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This describes a particular kind of optimization which 

can be done with some kinds of set formers. It has the effect 

of speeding up the program while sacrificing space. It 

therefore cannot be applied everywhere, but only to certain 

set formers where a search over the entire set is too costly. 

The basic idea is to maintain explicitly the set which 

is formed by the set former as the program executes instead 

of forming it each time the set former is executE~d. Thus 

if we have one of the form 

{x e:: S I P (x) } 

we check each time an element x is added to (or deleted from) 

S to see if P(x) is true. If it is we add it to (or delete 

it from) the set we are maintaining explicitly. The difficulty 

comes from the fact that the predicate P may also change. 

In order to take care of this we must specify more explicitly 

the form of P. Here we specify it for a few simple forms 

to illustrate the method. It can be extended, but how much 

further is not clear. 

Figures A and B show two forms of the predicate P which 

we can handle. In each figure the code on the left is that 

which would be written by the programmer. That on the right 

is the equivalent code which the optimizer produces for that 

particular construct. ''----" on the right represents 

the code on the left (so I didn't have to rewri tei it) . 

In Figure A, 

In Figure A, 

A is a variable and in Figure B, C is a constant. 

Tisa function (a data~structure function) 

introduced by the optimizer which maps each different A onto 

a set which is explicitly maintained. In Figure B, T is the 

set which is explicitly maintained; we need only one in this 

case. Of course, these transformations only apply if the 

particular forms listed are the only ways in which Sand F 

are.changed by the program. If there are other ways, these 

must either be rewritten in terms of the forms we have given, 
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or new forms must be added. 

We have two additional forms for the cases where we ask for 

only the number of elements in the set formed. In these cases 

(Figures C and D) we maintain only a count of the set. These 

turn out to have wider use than one might think, because we 

transform certain quantified expressions into ones of the above 

form. That is, 

_3 X C S 

;ix CS 

P(x) 

P(x) 

becomes 

becomes 

#{x e S 

#{x CS 

P (x) } > 0 

P (x) } = 0 

We now present an example which illustrates how this method 

works. The algorithm is taken from Knuth [1]. It does a 

topological sort on a partially ordered series of inputs. 

The input is a sequence of pairs of objects. Each pair 

<B,C> defines an ordering relationship between the objects 

in the pair so that B < C. The goal is to output the objects 

in such an order that an object appears before everything that 

it is less than in the ordering. See [1] for a more detailed 

explanation. We use the same algorithm as Knuth except that 

we express it at a much higher level, ignoring most of his 

implementation details. The algorithm is to pick an object A 

such that there are no pairs in which it is greater than another 

object. A is then one of the "least" objects we have. We 

then output A, delete all pairs containing A, and repeat until 

the objects are exhausted. 

In our algorithm (Figure 1), Sis the set of all objects 

and SP is the set of all pairs. We have again taken some 

liberties with SETL: The first loop is over a sequence 

(the sequence of input pairs). The second loop is assumed to 

have its header recalculated each time through. This is where 

we pick one of the "least" objects ins.· 

In Figure 2 we apply a few transformations to put the program 

in the right form to apply the optimizations. We expand the 

"union" operation into two "WITH" operations. We apply the 

"~" transformation. And we expand expressions of the form 

{<-,A> e S I P(A)} becomes {D c S I P(FIRST(D))} . 
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In each figure we underline those parts which are changed from 

the previous one. 

In Figures 3 through 5 we apply our set former optimizations 

to the three set formers in the program. In Figure 3 this 

introduces a function SUCC which maps each object A onto the 

set of all pairs <A,B>. In Figure 4, a function COUNT is 

introduced which maps each object A into an integer which is 

the number of different pairs <B,A>. Figure 5 introduces the 

set ZRCOUNT, which is the set of all objects for which COUNT is 0. 

Figure 6 contains a cleaned-up version of Figure 5 as it 

might have been done by a very intelligent optimizer. It is 

instructive to notice what kinds of things it would have to know 

and what techniques it would need in order to accomplish this. 

First it must be able to deal with conditions on variables and 

domains and ranges of functions. Specifically, it must know 

that COUNT> O, that SUCC maps S into SP, that FIRST and SECOND 

map SP into S. If, in addition, it is specified (as we have 

assumed) that there are no repeats in the INPUT,then it can 

tell that SP is dead and eliminate it altogether. It must 

also know that WITH and LESS are inverses of each other so it 

can recognize the situation 

IF B THEN A= A WITH C 

IF B THEN A= A LESS C 

where nothing relevant is changed in between. 

