
SETL Newsletter 57

Minimizing Copying in SETL:

Preliminary Observations

October 8, 1971

H. S. Warren

In general, the evaluation of an expression such as

u ~ v can be done most economically if the context permits

(1) destroying either u or v, or

(2) working only with references to u and v.

For example, if Sis a set and "a" is a long item (long string,

set, tuple, etc.) then the most efficient way to evaluate S

with a is to destroy S by placing in it a reference to "a".

As another example, if "j" is a long integer, then the

most efficient implementation if "i = j + l" is to destroy j

by adding 1 to it, and then to make i reference the result

itself, rather than a copy of it.

A first-order optimization of SETL operations by minimizing

copying might be:

(1) If a term in an expression is dead, then it may

be destroyed.

(2) Do not use references: always generate fresh copies

of items for operations such as with and assignment.

Here a "dead" term is a term that is not directly followed by a

use, for any program path from the point in question. "Marring"

occurrences may be skipped over.

This first order optimization of copying is entirely static,

as dead terms may be determined by the compiler. In essence,

the compiler looks ahead through all possible program paths.

When the compiler compiles a call to a routine such as

WITH or PLUS, it could pass to the routine a live/dead flag

for each operand. Alternatively, separate routines could be used.

With first order optimization, the statement "S == S with x"

will be executed without copying S. To see this most clearly,

it helps to expand it in terms of a "compiler temporary," which

is understood have have only local significance:

(1) temp= S with x;

(2) S = temp;

SETL-57--2

At statement (1), Sis dead, and therefore the WITH routine may

destroy it by simply putting into it a copy of x. The assignment

to a compiler temporary never requires a copy operation.

Regarding assignments, a simple assignment such as A= Bis

treated as follows. If A is dead, the assignment need not be

done (and would presumably be deleted by the compiler). If A

is live and Bis dead, the assignment may be done by making A

reference the same structure that B references. Only if both

A and Bare live need a copy be done. In statement (2) above,

"temp" is certainly dead, so the assignment may be done

without copying.

The next level of minimizing copying to be considered is to

work with references to "long" items whenever possible. That is,

in "S with x", we wish to avoid copying x. The compiler can

determine the obvious cases where x is never changed after the

point in question, in which case working with references is safe.

For example, if x is a constant, as in S with 'abcde!', it is

certainly not necessary to make a fresh copy of the string 'abcde'.

This idea can be fully exploited by always using references

to long items (the short items might as well be copied). It is

then necessary to maintain, at run time, a "reference counter"

associated with each long item, so that it can be determined

when it is safe to modify a value without copying it.

That is, this "second order" of optimization by minimizing

copying operations is governed by the following rules:

(1) If a term in an expression is dead and its reference

counter is 1, then it may be destroyed.

(2) Always use references to long items when they are put

into aggregates or enter into an assignment.

To get the benefits of (2), we have paid a price in (1).

However, the benefits must always be at least as large as the

price.

Consider the following SETL code, where all variables are sets:

(1) A = A with x;

(2) B = B with x· I

(3) X = X less 1' I

x:

A:

B:

SETL-57-3

The first order optimizer will copy x at lines (1) and (2).

The second order optimizer will copy x only at line (3).

It is helpful to have a mental picture such as the one

below, of the processes involved. The SETL variables x, A, B

can be thought of as names for one-word storage locations which

Original

1~1
1~1
,.______.I 1

x:

A:

B:

After

A= A with x;

B = B with x;

3

After

x = x less l;

x: ..---------,I~

1

B: _I-

point to data structures in the storage heap when their values

won't fit in the II root word 11
• The numbers in the da.ta structures

of the above figure are the reference counts.

One can imagine higher orders of optimization by minimizing

copying. For example, for S = A with x (with A live) one could

partially destroy A by somehow putting into it a specially marked
11 x" which is interpreted as being present for S but not for A.

As another example, there might be cases where one could destroy

a set and later restore it. That is, the statement

"X = A - (B with x), with A and B live, might be executed as:

if X CB then X = A - B;

else augment(B,x); X = A - B; diminish (B,x) ;;

