
SETL Newsletter # 2, November 10, 1970

A critical comment by Pat Goldberg

The SETL language of J. Schwartz is an attempt to take the
primitive operators postulated in the Zermelo-Frankel axioms
of set theory and to implement them in a context useful for
programming. That is, Professor Schwartz has described a
programming language in which (finite) sets are a basic data
type for which the primitive operators imp I ied by the axioms
are supplied. Atomic elements of type integer, characer, and
bit, as wel I as the obvious operato~s on them, are also
permitted. These basic items are fleshed out to a programming
language by the inclusion of an assignment operator, basic
control functions, and a procedure definition faci I ity.

The intention is that SETL should serve as an executable
specification language. That is, a programming process is
envisioned in which a program is initially written and
executed in SETL; finally, for optimization purposes, the
program is hand translated into BSL. This hand translation
n~t only requires deciding on BSL code for the operations
involved, but also requires decisions as to how to represent
the particular sets used as BSL data structures.

There are three, almost separate, aspects of this proposal
that are worth commenting on: the viabi I ity of a two-stage
programming process for systems programming; the usefulness
of SETL, considered as a thing in itself, for specifying
systems programs; and the acceptabi I ity of the SETL - BSL
interface as currently specified. We shal I address each of
these items in turn.

It is rarely the case in the construction of a system that
the system as finally implemented is completely specified
before coding begins. This situation can be ascribed
neither to laziness nor to weakness of wi I I on the part of
the designers; rather, it is largely due to the intrinsically
evolutionary nature of the design process. Generally speaking,
t he i n i t i ., I d e s i g n i s mod i f i e d i n ,T1 a n y w a y s b e f o re a n a cc e p ·: a b I e
system is constructed. These modifications are frequently the
result of observations of the running of actual system modules
or the operation of the system under accurate load conditions.
T h e s e ma y re s u I t i n c h a n g e s e i t h e r to t h e s y s t em d a ta :: a s e o r
to the module organization, or both. The observations ·~at
lead to these changes generally cannot be made on a g: · ~sly
unoptimized version of the system, sinte such a versicn does

-2-

not necessarily reflect the timings and cont I icts that wi 11
occur in the optimized version. Furthermore, the size and
number of test cases that need to be run in order to
establish the nature of the difficulty are usually large
enough to overwhelm an interpretive system (I have personally
had this difficulty using APL as a specification language).

Given that the measurements that lead to modification must be
done in the lower level language and given that the translation
from the specification language to the lower language is not
automatic, the results are predictable; namely, the specifica
tion language is used cnly for the first iteration of the
design, whereas modifications are made on the lower level
program. The pressure of time and human nature being what
they are, it slowly but surely becomes the case that the
specification program does not specify the current design.
At the end of the program, if the designers are conscientious,
there may be a great push to recode the final design in
specification language; in the meantime, much of the advantage
has been I ost.

For these reasons, it seems much more desirable to attempt to
design a language which can serve both as a specification
language and as the utlimate programming. language, and to
bui Id one that incorporates as much possibi I ity for f lexibi I ity
as one can. From our point of view, this is the only possibi I ity
for specifying programs formally and for also guaranteeing th,::t
at al I stages of evolution, the design specification is
accurately reflected in the implementation.

We now leave the question of the viabi I ity of two-stage
programming and turn to the question of the adequacy of SETL
for the specification of systems programs. We shal I not be
concerned with the efficiency of the constructions, but
rather with their adequacy and desirabi I ity.

One particularly useful feature of SETL is the ability to
define unordered sets and to quantify over them. In systems
code, it is not unusual to want to examine all elements of a
set, although the order of examination- is not important.
In current languages this can be accomplished only by imposing
an (arbitrary) indexing on the elements, either by putting
them in an array or by connecting the elements together by
pointers. It is interesting to note that part of Lowry's ESL
proposal is aimed at ameliorating this situation.

There seem, however, to be some difficulties with SETL, at
least as we understand the language. Since some of these
problems are important while others are sytlistic, we have
attempted to Ii st them in decreasing order of· importance.

I .

2.

3 •

4.

-3-

In systems programming, it is frequently necessary
to have a (non-atomrc) element contained in more
than one set. For example, a data control block
may be contained not only in the set of al I data
control blocks, but also in the set representing
some queue. It is important that the same element,
not a copy of the element, occur in both sets, so

that an updating of some field in the element
wi 11 be reflected in both sets. But the basic
SETL construction of adding an element X to a set B

B = B. with .X
seems to imp I y a copying -- or at I east the effect
of copying. In fact, one needs language to
express both possibi I ities: both to add a copy
of an element to a set and to add a reference to
an element to a set.

