
SETL Newsletter Number 48 August 5, 1971
Toward a Documentation of the String Jerry Hobbs
Project's Program for Parsing English Sentences

I. Description of the Grammar:
The purpose of the first part of this newslE!tter is to

describe the grammar used by the String Project to parse English
setences. In the second part, a number of the basic tree-tra-

1 versing routines and a few of the restrictions are programmed in
SETL. The newsletter is not meant so much to be a documentation
of the String Project's program as an indication aB to how such
a documentation might be carried out.

The grammar consists of four parts:

(1) a BNF grammar,
(2) restrictions,
(3) routines,
(4) a word dictionary.
The BNF grammar employs about two hundred intermediate

symbols, e. g. (SENTENCE), (ASSERTION),(SUBJECT),<VERB),<NSTG)~
about thirty atomic symbols, e.g. <*N), (tt:v), (~AD.J); and about

forty literals, e.g. TO, FOR, THAT. There are about two hundred

productions, examples of which are as follows:
< SENTENCE): :=<INTRODUCER)<cENTER)6:NDMARK).
<CENTER>: :=<ASSERTION) I {QUESTION)/ (PRESENT) /(PERMUTATION'?.
< ASSERTION): :=(SA)(SUBJECT)(sAXVERB)(SA)(OBJECT)<f.vXsA >.
<SUBJECT): :=(NSTG)/ <vrNGSTG) I <sN)l<•NULLWH) ..

(In the above< SA) stands for sentence adjunct, <RV) for adverbial
phrase to the right of the verb, (NSTG) for noun string, < VINGSTG '>
for present participial phrase, <SN) for nominali zi~d sentence, and

. (~NULLWH) for null pronoun in a wh-string. The others are self­
explanatory.) The present implementation uses a straightforward
top-down, back-up parser.

- 2 -

The BFN grammar is extended by about 200 restrictions.

These restrictions are essentially subroutines which return logical
values and which are invoked at various points in the parsing. The
purpose of the restrictions is to handle the context-sensitive
aspects of the language. The restrictions are of two types:
well-formedness and disqualifying. The well-formedness restric­
tions are applied after the appropriate part of the tree has been
built. Thus, for example, well-formedness restriction w26, which

i
is described in the second part of this newsletter, is invoked
when all of the subtree depending from <ASSERTION> is formed.
If the restriction returns failure, the corresponding subparse

of the sentence is destroyed. The disaualifying restrictions are
applied before a particular option is tried and generally check,
sometimes looking ahead, to see that certain conditions are satis­
fied. If not, that particular option is not tried. Thus, dis­
qualifying restriction D70, described in the second part, looks
ahead for a "TO" before trying the option for <OBJECT) called
<Tovo) ("to" - verb - ob,iect). Many of the disoualifying res­
trictions are no more than local optimizations for the top-down
back-up parser, and one may question whether they properly belong
in the grammar at all. The restrictions are written in a "res­
triction language", a quite readable sublanguage of English "11-rhich

defines the restrictions precisely and compiles into stacks of
routines.

It is because of these routines, many of which define rela­
tions between nodes of the parse tree which are arbitrarily dis­
tant from each other, that the grammar can cope with the unbound­
edly context-sensitive nature of natural language. These routines

may be classified as primary routines a~d secondary routines,
according to how and where they are defined. The primary routines,
mostly logical, tree, and housekeeping operations, are defined

- 3 -

specifically only in long, fluid, and almost undocumented blocks

of Fortran code in the bowels of the subroutine ETEST and related
subroutines of the String Project's program. In addition, they
are described readably but not always currently in Ralph Grishman's
documentation on TEST (August, 1970). The secondary routines,
such as CORERT and DEEPEST-VERB, are defined precif;ely in the
restriction language as are the restrictions, but tn this case
the result is not ouite so readable, and even after compilation

