. SETL Neuvsletter Number 21 April 15, 1971
AN OUTSIDE REVIEW
‘ COMMINTS ON. T SEIT, DRAIT

N ¢ ¢
‘The long preface is quite compelling, but its mandate is not fulfilled

" by *the language described in the rest of the manuscript. As a contri-
bution to the feghnical literature, I therefore reccommend against pub-
lication of the manuscript. This is not to say that SETL is devoid of
merit; on the contrary, there are many good ideas in it. SETL has a
great power of expression, but it is still "just another programming
language", with perhaps more rough edges than some.

In Lhe commonts whiéh_fol]ow, T will discuss the DKIT language, noli the
procse ol - the manmusceriplt, since it ic a well-written drafl that T expect
to go throush some re-drafting beford any possible publication.

Comparéd7t6'thé“goaIé‘§ét”Tdfth'in the preface, particularly
As a final benefit, we-expect the availability of the mathematicized
‘programming language which will be described in the present work to
broaden the-frontier of contact beltween programming and mathematics.
It should at -any rate serve to emphasize to the.mathematician that
programming need not be a mass of petty detail only, that in fact it
is concerned .in a way only slightly unfamiliar with some of the -issues
which he is accustomecd to confront...[page xil,)

SETL has several major flaws which are discussed in detail in the para-
graphs Lo follow: "

‘

1) It cannot be rcad by a mathematician.

2) There are no set operations analogous to APL array operations--
everytning must be done element-by-element.

3) The identity elements of mathematics are not preserved in all
cases. -

k) The treatment of N-tuples is anomalous.

5) There is an overall lack of conceptual consistency.

1) It cannoct be read by mathematicians.

a) Characler set. SETL appecars to have a strong FORTRAN bias, with the
use of =q, ne, and, etc. If this is to be a mathematiciar's languagc,
then.it should have mathematical symbols and use thew in the cxpected
manner (e.g. =, #, A, V, D).

b) Operator precedence. While it is a desirable goal to make expressions

* as readable as possible, the devices adopted in SETL to avoid parentheses
are no improvement. A mathematician will give up the precedence of multi-
plication over addition only with good causé, which is not Torthcoming. —
The dollar sign notation is at best confusing: it is difficult to rememboer
whether . $+ raises or lowers the precederze. I would prefer Polish,
notation over the dollar signs. The same "non-intuilive device" arguc-
ment applies to the notations 10LTY9 and [[label:]].

SETL #21-p.2 .

o) ¢) The multiple usage of a given symbol for different functions is

3)

confusing. A flagrant example is:

<X"Y>=<A"'B, C’ D’ E>
<X -Y><A-B, C, D, E>
<X, ¥Y> =< A-B, <D, E> >

all of which apparently mean X e—A—B1
' Y <D, It

The pointed brackehbs arce used to denotice the different concepta ol
I-tuple, simultancous assignment, and selechtion. The minug sipns
are used to denote the different concepts of intecger subtraction

and "zero" -- the place holder in seliection.

As a set language, SETL has a strange lack of operalions on sets.
All operations on a set must be done explicitly element-by-element.
In SETL, the union of two sets is not a primitive; instead the
mathematician must construct an element-by-element definition of
union, then use that as a subroutine (what is a subroutine?). With
no set union, set intersection, set difference, general simultaneous
operation on all the elements of a set, or general opcration among,
the elements of a set, SETL algorithms must include a "mass of petty
detail" specifying explicit iterations. Among other drawbacks, this
forces the computer programmer's concept of strictly sequential oper-
ation onto a mathematical concept which is unrelated to time.

Conmpound operations are poorly conceived. Instead of explicitly
specifying iteration (and for integer subscripts, order of iteration)
over the elements of a set, it would be better for a compound operator
to be conceived as implicitly applying to all the members of a set:

if & is the set {1,%,2} , then

+ g is 6

* ¢ {741, Xes) is 2
With the concept of simultancous operation on all the clements of a
set, the second example becomes

* (841).