It must also be able to recognize a situation such as 

(\/A 8 S) . 
IF A e:: S THEN 

. 
END V· I 

so that it can eliminate the test in the loop. There are also 

several cases of common sub-expressions which could be eliminated, 

but we have left them as they are for readability. 

There is one additional optimization which might have been 

performed, but the conditions under which it can be done are 

difficult to determine, so we have not put it in. After 
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the first loop, #Sis used, but Sis not, except in deleting 

elements from it. If we had some way of knowing that all these 

elements were in fact in S before they were deleted (as in this 

case) then we could simply store #S explicitly and decrement it 

each time instead of actually deleting the element from S. 

Now that we have presented the method, the question remains about 

about when it should be applied. This can't always be determined 

from the program, so perhaps there should be a way for the 

programmer to specify whether he wants it or not. On the 

other hand, there are cases where the optimizer can determine 

that the method will at least save time at the expense of extra 

space. Specifically, if the set Sin {x c S I P(x)} is only 

changed by adding elements to it and P is not changed at all, 

then the method cannot slow down the program. If elements can 

be deleted from Sor if P can be changed, a more sophisticated 

analysis would be required. Notice also that the method does 

not necessarily cost more space. It may be that the introduction 

of the new sets by the optimizer causes the existing ones to be 

unnecessary as with SP in the example. Clearly much more needs 

to be done in determining when this optimization should be applied. 

This optimization illustrates one distinction between what 

I call the "relational" and "access path" levels of data structure 

description. The original algorithm is at the relational level 

and the optimized version is at the access path level. It also 

illustrates another belief of mine -- that optimizers for 

languages like SETL which have very powerful (relational level) 

operations like the set former should perform their data structure 

optimizations in two steps. The first would,as I have shown in 

this note,be a transformation to the access path level, and 

the second would then be the transformation to the machine level. 

This seems to be a natural way in which tci factor the decisions 

about data structure representation which must be made. 

A history of this example program may be interesting. Knuth's 

original algorithm in his book is at the machine levE~l. When I 

first designed VERS (an access path language) I coded the algorithm 

in VERS to see what kinds of implementation decisions could be 
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postponed in this way. When I started to think in terms of a 

relational level of description I coded it again, essentially 

as in Figure 1. Then later I developed this optimization 

method and applied it to my relational level program. 

The result (Figure 6) is essentially the same as my original 

VERS program. Comparing these three descriptions of one 

algorithm should clarify the reasons why I think these three 

levels of description are important. See also [2]. 

[1] Knuth, D. E. The Art of Computer Programming, Vol. 1. 

Addison-Wesley, 1968, p. 258. 

[ 2] Earley, J. "On the Semantics of Data Structures" 

Courant Institute Symposium on Data Bases, 1971. 



{A) 

(B) 

(C) 

(D) 

WRITTEN BY THE PROGRAMMER 

{X e s I F (X) = A} 

S = S WITH X 

S = S LESS Y 

F(Y) = Z 

{X e s I F (X) = c} 

s = s WITHY 

s = s LESS y 

F (Y) = z 

# {X e:: s I F(X) = A} 

s = S WITHY 

s = S LESS y 

F(Y) = z 

# {x e:: s I F(X) = C} 

s = s WITHY 

s = s LESS Y 

F(Y) = z 

PRODUCED BY OPTIMIZER 

T (A) 

---; T(F{Y)) = T(F(Y)) WITHY; 

T(F(Y)) = T(F(Y)) LESS Y; 

IF Ye:: S THEN 

T ( F ( Y) ) = T ( F ( Y) ) LESS Y ; 

T ( Z) = T ( Z) WITH Y; 

END IF; 

T 

IF F (Y) = C THEN T = T WITH 

IF F ( Y) = C THEN T = T LESS 

IF ye:: S THEN 

IF F (Y) = C THEN T = T LESS y; ; 

IF z = C THEN T = T WI'rH Y;; 

END IF; 

; 

K (A) 

IF y t s THEN K(F(Y)) = K(F(Y)) + 1; 

IF Y C S THEN K(F(Y)) = K(F(Y)) - l; 

IF Y e:: s THEN 

K(F(Y)) +- K(F(Y)) - 1 ; 

K ( Z) +- K(Z) + 1; 

END IF; 

K 

IF F (X) = C AND Y t s 'rHEN K +- K+l; 

IF F (X) = C AND y C S THEN K +- K-1; 

IF y e:: S THEN 

IF F (Y) = C THEN K +- K-1;; 

IF Z = C THEN K +- K+l;; 

END IF; 

y .. ', 
y .. 