I

into stacks of primary and other secondary routines, arguments
and logical flow is often obscured. In the second part of this
newsletter, in order to make these routines more accessible, the
most important ones are described roughly, and programmed in SETL

for precise specification.
The fourth part of the grammar is the word dictionary. The

relevant items from·the word dictionary are pulled in for each
sentence. The word dictionary lists for each word its possible
categories (e.g. N, ADJ) and under each category its corresponding
attributes (e.g. time noun, etc.) and attribute function values

(e.g. NOTNSUBJ of a verb is the list of attributes its subject

cannot take.) An example of a dictionary item is given belov:

<"TYPE" < N <sINGULAR, NCOUNTl, COLLECTIVE, NPREQ,
<NCOUNT2 <"IN">), NTYPEOF, NMATH))

<v <NOT NOBJ <NTIMEl, NHUMAN, NSENT3, PROSELP)),
< NOT NSUBJ < NTIMEl, NSENTl, NSENT2, NSENT;5) > ,
<oBJLIST (NULLOBJ, NSTGO) '))

(TV <PWRAL, < NOTNOBJ (..••)) , ••.•) >)
This item says that "type" can be a singular noun, a tenseless
verb (V), or a plural tensed verb (TV). Among its attributes as
a noun are collective and mathematical. - As a verb it cannot take
a time noun or a human noun as its object or a time noun as its
subject. The String Project has defined about 120 attributes,
in some cases extensionally by listing the words w:Lth that attribute,

- 4 -

but for the most part in terms of the context in which a word

can appear. For example, a singular noun is defined as one

which can appear in the context

This- - tensed verb - object -----
but not in

These- - tensed verb-ob,iect. -----
The attributes together with the restrictions allow one to determine
grammaticalness in a very strong sense, disallowing not only such
sentences as

II "The student type a paper."

but also such syntactically correct sentences as

"The days type Benjamin Franklin."

II. Some Routines and Restrictions Programmed in SETL
A. Conventions: In order to dodge the auestion of data

structures, we assume certain functions are defined. The parse

tree will be thought of as a binary tree. For example, (in a

simplified grammar) a partial parse tree may look 8;S follows:

a. (ASSERTION >
c. d.

b.------------
<SUBJ) < VERB) <OBJ)

e.

Objects called nodes are created as the parse tree is built,
and the following functions are defined on the nodes:

1. name: in the above name(a)=<ASSERTION), name(e)=<*N).
2. down: e.g. down(a)=b, down(e)=null.

- 5 -

3. up{ e.g. up(b)=a, up(c)=null.
4. right: e.g. right(b)=c, right(d)=null.

5. left: e.g. left(c)=b, left(b)=null.
6. word list: defined on atomic nodes, takE!S from the word

dictionary item the portion called for by the category of the
atomic node. Thus if we have a word dictionary item

< word <ea tegoryl (a ttral, at tra2, >>
(category2 (attrbl,attrb2, •• : •.))) ,

and the parsing calls for an atomic node of type category2, then

wordlist(node)=<word (category2 < attrbl,attrb2, .•.. Y>).
7. sente is the sentence being parsed, stored as a senuence.

wn is the number of the word currently being scanned. Thus sente (,,·n)
gives the current word.

In addition we assume the main program has access to certain

grammar-defined lists, among which are the following:

string: a large class of intermediate symbols including

stgseg:
adjsetl:

ladJset:

main clauses, wh-clauses, preposittonal phrases, etc.

a subclass of string.
a class of intermediate symbols which can appear

as sentence adjuncts or as left or right adjuncts

of other symbols.
the class of intermediate symbols which can appear

as left adjuncts.
atomic: the atomic symbols.
B. The Simpler Primary Routines: It would seem reasonable

in any specification of this part of the grammar to dispense
entirely with many of the simpler primary routines used in the
String Project's program by incorporating their actions into the

actual SETL codes for more complex routines. The rest of section
B will be devoted to general indications as to how this might be
carried out. The meanings of the primary routines should be
sufficiently clear from the corresponding SETL codi~.