The identity elements of mathematics.

To make algorithms work for degenerale cases, it is crucial to define
that. operations on the null set produce the identity Tor that operation:

+ :‘Ei is O
¥ :nl dis 1 '

(old notation: [+ : X e nl}l x is O, not Q)

.This does not preclude défining operations on Q to give Q or an
error indication. .

Is there an identity element I for "tuple building" such that
<X,I>=X and < I, X> =X ? If so, example 2a on page 103 could
avoid making a special case of the first clement of the sequence. As
the example stands, MAKRTUP(nl) returns Q instead of nl.

°

A b4 e 4 s s e e+ i e o

o P ok

SETL #21-p.3

h)

)

The treatment of N-tupleao

OETL appears to be much more oriented around N-tuples than sets,
yelt the N-tuples described have serious drawbacks. The first
drawback is the extremely specialized role of the first component
of an N-tuple. This f'irst component is to be used as an associa-
tive scarch key in function applications (denoted by SET(key),
SET{key}, or SET[key], depending upon considerations that are not
at all intuitive to a mathematician). The language therefore makes
it difficult to perform an associative search using any other com-
ponent of an N-tuple as a key. As an example, consider a process
that reprecents the arcs in a flow graph as a set of ordered pairs:

A= { ~ lromnode, ftonode >

In OBTL, the notation A {nodc} can be used to specify the scet of
succescors of a nodé. There is no equivalent way to specify the
predecessors of a node. The subscripting and searching operations
of APL do not have this asymmetry. ‘

Another drawback of the N-tuple as a basic data structure is the
"mass, of petty detail" involved in using small integers as the names
of the various components. For example, if one constructs a com-
piler cymbol table as a set of N-tuples, one for each identifier,

it involvrs a lot of detail to remember that: .

L < Xz 3> SYMIABR('YYZ')

pives (say) the datatype of XY%. It is much clearer to have names
for the various componcnts of an N-tuple and to refer to:

TYPE('XYZ') .

The entire concept of selection of N-tuple components is ruined by
its dependence on positional notation.

< =-=%-- > N-tuple
makes it difficult to decide that the sccond component, of an N-tuple
i logically defunct and should be removed fron the data structure.
Vith positional notation, o conponent cannot be removed withoul chang-
ingz all reference to all componcents physically following it. A atruc-
ture declaration like that of PL/I (without the datatype information)
has the strong advantage that elements can be freely added, deleted or
rearranged without re-writing any of the sclection notations in a
program. '

Conéeptual inconsistency

a) ' SETL has no index sets. 1In a sel language, a very natural way
of specifying the application of an operation over an (interval of

integers is to have a notation for the set of integers from I to J
inclusive.

Ez ! becomes 4: [1,n] where the squarce brackets
1<I.N e s _
denole an index sect.

Part of the power of the ¥V x € S ... notation is that the operations
on the elements of the sel may well proceed in parallel. This power is
lost if onerations over integer ranges are forced to be serial. If it
is in fact necessary to specify sérial iteration over a set of integers
in a specific order, tnen perhaps the recursion theory operator u could
be used to specify serial usage of integers from smallest to larpest.

5

SETL #21-p.4

b)

<

A{x] notation.

The side-effect of assigning to.X 1is unnatural. It would be
better to define the expression

. 'H'xesix>5

to have as its value the first such x encountered (or q if

‘there is no such x) instead of True or False. The notation

then bhecomes -a shorthand for
/3{7{ I['/.,>Z)}.) e e

J»n«,»-/ e any. element of the scl of all members of - & which
are greater than 5 . The above notation can he simplified
further 1f the concept of opcratlons on all the elements of a
set 1is allowcd - - S

T x3 S>3

where S>3 spe01f1es the set of all elements of S . which are

greater than 3 . Searches over multiple sets like

xeS, AyeT, FzeU [e(X,&gz}’ could have an N-tuple as their value.

