;

 PROC LPAD(a,b);
 CASE OF
 (IS_STRING a AND IS_INTEGER b):
 IF b < #a THEN
 RETURN a;
 ELSE
 RETURN ' ' * (b - #a) + a;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC LPAD;

 PROC MATCH(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a >= #b AND a(1..#b) = b THEN
 a := a(#b+1..);
 RETURN b;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC MATCH;

 PROC NOTANY(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a > 0 AND #b > 0 AND a(1) NOTIN b THEN
 t := a(1);
 a := a(2..);
 RETURN t;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC NOTANY;

 PROC RANY(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a > 0 AND #b > 0 AND a(#a) IN b THEN
 t := a(#a);
 a := a(1..#a-1);
 RETURN t;
 ELSE
 RETURN OM;
	

 SEMANTIC DEFINITIONS OF STRING PRIMITIVES PAGE A-3

 END;
 ELSE /*error*/;
 END CASE;
 END PROC RANY;

 PROC RBREAK(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF EXISTS i IN [#a,#a-1..1] ST a(i) IN b THEN
 t := a(i+1..);
 a := a(1..i);
 RETURN t;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC RBREAK;

 PROC REPLACE(a,b,c); $ not implemented
 CASE OF
 (IS_STRING a AND IS_STRING b AND IS_STRING c AND #b = #c):
 t := '';
 (FOR d IN a)
 IF EXISTS i in [#b,#b-1..1] ST d = b(i) THEN
 t +:= c(i);
 ELSE
 t +:= d;
 END IF;
 END;
 RETURN t;
 ELSE /*error*/;
 END CASE;
 END PROC REPLACE;

 PROC REVERSE(a); $ not implemented
 CASE OF
 (IS_STRING a):
 RETURN '' +/[a(#a-i+1): i IN [1..#a]];
 ELSE /*error*/;
 END CASE;
 END PROC REVERSE;

 PROC RLEN(RW a,b);
 CASE OF
 (IS_STRING a AND IS_INTEGER b AND b>=0):
 IF b<#a THEN
 RETURN OM;
 ELSE
 t := a(#a-b+1..);
 a := a(1..#a-b);
 RETURN t;
 ELSE
 RETURN OM;
 END;
	

 SEMANTIC DEFINITIONS OF STRING PRIMITIVES PAGE A-4

 ELSE /*error*/;
 END CASE;
 END PROC RLEN;

 PROC RMATCH(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a >= #b AND a(#a-#b+1..) = b THEN
 a := a(1..#a-#b);
 RETURN b;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC RMATCH;

 PROC RNOTANY(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a > 0 AND #b > 0 AND a(#a) NOTIN b THEN
 t := a(#a);
 a(#a) = OM;
 RETURN t;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC RNOTANY;

 PROC RPAD(a,b);
 CASE OF
 (IS_STRING a AND IS_INTEGER b):
 IF b < #a THEN
 RETURN a;
 ELSE
 RETURN a + ' ' * (b - #a);
 END;
 ELSE /*error*/;
 END CASE;
 END PROC RPAD;

 PROC RSPAN(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a > 0 AND #b > 0 THEN
 IF {x: x IN b} INCS {x: x IN a} THEN $ if span all
 t := a;
 a := '';
 RETURN t;
 ELSEIF EXISTS i IN [#a,#a-1..1] ST a(i) NOTIN b THEN
 t := a(i+1..);
 a := a(1..i);
 RETURN t;
	

 SEMANTIC DEFINITIONS OF STRING PRIMITIVES PAGE A-5

 ELSE
 RETURN OM;
 END IF;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC RSPAN;

 PROC SPAN(RW a,b);
 CASE OF
 (IS_STRING a AND IS_STRING b):
 IF #a > 0 AND #b > 0 THEN
 IF {x: x in b} INCS {x: x IN a} THEN $ if span all
 t := a;
 a := '';
 RETURN t;
 ELSEIF EXISTS i IN [1..#a] ST a(i) NOTIN b THEN
 t := a(1..i-1);
 a := a(i..);
 RETURN t;
 ELSE
 RETURN OM;
 END IF;
 ELSE
 RETURN OM;
 END;
 ELSE /*error*/;
 END CASE;
 END PROC SPAN;

	

 APPENDIX B

 CHANGES EFFECTED IN RECENT VERSIONS

 Changes from Version 29 to Version 30:

 1. System Internal changes which should be transparent to the
 user.

 2. UNIX Implementations suppress by default the compiler listing
 of program parameters and compilation statistics. They can be
 controlled by the LCP and LCS program parameters.