- 6 -

1. Logical operations: AND and ANDPTH become and,
providing one takes care with parameters. IMPLY and IMPLYPTH
become imp, NOT becomes not, OR and ORPTH become or. ITERT
{y1,y2), which means roughly "do y2 until y1 fails", may be

translated as

iff y2 ?

(return_!), y1 ?

to y2, (return_!);

although it can frequently be streamlined.
2. Tree operations: DOWN and VALUE become _down, RIGHT

becomes right, LEFT becomes left.
3. Other: TEXTX becomes hd wordlist(atom).

NAMEX becomes name(node) ea nl. --WORDL becomes sente{wn).
NEXTL becomes sente(wn+l).
EXECUTE, CANDO, and PRESENT can be ignored.

LOOK and STORE merely keep track of arguments.

IS is translated as an eauality or set membership test.

C. More Complex Primary Routines: The SETL functions
defined in this and the following section would form the backbone
of any specification of this part of the grammar. The name used
in the present program and a description of the action of the

routine are followed by a definition in SETL.
1. ATTRB picks off the list of attributes for the word

corresponding to the given atom.
definer attrblist(atom); external wordlist;

return<-(- if,-)) wordlist(atom);
end attrblist;

- (-

2. DNTRN descends in the following manner:

(1) sets m=l,
(2) scans the nodes m levels from the current

node from left to right and returns the
first node whose name is on yeislist,

(3) if it finds none, sets m=m+l and returns to
(2). During the descent, it does not go below
any node whose name is on the list blocklist,

or any node whose name is on the list string
unless it is also on the list exceptlist.
Returns nl when no further des:cent is possible.

definer dntrn(node,yeslist,exceptlist,blocklist);
external down,right,name,string;

tryseq=nl;

[labela:] tryseq=tryseo+<down(node) ~ y);
(while right(y) is y ne nl) trysea=trysea+(y).;

[labelb:] if (tryseq is (node,tryseq)~ nl) or (name(node) is
namnod C yeslist) then return node;;

if namnod €.: blocklist ~ (string-exceptlist) then go to labelb;
else go to labela;;

end dntrn;

3. UPONE returns the parent node, e.g. in

] ___ -·
b c d

upone(c)=upone(b)=a.
definef upone(node); external right,up;

[labela:] x=up(node);
if x ~ nl then node=right (node);- go to labela;

else return x;;
end upone;

- 8 -

4. UPTRN goes up until it finds a node on zeslist and

returns that node. However, it does not go above any node on
blocklist, or above any node on string unless it is also on

exceptlist.
definef uptrn(node,yeslist,exceptlist,blocklist); E!xternal name,string;

(while upone(node) is node~ nl)
if name(node) is namnod € yeslist then return node:;
if namnod €. blocklist u (string-exceptlist)the11 return nl;:

return nl;
end uptrn;

D. Secondary Routines:

1. $DOWN1: downland isit are used to go down one level and
return the first node whose name is on list. The complication

depending from nultest in isit is because in the grammar there are
productions of the sort

A : := (B/C/D) EF. (D. 1)

and we wish B or C or D to be thought of as on the same level as

E and F. We assume (B/C/D) is represented in the parse tree by a

node x whose name is null and for which the name of' down(x) is
either B or C or D.
definef downl(node,list); external right,down;

node=down(node)
[labela:] if isit(node,list) is node ne nl then return node:;

if right(node1 1s node~ nl then return node;;

go to labela;

end downl;

2. $ISIT, $ISIT1, ISIT: as described above except that it

doesn't go down first.
definef isit(node,list); external name,right,down;

isit external snode,n;

initially n=l; ;
snode(n)=node; n=n+l;

- 9 -

iff nametest?
ret, nultest?

