
SETL Newsletter N11mber 37 July 16, 1971
K. Kennedy, P. o~ens

An Algorithm for Use-Definition Chaining:

Several forms of optimi7ation depend on knov.ring vrhich

definitions in a program can affect the env1ronment at a given

point in the control flow graph of a program. By a definition

of a variable x, we mean an assignment of a value to x. This

newsletter presents an aleorithm which ~omputes the set, reaches(b),

of all defi.nitlons of variables for which there is a oefinition­

clear path to the entry to block b. This algorithm uses the

interval techni aue and might be consi rJ ereo the "n111:1 l" of t11e

dead-variable analysis algorithm (SETL Newsletter Number 28).
For the purposes of the analysis, ~e need the following sets

and functions.

1.

4.

defs - the set of all definitions in the program.

var(defn) - the function which maps a definition onto

the variable it defines.

thr11 (b, sb) the set of variables for which there i s a

definition - clear path through b to sb.

def (b, sb 1 - the set of rlefi nit ions in b from ,,,hi f'h there

is a definition clear path for the variable defined to

an exit from b to sb.

5. initial - the set of initializing rle~initions made before

entry to the pro~rRm.

The followtng f1rnctlons are assumed to have been provi. ded by

the interval analysis.

1. s(b) - the set of immediate successors of b.

2. .l?J.£2. - the set of im:nediate predecessars 0f b.

- 2 -

These functions are also defined on all intervals of the derived

graphs.

The first step in our analysis 1s to calculate thru and def

for an interval, given these sets for the nodes of the interval.

To do this, we will first compute three intermediate sets.

1. path (b) - the set of variables for whlch there is a
definition-clear path from interval entry to b.

2. defint(b) - the set of definitions in the interval which

can reach b b;/ any path not lncliuHng a latch (a branch

back to the head).

3. defhead the set of defi.niti.ons in the ir.terval which

can reach the head by a latch.

We now state some eouations involving these sets. Suppose sb

is the head of some successor interval sint of the interval intv

that we are processing. A definition clear path through intv

to sint must pass through some predecessor of sb in intv and

through that predecessor to sb; the SETL :ode fragment is

(1) t 11 ru (in t v, sin t \ = [~: b EP (sin t (1)) i. n t t l [i. n t v]]

(path(b\ i.nt thru(b, sint(l \))

where intv and sint are SETL sequences (in intervaJ order) of

nodes.

Compu tt ng the set def (intv, sint) for t1-"1e interval in t i s

more c:on1plicated. A clefi.nition within intv can reach sint i_f

it is in one of two sets.

1. [u: h€p(s tntv(l))] (def(b,sint(l)) 2
{dE.defint(b\ / var(d)tthru(b,sint(l;)} 1 :

- the set of definitions i.n h with a r3ef-r:lear path to

sint (1) and definitions in intv whicl1 reach the entran re

to band pass through b to sint(l).

[aedefhead / var(d)€thru(intv,sint)l

- the set of oefi.nitions which reach the head of lntv via

a latch and whose varlables have def-clear paths through

inb.r to sint.

Therefore,

(2; def(int, sint) =={ne defhead (var(d) t thru(int, sint\5

.::: [.:2_: b f p (sin t (1)) J (de f (b, sin t (1 \) .:2_

[_ d £ r. e f i n t (b) f v a r (d) € t h r11 (b , s i n t (l)) .0 ;

The eq~ation for path(b) is the same as the one in dead variable

analysis.

(3J path(b) == [2: pb €. p(b)] (pa.th(pb)i.nt thru (pb, b));

·where

(11; path(i.nt(l)) == £all vari.ables} = var[defs];

Tl1e set defi1,t(b) is computed by examintns; each predecessor of

bin the interval. A definition will be in defint(b~ lf it iP

in def(pb,h'! for some predecessor E.£. of b, or if it is ln defint(pb;
and its variable is in thru(pb,b).

(~. \ 0 e fin t (b) == [,1 : p b € p (b)] (de f (p b, b) 1

(_ d E- ci e f i n t (p b \ / v a r (d) t... t h ru (p b , b \ }) ;

where

(<;) defint(i.nt(l)) == nl;

The form of these .SETL code frar;ments suggestf:; that we oro­

cess the nodes of the interval in interval order. Since ~e need

information concerning the predecessors of each node processed.

