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In this newsletter we briefly describe optimization of SETL, 

emphasizing the semi-local optimi7.ations which should be reali7able 

in the near future and optimtzations related to the SETL implemen

tation~ We include examples, and suggest a schedule for opt1mi?a-
: 

tion etforts for the next few months. 

The central iss11e in SETL optimi7ation is, of course, the 

optimization of the set-theoretic operations - set membership, 

Dinctional application, etc. In addition, a lo~er level of opti

mization may be distinguished - this includes proper choice of 

basic support operattons, design of a "SETL machine", etc. Any 

particular optimization may be deferred as long as a level of 

performance capable of supporting ongoing development work is 

maintained. 

The types of lower-level optimhation that may be necessary, 

for example, minimization of dynamic checking of types, and proper 

dynamic use of storage, are not peculiar to SETL, but are also 

applicable to languac;es such as PL/I, ALG-OL 68, ancl BALM:. 

The second implementation of the SETL primitive operations in 

B.l\LM i.s almost complete. The first implementation used BALM 3, 

represented sets and lists, and was completely interpretive. The 

seconrl imp1e·rientati 1'1n represents set8 as ve 0 t0rs of llsts ,1,.,i11r; 

hashing to index the ver'.'tors. The execution is also interpretive. 

The next implementation to follow will be compiler based, and so~e 

optirni?ation will be done to elim1nate needless tests for type, 
and to eliminate needless formation of sets. These optirnt7at1on8 
are non-rer'.'u rsi ve in nature, and amount essentially t;o imprcweri 

code Generation. 
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The fourth implementation will make use of some global flo~ 

analysis and more extensive global optimizations. 

The tentative schedule for these efforts is as follm,•s: 

(1) September - Second implementation available, first 

efforts at code generation. 

(2) .January - SETL compiled, not interpreted;: local optlmi

zation of set-former and short loops. 
i 

(3) Sometime later - fourth imple~entation, global program 

analysis to extend scope of available optimi~ations, 

multiple representations for sets. 

I. Suppression of type-testing for constants 

and more general optimization of tzye-testing. 

A survey of some optimizations: 
SETL, BALM, and ALGOL 68 are examples of "type and value" 

languages. By this we mean that, at the implementation level, 

the fundamental data obii ect is of the form 

ob.iect T-type V-value I 
The type-field T is typically 3-6 bits i.n lene;th, ann the val 11e 

field is 18-24 bits long. We consider the type field as either 
a small integer or a bit-string of implementation-rlefined flags. 

Tlle va1ue-fielrl is 1Js·1ally a pointer to tl1e tmplemPntAtion 

representati.on of the value of the obiect; for example, if the 

type-field is "set", then the value-field might address the top 

node of a tree containing the set members. However, certain ob

.iects, such as booleans or integers of ~ixed prectsjon, may reauire 
no more bits to represent their value than are rernd. reri f0r an 

aridress, Rnd so their value may be stored dlreetly in the v,qlue

field. 



The type-field is typically used in two 1
•
1a.ys: 

(a) to indicate how to interpret the value field, i.e., 

to determine if Vis an address or the value itself~ or 

(b) to determine if the ob,ject is a "legittmate" operand, 

and if so, which form of operation to apply. For example, 

if "plus" is defined as addition for integers and ~ate

nation for strlngs, the type-field must be checkerl to 

determine which form of "plus" to use. 

Usages of the form (a) are not common; the necessary interpretation 

is usually contained in the code implementing the prirr:itt 0,re opera

tions on the objects; for example, the code for integer addition 

might assume that the value-field contains the val11e of the i ntee;er. 

If such usages are buried too deeply, or obscurely, 1,.ri.thi:1 the 

implementation, then it may be difficult to extenn the lanE;11age, 

for example, to allow integers of varying precision. 

We noF di.scuss the aspects of type-fielo particularly relevant 

when we are "compiling" SETL. This issue i.ncludes the :l solatton 

of tests on type so that redundant tests can be eliminated, the 

rim-time schedu 11.ng of type tests, ano the implementati. on of 

boo leans. 

-=:onsi.der the ale;ori thm for "plus" mentioned above, oefit1ed 

as anr'lition for integers, cate'1ation for ::,tri.ne;~, and -'1.. 0ther,·•ise: 

nefinef plus(a,bl; return i_fx 

lsinte_ser(a\? 

isinteger(b)? ischar(a)? 
=intadd(a,b),=undef,ischar(b)? isbit(a)? . 

=charadd(a,b),=unne~ isb1t(b)?=undef 

_=bi ta(M (b), =1rnnef; 

intadd: ... cone for add ••• ; 

bita.dd; 

end i. fx; ; end plus ; 
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Observe that the calculation of plus(a,l) involves the 

needless test that 11 1 11 is an integer; 11 lb+4b" involves the 

redundant tests that the arguments are neither integers nor bit 

strings; and "lb+2" involves the needless tests that "lb" is neither 

an integer nor a character string (in fact, we know the result is 

Jl. since "plus" is defined only for arguments of the same type). 

If the coc'le for "plus" were written using 11 1f ... then ... " statements 
instead of the ifx form, and if ."plus" contained the code for the 

-- I 

subroutines, intadd, bitadd, cha~add, instead of the procedural 
form shown, it might be even more difficult to note the test 

redundancies mentioned above. 

The examples sho,..,r that the type-checklng contained in the 

implementation routines should be "exposed" to the compiler; this 
allows the compiler to eliminate needless tests if operand types 

are known at compile time. A standardi~ed implementation of 
type-tests of this sort also makes it easier to add ne .. .r-ob,iect 

types to the language. 