In the present notation it is 1mposs:ble to use the value found
- by an existence scarch, dlx)cs | . , without assigning a
name to it (%) , and using thls name in a separale expression.
There are other cases in SETL where the concept of assignment

“is forced, instead of allowing the mathematician's natural

6 o

Some of these will be discussed below under Selection and
Replacement.

Subroutine definition and External statement;
In SKIT, it is possible to say:
y = COMPILE ‘'define subname ... end subname;!
Is it allowable to say:
"y = define sub ...7 end sﬁb;

i.e., to assign the name of a subroutine which is not compiled
later, but is defined at the same time as the assigmment?

How is the ambiquity of parameterless functions resolved: in

‘concept of embedding any value-expression in a larger expression.

Y = functionname , where functionname returns an integer valuec,

does‘ Y ‘become a function atom or an integer atom? How is the
other result spec1f1ed°

How can variable names other than paramoteru be bound to a

subroutine so that they are stacked upon recursion? This appcars
- to require some sort of dcclaratuon

The EXTERNAL statement can be ueed to refer to a variable in an
inactive subroutine:

© define subl;
define sub2(x); ... end sub2;
define sub3(y); sub?2 external x; ... end sub?;
end subl;

)y

-SETL #21-p.5
o What is the meaning of references to x in sub? then sub2
: is inactive? If the call chain has been:

subl ecalls sub2(a), sub2 calls sub?, sub’ calls sub2(b),
. sub2 calls sub3

‘dre references to x 1in the first and second invocations of
sub? references 'to a and b respectively?

d) The problem of address vs. value in lists.
The insafter examplé on pagé 104 hAS the problem that -the list
cannot have two items with identical values because the value
of an atom is used as its address. 1Is this a shortcoming of
all list manipulation in SETL?

The example also has the bad property that it is legal to 2dd a
duplicate item, A , to the list, but .after that Next(A) is
aiinn-o.o. undefined and will cause an error return, making it difficult
. . to access either A . If duplicates are to cause this problem,
- o it would -be.better .for.them to cause an error return upon

insertion. ,

O e) It iéﬁlééal to say
' A=03B=C ;
But it is not legal to say:
(A,B) = (Q,0); (page T4)

yet for any other value of D ,

N U

f (A,B) = (D,C); 1is equivalent to A =D; B =C;

) Selection and Replacement operators.

: The whole section starting on page 80 is difficult to read. Tt
appears that too many different concepts were forced into the
same general notation, with a resulting unwieldiness. Selection
and replacement operators have the absurd property that positional
and subscript (structural address) notations may be intermixed.

(a,b) = {c,d) is straightforward (a=c; b=4a)
(az2,bzl) = (c,d) is a little confusing (a=d; b=c)
{az?2,b) = (c,d) is absurd (a=d, b=d)

What is the meaning of

) (aya) = (b,c) 2
The * notation should not be restricted to only one appearance
in an expression. For example, to.{orm a set of ordered pairs which
are the first and third components of a sel of Z-tuples, it is
presently necessary to use the Tollowing contortions:
@ WO = {{((¥-=)z, (--%)2), 2z c THREE]

(also note the two unrelated meanings of the symbol "(").

1

i ¢ A s e b o e < o e+ rm 2 e o e

SETL #21-p.6

This could better be written as:
LJIWO. = {{*-%*)z,2z ¢ THREE}
or better yeb:
: WO = (*-*) THREE
| Are (———*) and (- -‘- ,%) equivalent? (page 25 and page 83)

" © TWhy is the-replacement concept necessary at all? .If assignment
could be easily imbedded in expressions '(like in APL),
replacenént would appear to be redundant. f%he is function
on page 128 would not be neecded.