isittest? righttest?
ret, reset, to nametest, ret;

narnetest:= name(node) € list;
nultest:= narne(node) ~ nl;
isittest:= isit(node,string) is node~ nl;

reset: -node=snode(n);n=n-l;to righttest;
i

righttest:= right(node) is node~ nl;
ret: return node;
end iff;

end isit;

3. STARTAT: returns the current node or the leftmost

node one level down whose name is on list.
definef startat (node,list); external name;

if narne(node) € list then return node;
else return downl(node,list);;

end startat;

4. CORERT: applies dntrn until it reaches an atomic node

if there is one, or if not, a string. Returns that node.
definef corert(node); external name; atornic,string,ad,jsetl

if node €.. atomic then return node;;
if dntrn(node,atomic,nl,adjsetl)..!_! core~ nl then

return core;;
if dntrn(node, string, nl, ad.isetl) is core ~ nl then

return core; else return nl;;
end corert;

5. ELEM: goes down one level to find a node of the given
type. If there is none, and there is a node whose name is on
stgseg, it goes down one more level to look again for a node of
the given type.

- 10 -

definef elem(node,type); external stgseg;
if downl(node,[type}) ~ y ~ nl then go to ret;

else x=downl(node,stgseg);

y=downl(x, [type J) ; ;
[ret:] return y;

end elem;

6.
given type.

sort (D. l).

COEL: goes to the right and left to find a node of the
The complications are to handle productions of the

definef coel(node,type); external right,left,name,up;

snode=node;
(while right(node) is node~ nl) j.f name(nodei)~ type then

return node;;;

node=snode;
(while left(node) is x ~ nl doing snode=node;node=x;)

if name(node) !2. type then return node;;;
if name(up(snode) is x)~ nl then return coel(x,type);

end coel;
end coel;

else return node;;

7. ELEMOF: goes up through any node in stgseg looking for
a node whose name is on stglist. Again complications arise in
treating case (D.l).
definer elemof(node,stglist); external name,stgseg;
[labela:] if upone(node) is node~ nl then return f;;

if name(node)€ stglist then return!;;
if name(node) ~ nl then go to labela;;

[labelb:] if upone(node) is node ea nl then re:turn f• • - ._.... - __ ,,
if name (node) € stgseg then go to labela;;
if name(node) ne nl then return f; else go to labelb;;

end elemof;

- 11 -

8. DEEPEST-VERB: passes through all object strings which

contain verbs (such as TOVO) and which are the coelements of other
verbs to find the deepest verb. For example, in the sentence

"He had given up trying to learn to program in SETL."

the deepest verb is "program".
definef deepestverb(node);

[recur:] deepverb=xvbstg(node);
if xob,iv(deepverb)is x ~ nl then node==x; go to recur:

else return deepverb;;
definer xvbstg(node); external name,down elem:

deepverb=hd

'lvr', 'verbl', 'verb2', 'verb3J])is
if (name(deepverb)='verbl' and name(down(deepverb))

~ 'ltvr') then deepverb= (-l-> x;;
return deepverb;

end xvbstg;
definer xob,jv(vnode); external corert,coel,isit:

x=corert(coel(vnode, 'object'));

X l. , ,

y=isit(x, [{{'vo'J,('vingo'],['veno'},['venpass'},['tovo'}J]):
return hd y;

end xob,jv;
end deepestverb;

9. DEEPEST-OBJBE: first finds the deepest verb. If it is a
form of "be" or a representative of "be" or if it is a passive verb,

the node named OBJBE depending from its coelement ob,ject is returned.
definer deepestobjbe(node);

x=deepestverb(node);
if J [7.) € [xdeepbe(node), elem(node, _'ob,jbe') ,xpassob,jbe(node)} I

7o ~ nl then return z; else return nl;:
definer xdeepbe(node); external attrblist,deepestverb,corert,

dntrn,coel:
deepestobjbe external x;
y=attrblist(corert(x));

if not (('vbe' € y) .2! ('berep' € y)) then return nl:
else return dntrn(coel(x, 1 ob,iect'), ['objbe'J ,nl,nl):;

end xdeepbe;