 3. Fix several small bugs.

 Changes from Version 28 to Version 29:

 1. Fix several small bugs.

 Changes from Version 27 to Version 28:

 1. Support Motorola 68000 Microprocessor on SUN Workstation.

 2. Fix several small bugs.

 Changes from Version 26 to Version 27:

 1. The semantics of some qualifiers has been changed:

 /ASSERT=0: Expressions appearing in assert statements are
 not evaluated.
 (These expressions were evaluated before.)
 /MAX_HEAP=n Allow heap expansion to 'n' SETL words
 (default: 512000).
 /REPRS=2: Equivalent to /REPRS[=1]; in addition, a
 message is printed for each conversion generated
 between non-primitive values.
 /REPRS=2 requires the /LIST qualifier to have
 any effect.

 2. Integer arithmetic supports integers in the range

 - ((32768 ** 65535) - 1) .. (32768 ** 65535) - 1.
	

 CHANGES EFFECTED IN RECENT VERSIONS PAGE B-2

 on 32-bit machines. Integer denotations are restricted to the
 range -2147483647..2147483647. The result of constant
 expressions is restricted to the range of integer denotations,
 i.e. -2147483647..2147483647.

 3. The MAP representation is fully supported.

 4. The semantics of the assert statement 'assert <lhs> := <rhs>;'
 has been changed to mean 'test whether <lhs> = <rhs>; if they
 are unequal, print an error message and assign <rhs> to <lhs>.'
 (cf. SN210) (Previously, this would assign <rhs> to <lhs> and
 test the value of <lhs> for true/false.)

 5.

 The Q2 (code)- and binary file formats have been changed. All
 Q2- and binary files must be recreated under this version of
 SETL.

 Changes from Version 25 to Version 26: The Q2 (COD) format has (once
 again) changed.

 Changes from Version 24 to Version 25:

 1. The implementation of the mode 'integer i..j' has been changed:
 if i > 0, the old implementation widened the range to 'integer
 1..j', the new implementation does exact range analysis within
 a machine-dependent range, currently for 32-bit machines:

 0 <= i < 256, 0 <= j < 65535.

 2. The mode 'map' and 'map (<mode>) <mode>' is recognized by the
 front-end once more, yet might produce incorrect run-time
 results. An appropriate warning is printed whenever this mode
 is used. THE MODE 'MAP' SHOULD NOT BE USED UNTIL FURTHER
 NOTICE.

 3. Add the STMT program parameter.

 4. Implement "string IN string" and "string NOTIN string" using an
 algorithm, due to Knuth, that is linear in the length of the
 two strings.

 Changes from Version 23 to Version 24:

 1. Eliminate null statement.

 2. Allow representation declaration 'proc() mode' for procedures
 with no parameters.

 3. MAP is now a reserved word.

 4. Add program parameter UR.
	

 CHANGES EFFECTED IN RECENT VERSIONS PAGE B-3

 5. Change default for program parameter REPRS.

 6. Reserved words cannot be used as member names.

 7. The interface statement 'READS ALL' is no longer the default;
 all variables and constants that are accessed must be declared.

 Changes from Version 22 to Version 23:

 1. Permit second argument of OPEN to be written in either case, so
 long as all characters in a particular use are in the same
 case.

 2. Add SOCASE option.

 3. Add TERMP and TERMH options.

 4. Recognize NOTEXISTS.

 5. Precedence of ? operator: the precedence of the query
 operator is 10. Therefore, if either operand is an expression,
 the usual precedences are applied. If in doubt, use
 parentheses.