~e

In summary then, SETT is at worst just a collectlon of strange notatlons
and dévices,-and-at-best it.is "just _another programming language". Compared
with the eleganre and clean design of APL, SETL fails to attract the
mathematlcal mind. It does not use the mathematician's symbols, his
notation, his precedences, or his identities. Its mass of petty detail is

' no smaller than that of other languases. The algorithms presented are
little more than transliterations of-what would be written in ALGOL or APL.
Yet the idea of a set as a datatype (or data structure) and the partially-
fulfilled idea of specifying operations on all the elements of a set are
very powerful notions and are good candidates for incorporation in some
existing programming lanpuages.

Example on page 148 re-written to include concepts of set opcratlons,
cross product, etc.

1 DEFINEF doms(nodes, entry, cesor) ;

2 nntr = entry X nodes-cntry; todo = entry;
p WHILE todo # NULI, BEGIN

4 node 3 tode; todo = todo-nodce;

Jc = cesor(node) BEGIN

6 new = nntr{node} - ¢ - nntr{c};
(= IF new # NULL THEN BEGIN
8 nntr = nntr | ¢ X new;
9 todo = todo U c¢;
A lo T MEND; I Bt e - i
11 ~ . END;
12 END; :
13 RETURN nodes X nodes - nntr - (entry,entry);
14 END doms; |

Al e

i A s e

NI N S PR N R VRN

NOTES:
line 1:

-

line 2:

line 2:-

line-h:

line 6:

line 6:

line 135:

nodes is a set of nodes, entry is an atom, cesor is a set of
ordered pairs, the first component is a node, the second component -

is a set of successor nodes.

nntr is a set of 2-tuples. The first and second

components are each single nodes. A given pair (A,B) signifies
that it is not necessary to go through node B +to reach node A .
In general, there will be many pairs in nntr with the same
first component. Note that this structure is different from

page 148,

X means cross product of the two sets. 1In this case, the first
set has only one element. The cross product of two sets is a

set of ordered pairs (2-tuples).

The minus sign denotes set difference. A-B means the set A
with all elements in (A intersect B) removed.

This forms the set of newly-discovered nodes which are not
needed to reach ¢ : those not needed to reach node; minus c
itselfl, minus any nodes previously discovercd.

This line could just as well go hefore the 1. Cross producls
involving the null set correctly give the null sel, which can
then be properly used in the union.

A set of pairs is returned, each pair of the form
{node, back dominator) . Again, this is a slightly different

structure from the one on page 148. The expression reads:

all pairs (node,node) minus the pairs (node, notneededtoreach)
leaving the pairs (node,neededtoreach) , minus the special case
that the entry is defined not to back dominate itself.

SETL #21-p.8
Fxample on page 148 re-written for compactness.

al DEFINEF doms(nodes, entry,cesor);

2 ‘nntr = entry X nodes-entry; todo = entry;

3 WHILE todo # NULL BEGIN

L node todo; todo = todo-node; s = cesor(node);
5 new = s X nntr {node} - (s,s) - nntr[s];

6 nntr = nntr U new;

7 todo = todo U (¥-) new;

8 . END;

9 RETURN nodes X nodes - nntr - (ehtry,entry) H
10 END doms;

!IOTF.S: ‘

line h: ¢ is the set of successor nodes for the present pair of interest.

line 5: In this example, new is a set of pairs. TEach pair (A,B) specifies
' that B 1is a newly-discovered node that is not needed to reach A .

The éxpression reads: for each successor of node ,- nntr{node}
are not needed to reach that successor (s X nntr{node}) , except
that the successor itself should not be included ((s,s)) , and
any previously-discovered unneeded nodes should also not be
included (nntr[s]) . The last term could just be nntr itself,
since only pairs with a successor as the first component are in
new to start with. Note that the notation (s,s) is assumed to
mean

{{r;r), rcs}
A better notation could be found.

line 7: Only those successors that have newly-discovered notneededloreach
nodes are added to +todo .

lines 5, A, and 7 perform in parallel (for all successors) the same
' operations as lines 5 - 11 in the previous example.