Any reasonable specification language must make the
data interfaces between modules absolutely clear~
A module must specify not only the names of the
formal parameters, but also at least the expected
shape. In SETL, which is virtually without
declarations, one can discover the kind of arguments
required only by examining the flow of the program
i.e., by understanding how the modu I e accomp Ii shes
its task as wel I as whatits task is. This means
that syntax checking cannot determine whether or not
two modules are compatible even in the most
primitive sense. This difficulty is well illustrated
in the example given of the Cocke-Younger parsing
algorithm, where the first argument is required to
be a rather complex structure. Without the accompanying
English prose the structure of this argument would be
extremelydifficult to determine.

Procedures seem to appear in SETL in only the most
primitive of ways; in particular, procedures cannot
be sent as arguments to other procedures, nor can
procedures be members of sets. Furthermore,
procedures cannot produce references (see above remarks),
but only values. Al I of this makes it very difficult
to hide the fundamental accessing methods that
are being used under procedure references or to tag
a set with a procedure for accessing its members.
The presence of such features can add immeasurably
to the abi I ity of a program to maintain a certain
flexibi I ity concerning its data structures.

The rules for variable scoping in SETL are rather
different from those used in current block structured
languages and are no improvement. In particular,
a non-local variable can be declared to be the same

-4-

one as the one of the same name, declared n blocks out.
Such positional notation makes it difficult to add or
or delete blocks from a program, since that may affect
the count. Furthermore, even if such a faci I ity is
desirable, it seems more reasonable -- from a control
point of view -- for the outermost (control I ing) block
to grant permission for this data sharing, rather than
for an innermost procedure to be able to produce such
side effects.

5. An explicit positional notation is used for accessing
the elements of ordered sets: i.e., if W is a triple,

<*,-,*> w
is the ordered pair consisting of the first and last
e I em e n t s o f ~J • T h i s s o rt o f not a t i o n re a 1 · I y t i e s d ow n
the representation, in that any change in the ordering
of the sets of W requires reprogramming the accesses.
The APL notation is much better; for example

W[I , 3]

is the same reference. This notation not only allows
the computation of the indices, but permits the
repetition and inversion of elements.

6. The representation of ordered triples is an ordered pair
of ordered pairs is a silly bit of pedantry. It leads
to such absurdities as the decision in the Cocke-Younger
algorithm to use

<q,A,p> q > p

instead of the more natural

<p,A,q> p < q

simply because of the nature of the SETL accesses to
be made. Clearly the access of p and the access of q
should be equally trivial.

7. The language is too clever by half in the use of side
effects. I cannot imagine intentionally displaying a
specification language in which

<<X,*,Z > W,Z,X>
takes

<X,Y,Z>

as input for it and produces

<Y,Z,X>

as output. The utter
an operation bodes i I I
by any reader.

lack of transparency in such
for its correct interpretation

-5-

But let us turn from these language detai Is and look at the
SETL-BSL interface. This interface seems totally inadequate.
First of al I, the form of a SETL cal I to a BSL module is
different from a cal I on a SETL module. This means that as
a module changes from a SETL module to a BSL module, al I
references to it must be updated whe~ever they occur. This
is certain to be an unnecessary headache.

A more severe difficulty arises because no SETL data structure
except an atom can be passed by reference. Al I other SETL
structures must be copied into a contiguo•.!S section of storage,
whose location is then passed to the BSL module. In an operating
system context, where one wishes to develop rather intricately
connected data structures (see above comments on references),
it is difficult to see how to totally order the data base in
a way that a BSL module can make sense out of. Furthermore,
since this copying only reflects a static picture of a
dynamically changing data base, this copying wi 11 have to be
done repeatedly, each time the BSL module is called. The sheer
inefficiency of this translation could overwhelm any efficiency
gains gotten by recoding in BSL.

Finally, it seems unnatural that if one_is planning to translate
SETL modules into BSL that one would not have chosen the same
scope rules for both. This disparity in rules wi I I require
extensive renaming of variables during the translation process.

It is probably pretty obvious by now that we do not view SETL,
with its current bias as a promising development tool. Some
of the ideas, however, in particular the introduction of
unordered sets and the abi I ity to quantify over them, could
be an extremely useful addition to a programming language.