, ' 

'' 
f I 

'; 

, , 
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Figure 1 

( V <B ,C> C INPUT) 

S = S V {B ,C}; 

SP = SP WITH <B,C>; 

END \I; 
( V A €: s I 'j < - ,A> €: SP) 

OUTPUT (A) ; 

(VD= <A,->€: SP) SP = SP LESS D; END V; 
S = S LESS A; 

IF #S = 0 THEN RETURN;; 

END V; 

Figure 2 

( \/ <B ,c> c INPUT) 

S = S WITH B; 

S = S WITH C; 

SP = SP WITH <B,C>; 

END \I; 
(VA e s I #{P e SPISECOND(P)=A} = O) 

OUTPUT (A) ; 

(VD e SP I FIRST (P) =A) SP = SP LESS D; END V ; 
S = S LESS A; 

IF #S = 0 THEN RETURN;; 

END V; 

Figure 3 

( \/ <B ,C> e INPUT) 

Sc: S WITH B; 

S = S WITH C; 

SP = SP WITH <B,C>; SUCC(B) = SUCC(B) WITH <B,C>; 

END V; 
(VA e s I # {P e SP I SECOND (P) =A} = O) 

OUTPUT(A); 

( \/ D e SUCC (A) ) SP = SP LESS D; 

SUCC(FIRST(A)) = SUCC(FIRST(A)) LESS D; 

END· Vi 
S = S LESS A; 
IF #S = 0 THEN RETURN;; 
END V; 
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( \/ <B ,C> e INPUT) 

S = S WITH B; 

S = S WITH C; 

Figure 4 

IF <B,C> ~ SP THEN COUNT(C) = COUNT(C) + l; 

SP = SP WITH <B,C>; SUCC(B) = SUCC(B) WITH <B,C>; 

END IF; 

END V; 
(\/A e S I COUNT (A) = 0) 

OUTPUT(A); 

( V D C succ (A) ) 

IF D c SP THEN COUNT(SECOND(D)) = COUNT(SECOND(D)) -1; 

SP = SP LESS D; SUCC(FIRST(A)) = SUCC(FIRST(A)) LESS D; 

END IF; 

END V; 
S = S LESS A; 

IF #S = 0 THEN RETURN;; 

END V; 
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Figure 

(V <B ,C> e:: INPUT) 

s = s WITH B; IF COUNT(B)=0 

s = S WITH C; IF COUNT(C)=0 

IF <B,C> t SP THEN 

IF C e:: S THEN 

THEN 

THEN 

5 

ZRCOUNT = ZRCOUNT 

ZRCOUNT = ZRCOUNT 

IF COUNT(C)=0 THEN ZRCOUNT = ZRCOUNT LESS C;; 

IF COUNT(C)+l=0 THEN ZRCOUNT = ZRCOUNT WITH C;; 

END IF; 

COUNT(C) = COUNT(C)+l; 

SP = SP WITH <B,C>; SUCC(B) = SUCC(B) WITH <B,C>; 
END IF; 
END V; 
( V A e:: ZRCOUNT) 

OUTPUT(A); 

(\ID e:: SUCC (A)) 

IF De:: SP THEN 

IF SECOND(D) e S THEN 

WITH B;; 

WITH C; F 

IF COUNT(SECOND(D)) = 0 THEN ZRCOUNT = ZRCOUNT LESS SECOND(D) ;; 

IF COUNT(SECOND(D))-1=0 THEN ZRCOUNT = ZRCOUNT WITH SECOND(D) ;; 

END IF; 

COUNT(SECOND(D)) = COUNT(SECOND(D))~l; 

SP = SP LESS D; SUCC(FIRST(A)) = SUCC(FIRST(A)) LESS D; 
END IF; 
END \,1; 
S = S LESS A; IF COUNT(A)=0 THEN ZRCOUNT = ZRCOUNT LESS A;; 

IF #S = 0 THEN RETURN;; 

END \I; 
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Figure 6 

( V <B ,C> C INPUT) 

S = S WITH B; IF COUNT(B)=0 THEN ZRCOUNT=ZRCOUNT WITH B;; 

S = S WITH C; 

COUNT(C) = COUNT(C)+l; 

SUCC(B) = SUCC(B) WITH <B,C>; 

END Vi 
( \/ A c Z RCOUNT) 

OUTPUT (A); 

S = S LESS A; ZRCOUNT = ZRCOUNT LESS A; 

(VD C succ (A) ) 

IF COUNT(SECOND(D))=l THEN ZRCOUNT=ZRCOUNT WITH SECOND(D) ;; 

COUNT(SECOND(D)) = COUNT(SECOND(D)) -1; 

SUCC(FIRST(A)) = SUCC(FIRST(A)) LESS D; 

END V; 

IF #S = 0 THEN RETURN; 

END V; 