A suggestion concerning optimization of type-checking: 

We can express the type-checking of operands in a tabular 

manner as follows: 

<name, numargs, sametypes, typelist, errcase>, 

in which name is the function name, numargs is the number of 

arguments, sametypes t s tr11e if all arG11ment s m1J s t be of the 

same type and false otherwise; and typelist is a set of tuples 

of the form 

( type, action), 

when action is eith~r the name of the proceo11re to use if the 

/ 
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operands have type typ or a code skeleton. The last entry 

errcase is of the same form as action, and indicates what to do 

if no tuple in the typelist begins with the type of the operands. 

For example, for "plus" we obtain: 

(plus, 2, true, {( integer, integeradd),(bit, bitadd ), 
(character, charadd)} , undef). 

Algorithms ror code-generatton using such type information will 

follow in a later SETL newsletter. 

A suggestion for the dynamic scheduling of type tes~: 
The methods discussed in the preceding paragraphs deal only 

with the static analysis of the program; we assumed no knowlerlge 

of the relative frequencies with which various parts of the program 

are executed, or of the structure of the data lnput to the program. 

However, in most SETL programs, the type of a given variable 1,rill 

not change during program execution. For example, in: 

if a+b £!. c then ... 

it is unlikely that a,b,c ~ill have both integers and strtngs as 

their value during execution. Trrns, if a, b, c are all bit strings, 

then every calculation of "a+b", involves the essentially needless 

tests that a and bare neither integers nor ~haracter strings. 
Since the compiled code m:ist contain tests for all the 

admt s si ble types, the best we can h0pe for i_ s to a rrane:e the 
tests so that the correct test is made first. This can be accom

plished as follows. 

(a) Compile a special branch-on-type function, of var1.able 

length, which contains a list of valid t~roes and arldresses 
of correspondtng code (note th8t the list entry has 
the standard form, i.e., we use type-field for valld 

types, and value-field for code address). 
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(b) Compile the calls to various subparts (e.g., intadd). 

The labels of these subparts are the addresses con

tained in the branch-instruction. Note that the 

instruction is compiled as an 11 i.ni tialized" branch

on-type instruction. The first time the instruction 

is performed, the tests are performed and the list in 

the opcode is altered so that the successful test is 

first, the initialization flag is turned off, so that 

subsequent executions of the instruction require iust 

the linear search of the type-address list. 

The "branch-on-type" instructlon may be implemented on the 

BALM machine shortly. 

II. Optimization of set-operations. 
In this section we discuss the semi-local set optimizations 

to be included in the third SETL implementation. 

The evaluation of certain expressions containing the SETL 

set-former may not reauire the formation of the set described. 

In particular, the optimizer should recognize the following forms, 

and compile code replacing the set-former by a loop: 

( la) J {e ( x) , x ~ a I c ( x) } into 

(lb) elm=.../1.~ ( Vxfa), f c(x) then elm=x; auit;; end Vx: 

(2a) y£ [e(x),x€. a/ c(x)j into 

(2b; rnem=false; (Vxca l c(x)) i.f y eq e(x) then ·1em=tr1.1e;r11it~: 

end V x; 

Note that incorrect code may result if the evaluation of either 

c(x) or e(x) has "side-effects". For ex:ample, consider 
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definef g(x); external times; times=times+l; return l/(x-2); 

end g; 

Note that if we compile (3) as (lb) then times will be incrementerl 

once, and an otherwise fatal error that might result when x is 2 

may be missed. Either we can change the definition of the set

former to require the programmer to expose such side-effects, or, 

more appropriately, we compile (la) in the form (lb) only y•hen no 
I function calls are :J.nvolved, or else compile tests to determine if 

functions involved are sets or programmer-oefi.ned functions, and 
branch to the respective short or long form accordingly. 

One can also consirler 

( 4a) JF le ( X) ' X e a / C ( X ) 5 
In many cases, we may as well form the set appearing on the right, 

since potential members m1Jst be tested for duplication. If, how

ever, e(x) is known a priori. to be one-one, so that no two potential 
candidates can be equal, then (4a) can be complled as 

(4) num=O~ ('t/xt- a/ c(x)) Dum=rium+l; end \/x; 

In addition, we can omit the test for element duplication in any 

instance of 

[e(x),x €-a/ c(x) J 
i_ n V.'hi eh e ( x) 1 s one to one. 

Since the verification that an expression e(x) is one-one 

poses a difficult problem i'1 theorem proving, for the present the 

compiler will only recogni7e this property if e(x) is of the 

form e(x)=x, or e(x;= t11plr-- ,,r!.th x as one component. 
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III. Elementary constant-noticing. 

Sets and tuples defined by explicit enumeration of their 

elements sho11ld be separated into thelr definitely-constant an;-J 

possibly-varying parts. For example, 

[ a., b+l, 10, 20f 

1s to be considered a~ 

[ a, b+l} 1-1nion [10, 20, 30} , 

~~ere the set on the right need onlv be formed once, at compile 

time. This opt1mt ::,:a tion is partic11 lA rly re 1evant for tables ~nd 

comp11ted ,:?;o-tos, e. :I;. 

goto [(1, labl>, (2, lab2), (3, lab>} complndex; 

IV. Miscellaneous. 

Other special ferns and tests sho,-110 also be recognized by 

the compiler. These :tnclude. 

hn[set], 

if set is a fun .. tton-set, Le., V1e riornain of the f 11:1ctiori set. 

Thts ls only feasible if tl e implemenf-:ati_on of set~: nc;roups" 

tuples with identical first components so that an appropr1ate fast 
routi'1e 0 an 1:e ,-_rrltten. 


