
SETL Newsletter Number 52
Comments on SETL

SYMMETRIC USE OF RELATIONS.

September 16, 1971
Jay ERrley

In keeping ,,,ith the idea of separating semantics from

implementation and the concept of decision postponement,

the SETL user should be encouraged to set up his SETL data
structures in terms of relations so as to leave open the issue of

exactly what access paths are to be used. This dtstlncti0n

between access paths and relations is discussed in detail
in [1] and [2]. In addition I have implemented an access
path language called VERS [3,4] which I have done some

experimenting with. The basic idea of an access path setup

is that the user must know beforehand how his data structures

will be accessed (not necessarily details of implementatiqn,

though). In SETL, this would mean always using sets of n-tuples

only as functions from the first m elements to the last n-m

elements, and never using the set former. SETL, of c--iurse,

allows the latter construct, but restricts relRtions to being

used only as functions. For example:

Consider an Algol symbol table. Suppose 1,rp are implementing

on interactive Algol, s0 we need the entlre symbol tAble all t~P
time and we're not sure exactly ho~ we will need to access it

and modify it. We need tw,, structures: one t, show the tree­

structured relationship of the blocks and one to assoc:ate ~••t~
each block the identifiers declared in it. So we would like to

have a binary relation on blocks called SONS and a binary relatlon

on blocks and declarations called IDENTS. That way, we can
write

SONSl A\
to refer to all blocks included in A, and

IDENTS{A I

- 2 -

to refer to all declarations made in A. But suppose we want to

find the first block which encloses A, or suppose we have a
declaration D and we want to find the block in which it was

made. These can be progra.mmed in SETL using 11J II and the set
former, but one should be able to write them as easily as the
above two.

Alternatively, the user might set up all access paths
explicitly by having four sets instead of two; that is, having
a FATHER set and a BLOCK.OF set, so that he then could write

FATHER(A)
to get the enclosing block and

BLOCK.OF(D)
to get the block in which D was declared. However, then he
must add elements to two sets whenever a new block is added
(or delete from two whenever a block is deleted). Clearly,
we don't want the programmer to be forced to decide· which access
paths he will use (or use most often) before he needs to.

I propose the following construct: One may use any
relation as a function from any of its domains onto any others.

This is done by putting 11 * 11
' s in the domain position wanted

in the result of the function. Thus, we would write
SONS(-)f;- ,A)

to get the block enclosing A, and
IDENTS(*, D)

to get the block in which declaration D appears. These then
are generali~ed to work with [], [J, or () in the obvious ways.
If A is an n-ary relation, then

A (Bl' ••• , Bm)
-

is an abbreviation for ~-
A(B1, ••• ,Bm1 ;;«;-, ••• ,~)

and the same for [3 and [].

- 3 -

In addition, one IJ!ight want to do the followtng: Suppose
he has a ternary one-to-one relation; he would like to supply

a value for one of the domains and ask for the corresponding

value in either of the other two {or both). Right now, he can
ask for both by writing

if he supplies the second, for instance. But he should do eaually
as well to ask for only the third by writing

R (- , b,k)

This can be generalized meaningfully to relations which are not

one-to-o~e as follows:

R(-, b,K} means {c /Ja~ <a, b, c> (Rj

So, in short, "*11 's specify out_put domains, f'illed-in
entries specify input dome ins, and "- 11

' s specify "clon' t care 11

domains. We might also want to define what it means if all

domains are filled in. This should be a set membership test

as follows:

R(a,b,c) means <a,b,c> (R

This proposal or course makes it more difficult to get
an efficient implementation, but it should be quite easy for
an optimizer to notice which access paths of a relation are
actually used and to set up these so that they can be accessed

as efficiently as what is allowed in SETL now.

Refere~:

(1) Codd, E. F. A Relational Model for LargE! Shared

Data Banks.
(2) Earley, J. On the Semantics of Data Structures,

Courant Institute Symposium on Data Bases, 1971.
(3) Earley, J. Towards an Understanding of Data Structures.

Comm. ACM, Oct. 1971. •'
(4) Earley, J. and Caizergues, p. VERS Manu,1.l. Computel;"

Science Dept. University of California, Berkeley, 1971.

- 4 -

TUPLES, SEQUENCES, AND STRINGS

SETL has the above three constructs, all of ·which have
approximately the same properties and the same kinds of operations
available on them. This leads to confusion, difficulty in decid\ng

which construct to use, and it violates the principle of minimal­

ization of concepts for programming languages. Furthermore,

tuples are clearly intended to be used for two very different

purposes: (1) as fixed collections of objects where each member

of the collection is accessed by name or position, and (2) as

vectors are used in conventional programming languages or in,

perhaps, APL.
I suggest that there should be basically two kinds of

constructs which should replace the above three. Let me call

them tuples and sequences. These are much different from SETL

tuples and sequences, however. A tuple is much more restricted

than a SETL tuple and a sequence considerably more general than

a SETL sequence or tuple. I present only general c:oncepts, not

details of syntax.
Tuples. A tuple is a fixed collection of objects which

is referred to either by writing the tuple syntacti.cally, <a, b, c>

orb~ naming the domains. This latter way should be clarified:

An n-tuple actually defines a type of blank atom and n unary
f~nctions defined on that type. That is, we can represent a

nroduction in BNF ar follows:
PROD=<DEF €,, STRING, RT. SIDE € SEQ.(STRING)>

This defines a blank atom of type PROD with two unary functi.ons

DEF and RT.SIDE. DEF maps PROD's into STRING's and RT.SIDE

maps PROD's into seouences of STRING's. We can use these functions

on the right or left side of assignments:

S=RT. SIDE(P)
DEF(P)="E"

- 5 -

In addition, we can create a PROD and initialize it:
P=PROD<"E", [11 E 11 , "+II, "T"] >

(Here the brRckets are used to represent a constant senuence.)
We can also use tuples in tests and set formers as in SETL.