- 12 -

definer xpassobjbe;deepestobjbe external x; external elemof,
dntrn,coel;

if elemof(x, 'venpass') eq f then return nl;
else return dntrn(coel(x, 'passobj '), f 'ob,jbe '}, nl,

['asobjbe'});;
end xpassobjbe;

end deepestobjbe;

10. LADJ: goes left and then up looking for a left adjunct.
It doesn't pass through any node whose name is on string.
definer ladj(node); external left,name,lad,iset,str1ng,

iff lefttest?
ladjtest? uptest?

rett, to uptest,

to
lefttest:= left(node)

stringtest?

lefttest, retf;
is node ne nl; - --

ladjtest:= name(node) ladjset;
uptest:= upone(node) is node~ nl;
stringtest:= not(name(node) €string);
rett:

retf:

end iff;
end ladj;

return node;
return nl; -·

retf,

11. IMMSTRING: goes up until it finds a string.
definer immstring(node);

return upturn(node,string,nl,nl);
end immstring;

E. Global Abbreviations: The restrictions freouently refer
to tests, called "address sentences" by the String Project and
"abbreviations" here (since they could be inserted in line in the

- 13 -

statement of the restrictions.) Their names begin with "f' in
the program a.nd with "x" below. Some of the abbreviations are local
to the particular restriction and in the SETL documentation could

either be written in line or as local subroutines. Other abbre­
viations are referred to by many restrictions. Programs for some
of these global abbreviations are given here. For each the defini­
tion in the String Project's "restriction language" is follo"t-red
by the SETL code. Thts is especially interesting since it shows
SETL in competition with English in expressive poweir.

1. $LADJNOTPWR=IN THE LEFT ADJUNCT OF X1 NEITHER

$TPLUR NOR $QPLUR IS TRUE.
definef xladjnot plur(node);

x=ladj(node);
return not (xtplur(x) ~ xaplur(x));

end xla.djnotplur;
2. $LADJNOTSING=IN THE LEFT ADJUNCT OF x1 NEITHER $TSING

NOR $QSING IS TRUE;
definef xladjnotsing(node);

x=ladj(node);
return not (xtsing(x) or x~sing(x));

end xladjnotsing;

~LADJPWR=IN THE LEFT ADJUNCT
$QPWR IS TRUE.

OF X.: EITHER $TPLUR OR
,/

definer xladjplur(atom);
x=lad,i (atom1;
return xtplur(atom) or xqplur(atom);

end xladJplur;
4. $LADJSING=IN LEFT ADJUNCT OF X.: EITHER 4>TSING OR $Q,SING

,/

IS TRUE.
definer xladjsing(node);

x=lad,i (node) ;
return xtsing(x1 or xqsing(x);

end xlad,ising;

- 14 -

5. ~NOTPLURN=BOTH x1 IS NOT PLURAL, AND IF $NUMBERLESS THEN
$LADJNOTPLUR IS TRUE.

definef xnotplurn(atom);
return(not('plural'£ attrblist(atom))) ~

(xnumberless(atom) imp xlad,jnotplur(atom));
end xnotplurn;

6. ~NOTSINGN=BOTH x1 IS NOT SINGULAR, AND IF $NUMBERLESS THEN
, $LADJNOTSING IS TRUE.

definer xnotsingn(atom);
return(not('singular"€ attrblist (atom)))and

(xnumberless(atom) imp xlad.inotsing{atom));
end xnotsingn;

7. $NOTSIG=X1 IS NOT OF TYPE STRING.
definef xnotstg(node); external string;

return not(isit(node,string));
end xnotstg;

8. $NUMBERLESS=EITHER x3 IS NULLN, OR x
3

IS NOT SINGULAR
OR PLURAL.

definef xnumberless(atom);

return(isit(atom, ['nulln'J)~ nl) ~'.!
((£'singular', 'plural'} int attrblist(atom))~ nl);

end xnumberless;

