SETL Newsletter Number 45 July 19, 1971
Semi-Local SETL Optimization: Dave Shields

Introduction:

In this newsletter we briefly describe optimization of SETL,
emphasizing the semi-local optimizations which should be realirable
i{n the near future and optimizations related to the SETL implemen-
tation, We include examples, and suggest a schedule for optimira-

tion efforts for the next few months,

The central issue in SETL optimization is, of course, the
optimization of the set-theoretic operations - set membership,
functional application, etec. In addition, a lower level of opti-
mization may be distinguished - this includes proper choice of
basic support operations, design of a "SETL machine', etc. Any
particular optimization may be deferred as long as a level of
performance capable of supporting ongoing development work 1s
maintained.

The types of lower-level optimization that may be necessary,
for example, minimization of dynamic checking of types, and proper
dynamic use of storage, are not peculiar to SETL, but are also
applicable to languages such as PL/I, ALGOL %8, and BAIM.

The second implementation of the SETL primitive operations in
BAIM 1is almost complete., The first implementation used BALM 3%,
represented sets and 1lists, and was completely interpretive., The.
second implementation represents sets as ventors of listfs necing
hashing to index the vectors., The execution is also interpretive.
The next implementation to follow will be compiler based, and some
optimization will be done to eliminate needless tests for type,
and to eliminate needlegs formation of sets, These optimizations
are non-recursive in nature, and amount essentially to improved

code generation,

-2 -

The fourth implementation will make use of some global flow
analysis and more extensive global optimizations.
The tentative schedule for these efforts is as follows:

(1) September - Second implementation available, first
efforts at code generation,

(2) January - SETL compiled, not interpreted; local optimi-
zation of set-former and short loops.

(2) Sometime later - fourth imple%entation, clobal program
analysis to extend scope of available optimirzations,
multiple representations for sets.

I. Suppression of type-testing for constants
and more general optimization of type-testing.

A survey of some optimizations:

SETL, BALM, and ALGOL 68 are examples of "type and value"
languages. By this we mean that, at the implementation level,
the fundamental data obiect is of the form

object [T-type V-value

The type-field T is typlcally 2-6 bits in length, and the value
field 1s 18-24 bits long. We consider the type field as either
a small integer or a bilt-string of Implementation-defined flags
The value-field 1is usually a pointer to the implementation
representation of the value of the object; for example, if the
type-field is "set", then the value-field might address the top
node of a tree containing the set memhers. However, certain ob-
Jjects, such as booleans or integers of fixed precision, may reouire
no more bite to represent their value than are renulired for an
address, and so their value may be stored dirertly in the value-
field.

AN

The type-field 1s typically used in two ways:
(a) to indicate how to interpret the value field, i.e.,
to determine if V is an address or the value itself: or
(v) to determine if the object is a "legitimate" operand,
and if so, which form of operation to apply. For example,
if "plus" is defined as addition for integers and cate-
nation for strings, the type-field must be checked to
determine which form of "plus" to use.
Usages of the form (a) are not common; the necessary interpretation
is usually contained in the code implementing the primitive opera-
tions on the obiects; for example, the code for integer addition
might assume that the value-field contains the value of the integer,
If such usages are buried too deeply, or obscurely, within the
implementati on, then 1t may be difficull to extend the langnage,
for example, to sllow integers of varying precision.
we now discuss the aspects of type-field particularly relevant
when we are "compiling" SETL. This issue includes the isolation
of tests on type so that redundant tests can be eliminated, the
run-time scheduling of type tests, and the implementation of
booleans,
“onsider the algorithm for "plus" mentioned above, defined

as addition for integers, catenation for strings, and /L othervise:

definef plus(a,b); return ifx

. 3\
isintecer(a’?

isinteger(b)? ischar(a)?
=intadd(a,b),=undef, ischar(b)? isbit(a)?
=charadd(a,b),=undef, 1isbit(b)?=undef

=bitadd{b),=nndef;
intadd:...code for add...:

bitadd;

LAY

end ifx;; end plus;

-4 _

Observe that the calculation of plus(a,1l) involves the
needless test that "1" is an integer; "1b+4b" involves the
redundant tests that the arguments are neither integers nor bit
strings; and "1b+2" involves the needless tests that "1p" igs neither
an integer nor a character string (in fact, we know the result is
/L since "plus" is defined only for arguments of the same type).
If the code for "plus" were written using "if..,then.,." statements
instead of the ifx form, and if fplus" contained the code for the
subroutines, intadd, bitadd, charadd, instead of the procedural
form shown, it might be even more difficult to note the test

redundancies mentioned above.

The examples show that the type-checking contained in the
implementation routines should be "exposed" to the compiler; this
allows the compiler to eliminate needless tests if operand types
are known at compile time. A standardirzed implementation of
type-tests of this sort also makes it easier to add new-obiect

types to the language.

