SETL Newsletter Number 6
November 20, .2970 Peter Markstein

This newsletter presents, in revised SETL, the algorithm to produce the tables for the McKeeman parse. The APL program of newsletter No. 4 was produced from this routine, and so there is a close correspondence between these programs.

Input to PRECEDENCE is assumed to be the productions of a grammar, represented by a set G of ordered k-tuples. Each k-tuple represents the characters of a single production, e.g., $A \leftarrow B C D$ is represented as $\langle A B C D\rangle$.

The procedure UNORDER, which converts an ordered k-tuple into an unordered set is used in forming the set C, the collection of the unique characters of the grammar.
$B\{x\}$ gives all syntactic types which begin with the character X. The set B is initialized by entering for each k-tuple of G, an ordered pair consisting of the k-tuple's first two elements in reverse order. The subroutine COMPLETE then fills out B by adding the elements (X, Y) to B if there exists a Z such that $\langle x, z\rangle \in B$ and $\langle z, Y\rangle \in B$. Similarly, E becomes the set of endings. The desired table, T, for the McKeeman parse contains for each pair of characters in the grammar:

$$
T(\langle I, J\rangle)= \begin{cases}1 & \text { if } I=J \\ 2 & \text { if } I=J \\ 3 & \text { if } I=J \\ 5 & \text { if ambiguous } \\ 0 & \text { if I, J illegal }\end{cases}
$$

Coding observation: In SETL, the equivalent of the LISP MAPCAR
or MAPLIST can be coded in-line and without recursion. See, for example, the fourth line, which sets y to the last component of x, and the NEXTTO procedure, which searches the components of the k-tuple Y for equality with a given P. (Reference: Cocke and Schwartz, "Programming Languages and Their Compilers", pp. 152-171.)

Errata: Declarations of the following external variables are required:

Routine	Variables
PRECEDENCE	G, T
NEXTTO	G
SMALL	B
LARGE	E, B

DEFINE PRECEDENCE;

$C=N L . ;(\forall X \in G) \quad C=U N O R D E R . X$ U. C; ;
$B=N L . ;(\forall X \in G)\langle *-X, * X\rangle$ IN. $B ;$; COMPLETE $B ;$
$\mathrm{E}=\mathrm{NL} . ;(\forall \mathrm{X} \in \mathrm{G}) \mathrm{Y}=-\mathrm{X}$; (WHILE PAIR. Y$)\langle-, \mathrm{Y}\rangle \mathrm{Y} ;$;
$\langle\mathrm{Y}, * \mathrm{X}\rangle$ IN. E; ; COMPLETE E;
$T=N L . ; \quad(\forall X \in C, \quad Y \in C)$
$T(\langle X, Y\rangle)=X$ NEXTTO. $\mathrm{Y} ; \mathrm{Z}=\mathrm{X}$ LARGE. $\mathrm{Y}+(\mathrm{X}$ SMALL. Y$) ;$
IF $Z * T(\langle X, Y\rangle)$ NE. $0 \operatorname{THEN}(T(\langle X, Y\rangle)=5 ;)$
ELSE $T(\langle X, Y\rangle)=Z ; ~ ; ~$
DEFINEF UNORDER. X; $P=X ; Q=N L . ;(W H I L E$ PAIR. $P)\langle *, P\rangle P$ IN. $Q ;$;
RETURN Q WITH. P; END UNORDER;
DEFINEF COMPIETE. M; $A=0$; (WHILE \#M GT. A) $A=\# M$;
$(\forall Y \in M, X \in\{-Y\})\langle * Y, X\rangle$ IN. $M ;$; $;$ END COMPLETE;

DEFINEF P NEXTTO. Q; ($\forall \mathrm{X} \in \mathrm{G}$) $\mathrm{Y}=-\mathrm{X}$; (WHILE PAIR. Y)
IF P EQ. 〈*, X〉Y \$AND Q EQ. *Y THEN RETURN $1 ;$; ; ;
RETURN 0 ; END NEXTTO;
DEFINEF P SMALL Q; $(\forall Y \in B\{Q\})$
IF P NEXTYO. Y EQ. I THEN RETURN 2; ; ; RETURN O; END SMALL;

IF X NEXTTO. Y EQ. 1 THEN RETURN 3; ; ; RETURN O; END LARGE; END PRECEDENCE;