9. $PLURTEST=IF tPREDPLUR IS TRUE THEN $SUBJNOTSG IS TRUE.
definef xplurtest{node,atom);

return xpredplur(atom) imp xsub.inotsg{node);
end xplurtest;

- 15 -

10. $PREDPLUR=EITHER X~ IS PLURAL, OR IF $NUMBERLESS THEN .,,
$LADJPLUR IS TRUE.

definef xpredplur(atom);
return('plural' (attrblist(atom)) or

(xnumberless(atom) imp xlad,jplur(atom));
end xpredplur;

11. $PREDSING=IF X6 HAS VALUE ~STG THEN EITHER CORE x3 OF
X6 IS SINGULAR, OR IF $NUMBERLESS THEN $LADJSING
IS TRUE.

definef xpredsing(node); external down;

x=isit(down(node) ['nstg']);
if x ~ nl then return !_;;

y=corert(x);
return('singular'£ attrblist(y)) or

(xnumberless (y) imp xlad.i sing (y)) ;

end xpredsing;

12. $QPLUR=EITHER THE CORE X4 OF QPOS IS PLURAL, OR ELSE
EITHER X4 IS CPDNUMBR, OR X4 IS CONJOINED BY AN
ANDSTG.

definef xoplur(node);
x=corert(startat(node, 'opos'));
return (('plural'€ attrblist(x)) or (isit

(x, ['cpdnumber'})~ nl)~ con.ia,ined by*
(x, 'andstring'));

end xqplur;

13. $QSING=BOTH THE CORE X4 OF QPOS IS SINGULAR, AND x1~

IS NOT CONJOINED BY AN ANDSTG.
definef xosing(node);

x=corert(startat(node, 'apos'));
return(' singular'€, attrblist (x)) and

(not con.joined by,:: (x, 'and string')) ;
end xasing;

*not yet defined by String Project.

- 16 -

14. tsINGTEST=IF $PREDSING IS TRUE THEN $NO'l~PLURN IS TRUE.
definer xsingtest(node,objbenode);

return(xpredsing(objbenode) imp xnotplurn(node));

end xsingtest;

15. $SUB.JNOTSG= EITHER BOTH $NOTSINGN AND $NOTSTG ARE TRUE
OR ELSE EITHER x1 IS AGGREGATE, OR THE SUBJECT IS
CONJOINED BY AN ANDSTG.

definer xsubjnotdg(node);

return(xnotsign(node) and xnotstg(nocle))
£!. ('aggregate' c attrblist(node))

£.!:_ (con,ioined by* (startat(node, 'subject'),
'andstring'));

end xsubjnotsg;

16. $TPWR=THE CORE OF TPOS IS PLURAL.
definef xtplur(node);

return(' plural' € attrbli st (core rt (startat (node, 'tpos'))) ·

end xtplur;

17. fTSING=THE CORE OF TPOS IS SINGULAR.
definef xtsing(node);

return 'singular'€ attrblist(corert(startat
(node, 1 tpos 1)));

end xtsing;

F. Restrictions: The few examples of SETL specifications
of well-formedness and disaualifying restrictions given below are

included to impart the flavor of the restrictions and to indicate

how these restrictions may be encoded in_ SETL. The phrase before
the colon in the "restriction language'' specification of the
restrictions indicates where it is housed. At present the res­
trictions are translated into stacks of routines by the RLS B.N.F.

* not yet defined by String Project.

- 17 -

grammar. Presumably one could devise a modified RLS B.N.F.
grammar which could translate the restrictions language into
SETL routines, if he thought that effort worthwhile.

In each example below a brief description of the restriction
is given, followed by its specification in the "restriction
language", followed by its specification in SETL.