The routine inout(intervals), has, as its only argument, a

sequence of intervals, starting with the intervals of the control

flow graph followed by intervals of the first derived graph and

so on. Each interval in this sequence is a sequence of its nodes

in interval order. For each interval, inout computes the sets,

thru and nef,. assuming that they are availahle for the nodes of

the interval. Their availability is assured by the order of the

intervals in the sequence intervals.

rlefine jno 11t (intervals); optimjzer external s,p,thru,nef,var,nef~:

/~ proC'ess each i.nterval */
(l~V.-i~ f 1 ntervals) i. ntv=i ntervals (.1) ;

defjnt(intv(l))=nl; path(intv(l))=var[rlefs];

/* pass through i.ntv to get path and defint i./
(2~\/i~1fintv) b=intu(i);

pa t h (b) = [2:: : p b ~ p (b)] (path (p b) in t t h r 1J (p b , b 1) ;

defint(b) = [11: pb€p(b:](def(pb,b)u

[d € nefi.nt(pb 1 j var(d) € thrn(pb, b)_f: ;end 'tit:

/4- comp11te defhead ,t/
defhead = [.:2_: pb€ (p(intv(l 1) :int tl[intv])](rJef(pb,intv(J'i)

.:2. (rl £, iJ e f i. n t (p b \ / v a r (d : ~ t h ru (p b , i n t '.r (l \) } \ ;

/:;t-r,ompute thrii and def for interval 11/
(V sint £ s(intv\) sb = sint(l1;

thr:l(intv,sint\"" [~: pbE,(p(sb\int tlfint"ll

(path (p b) i t1 t t h r11 (p b, s b') ;

r'!ef(intv,si.nt; =fdcdefhead / var(d;fthr11(i.ntv,sint.'}

.::: [~: pbEp(sb\)(def(pb,sh) ~

(d6. rlefint(ph; I var(d 1 €thru(b,sh\))

enrl Vsint; enrl \Ii; ret 11rn; end i.no11t;

This routine is all we need for the first pass.

calculate thru and def for intervals of the control flow graph

and all derived graphs.

The second pass must calculate reaches(b' for every block
in the program. A definition reaches b lf, for some predeces~nr
E22_, lt is in def(pb, b) or t f it reaches pb anri the ,_rariablc it

defines is ln thru(pb,b).

(7) reaches(b) == [~: pbC p(b'1 (def(pb, o\ ~
{_d €- rear,hes(pb' 11ar(A\ C't'nr·i(ph 1-,'l'·

' !J c..- ,1 \ .., '"•' 1J j "

For~ program entry e,

(8) reaches(e' = initial~

and for interval heads,

(9) reaches(inbr(lJ) = reaches(tntv);

At the end of the first pass the reaches set ror the s1nsle

none representi_ng the entlre prograr1 is set to ; niti al.

t. h e r n: .1 t 1 n e o 'l t, i n i s r ~ 1 1 e c .

rJe~ine ,1serJe.,,,(1 ntervals;; op+-.imi ser extern8l p, 2, t 1·r1, de", •1°12

in 1 tlal, reac 1·,es, var; i 11011t(inter 1ra]s);

rearhes(1nterva1(:JFii .. tervals) == init.lal~

I' 11e snb ro 1 1 tine out in ,...al c11 la tes the rear 1,e s set f'or t 11e 11one s

of e':l.rh irtt.n.rval, ~=iven t.hiP set for the -ir,terval itsel-". 1 1

processes •;he outermost interval firrt., the:1 t.Y·e next ".'),1ter:riost

intervals anti so on, passln:r, thro113:h i >1terva1s in rP ·erse ,,rrier.

'vJitr1i11 an interval., nones are prnr:'.essen Lri interv~l orrie.,.. '1fi11;:

equati ori (7).

- 6 -

defi.ne outin(intervals); optimizer external s,p,thru,def,var,

reaches;

/-t, process tntervals i_n reverse 0rder J(-/
(-1P i_ nterva ls ;/v'i ~1) i ntv= i nt.ervals (.i) ;

reaches(intv(1))=rear:hes(intv);

/~ process nones i_r1 interval order */
(~~Vi~/fintv) b==int'1(i);

rear:hes(b)=[u: pbf:p(bJ] (def(pb,b) u

[nc rearhes(pb\ rar(rl) €, thri1(pb, bJ}!:

enrl Vi: erirl V'; ret.'1r11; end o'Jf;j n:

On extt fr,:Jm t}1is ro11tir,e, rea, ... hes(b\ ,.,;11 have been i:rvnp111 ed

for e,tery bloi:k: b i ~ the prnsram, ,.,rhich ,,,as the deEi rerl res'1lt.

I':ote that the form of e~uat-ton (7 1 forces us to process in intervAl

order if we wish to al~ays have the renuired reaches sets.