 6. The precedence of <exp> <*binop> '/' <exp> has been corrected,
 so that 2 * 1 +/ [2] evaluates to 4, and not to 6.

 7. The parser now accepts '(' <exp> ')' <index*>, so that (a)(b)
 is a valid expression.

 8. The arithmetic iterator has been changed to include a test for
 zero increment, where required. Thus the cardinality of [m, m
 .. n] is zero, and not an infinite loop.

 Changes from Version 21 to Version 22 (not all of which are yet
 documented at proper place):

 1. FORTRAN Interface. It is now possible to create user-defined
 extension permitting invocation of FORTRAN procedures during
 execution. This is currently only available for VAX/VMS.

 2. Mapped Q2 file. The VAX/VMS version permits creation of
 special files which permit quicker program startup for large
 programs. This involves new parameters NOF, Q2INIT, Q2E, Q2H
 and HFTRACE.

 3. %CMODE (VAX/VMS). At execution the program parameter %CMODE is
 set to indicate how a program is being run. After

 cmode := GETSPP('%CMODE=/');

 then cmode will be either 'INTERACTIVE' or 'BATCH' with obvious
 meaning.
	

 CHANGES EFFECTED IN RECENT VERSIONS PAGE B-4

 4. MACRO local symbols. There are restrictions on the use of
 local symbols in macros not yet documented. (This is a
 warning, not a change.)

 5. HOST(1..) (VAX/VMS) This does not report end of input
 correctly.

 6. SPEC and UNSPEC are no longer reserved words.

	

 PAGE INDEX-1

 INDEX

 .EJECT, 11 LIB, 3
 .LIST, 11 LIST, 28, 43
 .NOLIST, 11 LPAD, 7, 68
 .TITLE 'text', 11
 MATCH, 7, 68
 ANY, 5, 67 MAX_HEAP, 28
 AP, 11 MEAS, 28
 ASM, 25 MEMBER, 11
 ASSERT, 25 MLEN, 28
 AT, 26
 NOF, 28
 BACK, 26 NOTANY, 7, 68
 BIND, 26
 BREAK, 5, 67 OPEN, 7
 OPT, 29
 CA, 26
 CALLF, 36 PEL, 29
 CEL, 26 PFCC, 29
 CLOSE, 5 PFCL, 29
 COD, 3 PFLL, 29
 CODE, 42 PFLP, 29
 COPY, 11, 28 PFPL, 29
 CSET, 26 POL, 30
 CTRACE, 27 PRINT, 8
 PRINTA, 8
 DEBUG, 27 PRS, 3
 DITER, 27 PUT, 8
 DUMP, 27 PUTB, 8
 PUTF, 36
 EJECT, 6
 EOF, 6 Q1, 30
 ETIM, 27 Q2, 30
 Q2E, 49
 GET, 6 Q2H, 49
 GETB, 6 Q2INIT, 49
 GETEM, 6
 GETF, 36 RANY, 8, 68
 GETIPP, 6 RBREAK, 8, 69
 GETSPP, 6 READ, 8
 READA, 8
 H, 27 REL, 30
 HFTRACE, 49 REM, 30
 HOST, 6 REPLACE, 69
 REPRS, 30
 I, 28 REVERSE, 69
 ILIB, 11, 28 RLEN, 8, 69
 RMATCH, 8, 70
 L, 28 RNOTANY, 9, 70
 LCP, 28 RPAD, 9, 70
 LCS, 28 RSPAN, 9, 70
 LEN, 7, 67 RUN, 43
	

 PAGE INDEX-2

 SB, 30
 SEL, 30
 SEM, 3
 SEQ, 30
 SETEM, 9
 SIF, 30
 SNAP, 31
 SOCASE, 31
 SPAN, 9, 71
 SQ1, 31
 SSM, 31
 ST, 31
 STHI, 31
 STLO, 31
 STMT, 32
 STRACE, 32

 TB, 32
 TERM, 32
 TERMH, 32
 TERMP, 32
 TITLE, 9, 32
 TP, 33

 UPD, 33
 UR, 33
 UV, 33

 XLIST, 43
 XPOL, 33

