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The conventions concerning the use of tuples in SETL are 

sti-11 somewhat confused, and this note will aim to clear them up. 

A. Indexed objects, tuplef:l. (This remark belongs more to 

the logical level than to the level the SETL user will normally 

encounter.) If n is an integer (remember that in SETL this is 

a particular kind of atom) and x is any SETL object, then the 

set {n,{x}} will be called 'x indexed by n'. In this note, 

we shall find it convenient to write x for this set;: naturally, 
n 

th~s notation is not part of the regular SETL syntax. Note that 

the object x and the integer n can be reconstructed from xn in 

a ~nique way; n (which must be an integer) will be called 

thE: index of x . n 
A tuple is now defined to be a set t = {xi1 ..• ,xil<J, in which 

no index occurs more than once .. That element x to which the index 

i is attached is called the i-th component oft. Note that this 

all.ows tuples which are 'sparsely' populated, e.g. tupleswith 

defined first and third components, but with no second component. 

A t.uple of this kind is called irregular; normally the programmer 

will not use irregular tuples; such use will be inefficient, 

thcugh the system will not forbid it. Internally, tuples will be 

mai.ntained by keeping their components in (logically) contiguous 

mem,ory locations, probably in the sort of 'range' discussed in 

New,sletter 39. 

Note also that tuples are considered to be SETL objects of 

different type than sets. Some additional explanation of this 

poi.nt:. the objects in SETL have types; and in fact programmer

defined object types will be allowed in a systematic way. This 

meains that a 'purer' set theory would consider each SETL object 

to ;:ie really an ordered pair, whose first component is the object's 

typrB, and whose second component is what in SETL we consider to be 



S42-2 

the object itself. Objects in SETL are equal if and only if 

both components of this hypothetical pair are equal. Thus 

the SETL three-tuple t whose components are x,y,z, and 

which SETL writes as <x,y,z>, would, in a purer set-theory, 

be regarded as a pair 

while the SETL object tt that could be written in SETL as 

{{l,{x}},{2,{y}},{3,{z}}} 

would in our hypothetical purer set theory be regarded as 

set, {x
1

,y2 ,z
3

} . 

Note that SETL provides conversions of type through the binary 

function as. Thus t might also be written tt as :~pl; while 

tt might also be written t ~ set. Alternatively if we write 

SS= t; type SS= set; 

then ss is the same as tt; and if we write 

s = tt; -~ s = tupl; 

then sis the same as t. 

This distil'lCtion of types should cause minimum inconvenience 

to the programmer. At the implementation level, it avoids the 

necessity for checking sets frequently to see if they are tuples. 

B. Notations for tuples. If x,y, ... ,z are n SETL objects, 

then the notation 

(1) t=<x,y, ... ,z> 

denotes the n-tuple which, were it taken as a set, would be the 

set 
{x1,Y21•••1zn} 

of indexed objects. The type oft in (1) is of course tupl. 

Given (1), then 

(2) t(k) 

denotes the k-th component oft. The component t(l) may be 

written as 

(3) hd t. 
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The notation 

(4) t(i:j) 

denotes the tupl whose components, for 1 < k < j, are 

t(i+k-1). The notation 

{5) #t 

denotes the number of components oft. The notation 

(6) tt t 

is an abbreviation for 

( 7) t(2:#t-1) 

Note that all of these notational conventions apply also 

to tuples some of whose compnents are undefined; though the 

use of such tuples may lead the unwary to surprises .. 

Similar notations are adopted for bit-strings and character 

strings. The same notations can be applied to SETL sequences, 

i.e., to sets s whose members are 2-tuples <k,x>, with no 

integer k occurring twice ins. 

The multiple assignments 

<a,b,c> = tuple 

and 

<a,b,c,-> = tuple 

<a,-,b,-> = tuple, etc. 

retain their present syntactic form. The first of these is 

equivalent to the set of assignments 

a= tuple(ll; b = tuple(2) ~ c = tuple(3:#tuple-2) 

The second is equivalent to 

a= tuple(l); b = tuple(2) ~ c = tuple(3); 

The same notations are available for bit strings, character 

strings, and sequences. 

These conventions accord approximately with the suggestions 

made in newsletter 39, p. 6, and in 34, p. 1, p. 3,4, but with 

some variances in detail. The present newsletter however 

obsoletes the others in this regard. 
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To continue, note that 

i. The 1-tuple <x>, which as a set would be {x1 } or 

equivalently {{l,{x}}}, is distinct from the object x. 

This is the object that in newsletter 34, p. 1 was written as 

just x; however, this last notation is unnecessary, and is 

abolished. 

ii. The object 3x, for x a tuple, is simply hd x; 

the former notation is abolished. 

iii. We use the notation 

(8) tupl (n:) 

rather than tupl(-n) as an abbreviation for tupl(n:#tupl-n+l). 

The same notation is used in connection with bit strings, 

character strings, and sequences. 

iv. Tuple concatenation may be written using the '+' sign. 

A sequence may be converted to a tuple by writing 

tupl = [+: 1 < n ~ #seq]<seq(n)>; 

a tuple to a sequence by writing 

seq = {<n,tupl(n)>, 1 < n < #tupl}; 

v. The iteration header 

(9) (Vx € tupl) 

iterates over all components of a tupl, in increasing order. 

It is therefore different from 

(10) (1 < Vn < #tupl) . 

The iteration 

(Vx E: tupl) block(x); 

may however be written as 

(1 < \/n < #tupl) block (x (n)) ; 

The set-former and quantifier notations that derive from (9) 

are allowed also. 

All these notations are also made available for bit-strings 

and character-strings, though not of course for sequences 

(which are sets). 
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vi. We write x £ tupl for 3y e tuplly eq x. 

Similarly for strings. 

vii. We write f[tupl] for the tuple 

[+: 1 < n ~ #tupl] <f(tupl(n))> . 

Similarly for character strings and bit-strings. 

C. Deviations from earlier notations. 

Note that <x,y,z> is an object entirely distinct from 

<x,<y,z>>. In general, the present notations for tuples are 

quite close to the earlier (and present) notations for sequences. 

D. Functional application. 

Suppose that f is a set, and x an object. Then f{x} denotes 

the set 

(11) {if #ti y eq 1 then y(2) else tt y I type y eq tupl 

and ti y ~ n and hd y eq x}. 

We then define f(x} as the quantity 

(12) if (#f{x}) gt 1 then n else ~f{x} , 

and f[x] as the set 

( 13) [u: f{y}, y € x] . 

We also define 

f{x,y} 

f{x,y,z} 

to be identical with (f{x}){y}, 

" ( ( f{ x} } { y} ) { z} 

and 

(14) f(x,y, ... ,z,w) 

to be identical with 

(15} (f{x,y, ... ,z})(w). 

etc.; 

All this accords closely with our present practices. The 

changes in the treatment of tuples lead however to some 

slight technical variances, Note e.g. that if f is a set of 

triples< x,y,z>, and if g is the corresponding set of pairs 

<x,<y,z>>, (which is quite different) then f{x,y} and g{x,y} 

happen to be the same. 
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Generalized notations such as f[x,y], [x] op [y] , etc. 

are defined in accordance with the above, very much in the manner 

described in the SETL notes, pp. 26-27. 

SelE!ction operators (SETL notes pp. 24-25} are abolished; 

and as~:ignment operators (p. 45) abolished also. 