1. W26 checks for a suitable subject.
W26=IN ASSERTION, YESNOQ,SENTNOM,PERMUTLIST: IF ALL ~SUBJN,

$NOTPASS,$HASAT ARE TRUE, THEN fNOCOMMON15 IS TRUE.
$SUBJN=THE CORE x1 OF THE SUBJECT IS NOR PRO.
$NOTPASS=THE DEEPEST VERB IS NOT AN ELEMENT OF VENPASS.

*HASAT=THE CORE OF THE DEEPEST VERB HAS THE ATTRIBUTE
NOTNSUBJ x5 .

$NOCOMMON15=LISTS x1 AND x5 HAVE NO COMMON ATTRIBUTE.

definer W26(node); external name;
if ((name (core rt (start (node, 'subject')) is x)€ [' n', 'pro' J) and

(elemof((deepestverb(node)is y), 'venp,9,ss')) and

(J [:,,:] €., attrblist(corert(y))/ hd '7 _eq 'notnsub.i'))
then return (attrblist(x) int tl 7! _!:!!. nl;
else return .!_; .;

end W26;

2. w67 checks that a subject pronoun is not accusative
except in the nominall:;;,:ation strings <FOR Tovo>,<NTOVo>, etc.
(e.g. "for him to go").

W67=IN NSTG AFTER LPROR: IF NSTG IS OCCURRING AS SUBJECT
X1, THEN BOTH $ACC AND $NOM ARE TRUE.

~ACC=IF THE CORE X2 OF NSTG IS ACCUSATIVE, THEN X1 IS AN
ELEMENT OF FORTOVO OR NTOVO OR SOBJBE OR SVEN OR SASOBJBE

OR SVO OR STOVO-N.
$NOM=IF x2 IS NOMINATIVE, THEN x1 IS NOT AN ELEMENT OF

FORTOVO OR NTOVO OR SOBJBE OR SVEN OR SASOBJBE OR SVO
OR STOVO-N.

- 18 -

definef w67(node);
y=startat(node, 'nstg');
x=uptrn(y, £'subject 'J, nl, nl);
z=elemof(node, [['fortovo', 'ntovo', 'sobjbe', 'sven',

'sasobjbe', 'svo', 'stovo-n '}]);
return (('accusative' C attrblist(y)) imp (t€z))

and { { 'nominative' (attrblist(y)) imp not (! €,, :r));

end W67;

3. w96 checks that the subject and noun ob.i ect of "be"
agree in number.

W96=IN ASSERTION, YESNOQ, SENTNOM, PERMUTLIST: IF BOTH CORE
x

1
OF SUBJECT IS NOT 4, IT J,, AND PRESENT STRING HAS

DEEPEST OBJBE X6, THEN EITHER ~RARE OR BOTH ~SINGTEST
AND $PLURTEST ARE TRUE.

definef w96(node); external wordlist,rareswitch;
x=corert(start(node, 'subject'));
if hd wordlist(x) !:.9_ 'it' then return!;;
y=deepestob,jbe (node) ;
if yea nl then return t; else v=corert(y);; -- -
return rareswitch or (xsingtest(x,y) and xplurtest(x,7));

end W96;

4. D50 checks that the adjective option of OBJBE does not
accur in SUBO if CSO is CSNOTA ("since", "as"). ("As a young man,
he liked sports." but not "As young, he liked sports.")

D50=IN OBJBE RE ASTG: IF IMMEDIATE STRING IS SUBO ~ THEN
CSO IS NOT CSNOTA.

definef d50(node);
return ((node is isit(immstring(node),[•subO'})) ~ nl)

imp (not ('csOas' £ attrblist(startat(node, 'csO'))));
end d50;

- 19 -

5. D70 checks that there is "To" ahead in the sentence.
D70=IN TOVO, FORTOVO, NTOVO: THERE IS A J, TO ,Jt AHEAD.

definef d70; external xn, sente, wordlist;

w=wn; x=sente(wn)
(while x ~ nl doing w=w+l; x=sente(w);)

if hd wordlist(x) ea 'to' then return
return f;

end d70;

t ... _, ' '