Unlike in SETL, tuples cannot be referenced by ordinal number
or head and tail, and they cannot be iterated on or concatenated.
Instead, we have sequences which have these propert:Les, and
more.

Sequences. The essence of a sequence is the order:Lng_re~ation
which defines it. So a sequence will be a binary, one-to-one

relation on two identical domains of blank atoms of the appropriate
type. Each blank atom also has a functton VALUE defined on it

which maps the elements on the sequence onto their values. Then,
in addition to NEXT, PREVIOUS, and VALUE defined on sequence
elements, a sequence will have various primitives defined on it
such as FIRST, LAST, n' th, iterate over, concatenat,~, INSERT and

DELETE an item (or sequence).first or last or at a~r point in the

sequence, various subsequence operations and others .. Notice that

we now get the following advantages:

1. Strings can now be just sequences of characters or bits.
2. A subsequence is just a subset of the original seauence.
3. No prior decision need be made about whether the user

wants a sequence or a tuple or a string. It is always a seauence.

Because we have defined sequences using a NEX~~ relation
instead of a map from the integers we have the abil:Lty to insert
and delete i terns at arbitrary places in the sequencE:~ without
destroying any global references we may have to elements of the
sequence.

- 6 -

Generalized sequences and iteration. The previous sequences

are all data structures which are explicitly built up by the

program. But just as some sets are implicit, so should some

sequences be. So [l,n] could be the sequence of integers between
1 and n; [S], where Sis a set, would be a sequence of the elements
of Sin some unspecified order. Most interesting would be to
define a sequence by a generator subroutine or coroutine which

would produce a new element of the sequence each time it was

called, and finally fail when the sequence had ended.

Now, if we have the above constructs, then only one iteration
statement in the language is needed: an iterator over sequences.
Everything else is a special case of that.

CONDITIONS ON SETS.

This proposal would allow the programmer to E~ttach a
condition to the declaration of a set type or the c:reation
of a set. This would be a boolean expression (prefmmably

involving the set S) which would specify_a ~ondition which S

must always satisfy, such as "sis a. one-to-one binary relation",

or "s does not contain two members x and y such that F(x)=F(y)".

The most obvious use of a feature such as this is in debugging.
Here, it would have the effect that if the program incorrectly
tries to add or delete an element in S which would have caused
a violation of the condition, an error message would be given.
However, this feature can be used in a more fundamental way

than this. It can be used to actually direct the flow of

control in a correct program. This might frenuently be used
to detect errors in the data, rather than in the program~ but
it is also useful for performing the same function as an if
statement, but in a more convenient way.

In order to do this, one needs to have the concept of
"failure return" in the language. This feature is in SNOBOL4

- '(-

and VERS. _The idea is that any primitive in the language (or

programmer-defined routine) can rail because of the detection of

an error or some similar failure-related condition. In VERS,

the user can specify that a particular use of such a primitive

may fail by putting a"\" after the call followed by a label:

P(a,b)\L
then if this call on P fails, the program branches to L. SNOBOL
uses somewhat different conventions, but with similar conseouences.

Using this feature and the conditions on sets, we specify

that any primitive which would have caused a set to violate its

condition, does a failure return instead. This gives us the

control we want. For example:
Let's construct a symbol table for VERS. VERS has a one­

level modified block structure in which an identifier may be

declared either in a routine (routines are not nested) or in a

"data block". A data block has with it a list of the routines

in which its declarations are valid. Furthermore, no identifier

may be declared to be in a routine in two different ways, even

if one declaration is in the routine and another in a data block.

We will enforce this restriction using a condition on the symbol
table. We need four types: DATA BLOCK, ROUTINE, DECL, and IDENT.

The relation ROUTS defines which routines a data block will affect.

ROUTS=[<DATA BLOCK, ROUTINE>]
The SYM.TAB relation associates a DECL with any ROUTINE's in which

it is valid:

SYM. TAB= {<DECL, ROUTINE> J
and the relation NAME gives the identifier which is declared:

NAME=[<DECL,IDENT>3
Now the condition on SYM.TAB is

~ R C ROUTINE / [DI, D2} le SYM. TAB l :if, R} and
NAME(Dl)=NAME(D2)

- tj -

(Note that I am using syntax from an earlier proposal, "Symmetric

use of relations".) If declaration Dis made in data block DB,

then we execute

SYM.TAB[nJ=SYM.TABfn} u ROUTS(DB)\

PRINT("CONFLICTING DECL")
This updates the symbol table if that is valid, and prints the

appropriate message if it isn't.

Implementation. If this feature is used in its full power,
implementation might be extremely difficult. We would probably

like to implement this by detecting whenever a primitive is

executed which can affect the value of the condition, retesting

the condition after it is executed, and undoing it and performing

a failure return if the condition is now false. However, there

will be primitives which can affect the value of the condition

without changing the contents of the sets. This would be

done by changing other sets or relations which contain members

of s. This can be detected, but it would be auite expensive

and complicated. Perhaps a reasonable compromise might be to

redefine the meaning of a condition so it produces a failure

return only on primitives which actually add or delete items

in the set.