A suggestion concerning optimization of type-checking:

We can express the type-checking of operands in a tabular

manner as follows:
{name, numargs, sametypes, typelist, errcase),

in which name is the function name, numargs is the number of
arguments, sametYEes 1g true if all argnments must be of the
same type and false otherwlse; and tzgelist is a set of tuples
of the form

(type,action),

when action is either the name of the procedure to use if the

operands have type EZB or a code skeleton. The last entry
errcase is of the same form as action, and indicates what to do
if no tuple in the typelist begins with the type of the operands.
For example, for "plus" we obtain:

{plus, 2, true, {{ integer, integeradd),(bit,bitadd,
{character,charadd)} ,undef>,

Algorithms for code-generation using such type information will
follow in a later SETL newsletter.

A suggestion for the dynamic scheduling of type tests:

The methods discussed in the preceding paragraphs deal only
with the static analysis of the program; we assumed no knowledge
of the relative frequencies with which various parts of the program
are executed, or of the structure of the data input to the program.
However, in most SETL programs, the type of a given variable will
not change during program execution. For example, in:

if a+b 53 c then...

it is unlikely that a,b,c will have both integers and strings as

their value during execution. Thus, if a,b,c are all blt strings,

then every calculation of "a+b", involves the essentially needlesc

tests that a and b are neither integers nor character strings.
Since ;ﬁe cﬁgpiled code must contain tests for all the

admissible types, the best we can hope for is to arrange the

tests so that the correct test is made first, This can be accom-

plished as follows.

(a) Compile a special hranch-on-type function, of variable
length, which contains a list of valid types and addresses
of corresponding code (note that the list entry has
the standard form, i.e., we use type-field for valid
types, and value-field for code address),

(b) compile the calls to various subparts (e.g., intadd).
The labels of these subparts are the addresses con-
tained in the branch-instruction. Note that the
instruction is compiled as an "initialized" branch-
on-type instruction. The first time the instruction
is performed, the tests are performed and the list in
the opcode is altered so that the successful test is
first, the initialization flag is turned off, so that
subsequent executions of the instruction require just
the linear search of the type-address list.

The "branch-on-type" instruction may be implemented on the

BAIM machine shortly.

IT. Optimization of set-operations,

In this section we discuss the semi-local set optimizations
to be included in the third SETL implementation.

The evaluation of certain expressions containing the SETL
set-former may not reaquire the formation of the set described.
In particular, the optimizer should recognize the following forms,
and compile code replacing the set-former by a loop:

(1a) 9{e(x),x€alc(x)} into

(1b) elm=_1L: (Vx€a), £ c(x) then elm=x; quit;; end V/ x;

(2a) yv€ fe(x),xé a | c(x)$ into

(2b) mem=false; ({/x€a lc(x)) if v eq e(x) then mem=true:rmuits:
end Vx;

Note that incorrect code may result if the evaluation of either
c(x) or e(x) has "side-effects". For example, consider

(%) az{i’Z,fi;y=Eng(x\, xeia‘ x gt 0¢;...

definef g(x); external times; times=times+l; return 1/(x-2);

(
end g;

Note that 1f we compile (3) as (1b) then times will be incremented
once, and an otherwise fatal error that might result when x is 2
may be missed. Either we can change the definition of the set-
former to require the programmer to expose such side-effects, or,
more appropriately, we compile (1la) in the form (1b) only wvhen no
function calls are involved, or else compille tests to detérmine if
functions involved are sets or programmer-defined functions, and
branch to the respective short or long form accordingly.

One can also congider

(a) Fie(x),x € | o(x)3

In many cases, we may as well form the set appearing on the right,
since potential members must be tested for duplication. If, how-
ever, e(x) is known a priori to be one-one, so that no two potential
candidates can be equal, then (la) can be compiled as

(L) num=0; (Vx€ a lc(x)) num=num+1l; end Y x;

In addition, we can omit the test for element duplication in any

instance of
éé(x),x € a lC(X)Z

in which e(x) is one to one.

Since the verification that an expression e(x) is one-one
poses a difficult problem in theorem proving, for the present the
compiler will onlv recosgnize this property if e(x) 1is of the

form e(x)=x, or e{x'= tuple with x as one component,

IITI. Elementary constant-noticing.
Sets and tuples defined by explicit enumeration of their
elements should be separated into their definitely-constant and

possibly-varying parts. For example,
{a, b+1,10, 20¢

s to be consldered as

{a,b+1} union {lO,ZO,ZO} ,

where the set on the right need onlv bhe formed once, at compile
time. This optimization is particularly relevant for tables and

compited go-tos, e.q.

goto é(l,labl),(Z,1ab2),(3,1ab>§ compindex;

IV, Miscellaneous.
Other special forms and tests should also he recognized by

the compiler, These include.
hd[set],

if set 1s a function-set, i.e., the domain of the function sget.
This is only feasible if tle implementstion of sets "groups"
tuples with identical first components so that an sppropriate fast

routine ran he written.

