SETL Newesletter Number 37 July 16, 1971
K. Kennedy, P. Owens

An Algorithm for Use-Definition Chaining:
Several forms of optimiration depend on knoving which

definitions in a program can affect the environment at a given
point in the control flow graph of a program. By a definition

of a variable x, we mean an assignment of a value to x, This

newsletter presents an alpgorithm which ~omputes the set, reaches(b),
of all definitions of variables for which there is a definition-
clear path to the entry to block b. This algorithm uses the
interval technigue and might be considered the "dusl" of the
dead-variable analysis algorithm (SETL Newsletter Number 281,

For the purposes of the analysis, we need the following sets

and functions,

defs - the set of all definitions in the program.

2. var(defn) - the function which maps a definition onto
the variable it defines.
2. thru(b,sb) - the set of variables for which there ig a

definition - clear path through b to sb.
4, def(b,sb) - the set of definitions in b from which there
is a definition clear path for the variable defined to
an exit from b to sb,
initial - the set of initializing deflinitions made before

I

entry to the program,

The following functions are assumed to have been provided by

the interval analysis.

1. s(b) - the set of immediate successors of b,

B

2. p(b) - the set of imnediate predecessors of b.

-2 -

These functions are also defined on all intervals of the derived
graphs,
The first step in our analysis is to calculate thru and def

———

for an interval, given these sets for the nodes of the interval.
To do thig, we will first compute three intermediate sets.

1. path(b) - the set of variables for which there is a
definition-clear path from interval entry to b.
2. defint(b) - the set of definitions in the interval which

can reach b by any path not including a latch (a branch
back to the head).

defhead - the set of definitions in the irterval which

\HN

can reach the head by a latch.

We now state some eguations involving these sets., Suppose sb
is the head of some successor interval sint of the interval intv

that we are processing. A definition clear path through intv
to sint must pass through some predecessor of sb in intv and
through that predecessor to sbj; the SETL ~ode fragment is

(1) thru(intv,sint} = [u: bep(sint(1l))int t1 [intv]]
(path(b) int thru(b,sint(1)))

where intv and sint are SETL sequences (in interval order) of
nodes,

Computing the set def(intv, sint) for the interval int e

more conplicated., A definition within intv can reach sint if

it is in one of two sets.

1. [u: bep(s intv(1))] (def(b,sint(1)) 2
fdedefint (b) I var(d)ethru(b, sint (1))} ;
~ the set of definitions in b with a def-~lear path to

AN

sint (1) and definitions in intv which reach the entrance

to b and pass through b to sint(1).

2. {dedefhead , var(d)ethru(intv, sint)t
- the set of definitions which reach the head of intv via
a latch and whose variables have def-clear paths through

intv to sint.

Therefore,

(20 def(int,sint) =fde defhead l var(d)é’thru(int,sint@
bep(sint(1))] (def(b,sint{1})n
fdederint(b) | var{d)g thru(b,sint(1))§);

111

The equation for Eath(b) is the same as the one in dead variable

analysis.

(2) path(b) = [u: pb €p(b)](path(pb)int thrulpb,b));
where

(Y path(int(1)) = £all variables} = var[defs];

The set defint(b) is computed by examining each predecessor of
b in the interval. A definition will be in defint(b) if it is
in def{pb,h) for some predeceséor pb of b, or if it is in defint(pb’
and its variable is in thru(pb,b).
(=Y defint(bv) = [u:pb€p(d)] (def(pb,b) 1
£1 e defint(pd) / var(d) € thru(pb,b)$);

where
(%Y defint(int{1)) = nl;

The form of these SETL code fragments suggests that we pro-

cess the nodes of the interval in interval order. Since we need

information concerning the predecessors of each node processed.
The routine inout(intervals), has, as its only argument, a
sequence of intervals, starting with the intervals of the control
flow graph followed by intervals of the first derived graph and
so on. Each interval in this sequence is a sequence of its nodes
in interval order. For each interval, inout computes the sets,
thru and def, assuming that they are avallable for the nodes of
the interval. Their availability is assured by the order of the

intervals in the sequence intervals,

define inout (intervals); optimizer external s,p, thru,def,var,defs:
/% process each interval ¥/
(1gVig Fintervals) intv=intervals(i);
defint(intv(1))=nl; path(intv(1l))=var[defs];
/% pass through intv to get path and defint %/
(2s¥is#intv) Db=intv(i);
path(b) = [u: pbep(b)](path(pdlint thru(pd,b’);
defint(b) = [u: pbep(b)](def(pb,bln
idédef‘lnt(pb\ , var(d) € thru(pb,b)f\:end Vi
A compnte defhead %/
defhead = [n: pbe (p(intv (1)) int tl[intv])](def(pb,intv(1})
i{ﬂe;defint(pbW I var(d) € thru(pb,intV(l\)ff;
/% compute thru and def for interval &/
(V¥ sint € s(intv)) sb = sint(1);
thri(intv, sint’ = [u: pbe {p(shint t1[intv]]
(path(pb) int thru(pb,sb’);
def(intv, sint =2‘de,defhead I var(d)e,thru(intv,sint\}
u [n: pbep(sh)](def(pb,sb) u
(d e defint(pb) | var(d)€ thru(b,sb'))

end Ysint; end Yi; return; end inont;

This routine is all we need for the first pass, It will
calculate thru and def for intervals of the control flow graph
and all derived graphs.

The second pass must calculate reaches(b) for every bhlock

in the program. A definition reaches b if, for some predecessor
pb, it is in def(pb,b) or if it reaches pb and the variable it
defines is in thru(pb,b).

(7Y reaches(b) = fu: pbe p(b 1 {def(pb,b) i
gd €reaches(pdb) [wvar(d) € tarn{ph,u)¢):

For a program entry e,
(8) reaches{e) = initial;
and for interval heads,
(9) reaches(intv(1)) = reaches(intv);

At the end of the first pass the reaches set Ffor the single
node representing the entire program is set to 1nitial. Then
the routine outin is called,
jefine usede®(intervals); optimiser external p,z,t"ru,de’, d0"¢
initial, reaches, var: inout (intervales);

reaches(interval (4fintervals) = initial;

o~

artin{tatervals); returng end asedef;

Vv LE L8 S
The subrontine outin ~alcnlates the reaches set Tor the nodec
of each interval, =fven this set for the interval ifsel?r, If
procecses *“he outermost interval first, thren the next -mtermost
intervals and so on, passing throish intervals in reverse oarder.
wWithin an interval, nodes are processed in interval order ncing

equation (7).

define outin(intervals): optimizer external s,p,thru,def,var,
reaches;

/¥ process intervals in reverse order ,*/

(# intervalexVi>1) intv=intervals(i);
reaches(intv{1))=reaches(intv);

/% process nodes in interval order x/

(PsYigfintv) b=intv(i);
reaches(b)=[u: pbgp(b)](def(pb,b) u

§A¢€ reaches(pb) | var(d) € thru{pd,b)2):

end Vi: end Y'; return: end onting

On exit from this routine, reaches(b) will have heen aompuied
for every block b in the progcram, which vas the desired result.
Note that the form of eguation (7) forces us to process in interval

order 1if we wish to alwavs have the reauired reaches sets,

