
SETL Newsletter Number 50

Three-Phase Parsing Scheme for SETL

September 10, 1971

Kurt M1:tly

We will give a more detailed specification of the parser of

SETL outlined in Newsletter 47. Instead of having two phases as

therein mentioned, the parsing process is broken up into three

phases. In the c11rrent implementation a few restrictions have

been placed on the language. The "then blockl if condl else ... ~"

construct and its variants will not be available, neither will

be the ",,..rhile iteration" in a compouno opera tor nor the "composite

node" and "multiple choice" features in an iff statement.

Phase 1.

The main routine is called lex which in turn calls nt. Nt

simply returns the next lexical token from the input string.

lex has to condense the input, consisting of a string of charac

ters, into a string of tokens, modify some and insert additional

tokens where required. The main data structures are:

i - lexl ... contains the final token string.

ii - tstack .. supplementary stack used for storing body of

inverted subroutine-, funrtion- and macro

definitions.

iii - iterbeg. stack for holding the starting tokens of

statements.

lex functions are:

1. Collect all macro-definitions and store the body of

each macro together with its arguments as a function of its name

in the set "mac".

Since macro-definition may appear anywhere in a SETL program

(i.e., before or after invocation) we have to collect first all

definitions before they can be expanded. Therefore, no macro
definition may appear within a macro-definition.

- 2 -

2. Reverse inverted subroutine-, function- and macro

defintti.ons.

Fhenever 1·!i thin an inverted function definition a

subseauent call is indica.ted, the reversed function-definition

is to be saved and only one call placerl into lexl. Only vhen the

next ';' is encountered is the saved definition to be placed

thereafter into lexl.

4. Place block ma.rkers (either <1par, lpar) or <rpar, rpar)

after 'then', before and after I else', after 'rl o:L ng 1 , be f'ore , · lo s i n."
narentheses of 'while head' ,..hen doing option ,,•as userl, after

i - 'for all' iteration. header

ii - 1 µhile' iteration header

i.i.i - '(at label' 1 iteration header

iv - 'initially' iteration header

v - 1 (load) 1

vi. - '(store name)',

beb1een t,,ro consecutive semicolons (parentheses not <"'.O mterl \ ,·here

an additional and) are placed if no 'end' token is there.

The c0nstruets mentioned unner i, ii, iii, v, anrl ·:i sh0·1ld be

precederl '.1:,· (0p,for1>,(op, 1:'hl),(op, atl),(0p,loe1),<np,.str)

respecti".·el:v.

r:: :1 e p la c-: e le f 1~ pa re n t h e r~ 1 s i n1 :11 e rl i a t e l:; · f n 11 cw i ;1 ,,. !1 ' 1 n a r 1

1:·i th (lpar, lprir)anrl right parenthesis nrecerlit,' 1: 8 'rpar' .. -; rh

(rp,g r, rpa r).

f:mction.s and s11br,):Jtlnes as f 1inction of thei_r na·nes in the setr

monop, diop, fns, nils respectively.

7. Check f'or correct enrli ng of c:-ompo 1m0 stc1te,:,1ents (e. iC,

'end if x', 'end vrhile x E. 1 1.
,S, Replac-:e semicolon enrllng iff hearler '•ith<header,: >

and commas after an artion node with <hearl, ,>.

Phase 2.

In phase 2 the routine control continuously invokes preparserl

and postparserl until an end of file is encountered and places the

resulting treetops in lex?. As already mentioned, only the prece

dence table for preparserl and the gramrnarl have to be provided for

those two routines. Preparserl calls the routine nextokenl ·-~ich

uses lexl from phase 1 and a supplementary stack 'u~stack' for

macro expansion. The f'unctions of nextokenl are as follo 1•'S:

1. Expand macros using unstack.

2. When the token i_ s f {end, ; , if, then, else, ,,,hi le, ~•'hen, rioi ng,

iff, ?,<head,,), fal,whl,all, initially, lod, str} ort::[lpar, rpar}

(in which case it is replaced by (or)), two actions

are possible. If we are at the beginning of a string to be

condensed, place the token in lex2 and go to the start of nextokenl.

In the other case (1.e., at the end of a condensable string) leave

one space free in lex2 for the tree and place the token in the

next space of lex2, set the 'begin of condensable string svitch'

to ~ and return (er, er).

3. Else return the next token from lexl.

Phase 3.
The routine control now invokes preparser2 and

postparser2, and returns the treetops pr0duced by the past

parser co 11s. For pos tpars er? iu s t the grarnma r? i E

needed whereas preparser2 needs some additional specifications.

Nextoken2 on which it calls is in this case very simple: namely,

it returns the next token from lex2. Preparser2 has to be provided

with, in addition to the precedence tables, a usercode block to

handle the header of an iff statement. Specifically, ,.vhen -"Hl 'i.ff'

is encountered, set iffbeg to current stackpointer. The tokens '?'
and (head,,> will not be condensed unt i 1 <header, ; > is encou ntererl:

then a special algorithm condenses the items on the stack, starting

at iffbeg, into a binary tree.

