
title:

author:

country:

R'E.V\SED.

An Algebra of Assignment

Rudolph A. Krutar

United States of America

affiliation: courant Institute of Mathematical Sciences
. .

address:

date:

New York University

251 Mercer Street

New ¥ork, New York

October 27, 1971

10012 U.S.A.

·(submitted February 29, 1972)

area of paper: Programming Methodology

language:

abstract:

English

Assignment statements in procedural languages

generally include the assignment of values to

a limited class of expressions (such as subscripted

arrays). It is the purpose of this pa.per to

generalize the notion of assignment by proceeding

along the lines of Schwartz' "Sinister Calls"

[Schwartz 71). The topics set forth below are

motivation, technical details, and useful examples.

The technical details include several abstract

definitions. The useful examples include some

surprises (like let (1 2 Vj< n I A(j} 2 A(j+l))

expanding into a bubble sort.

SETL--59--1

Sections

WHY?

HOW?.

HUH?

Glossary

Approximate Syntax

References

WHY?

In most languages certain constructs select parts of a data

structure but values cannot be assigned to these parts. For

example, the APL assignment '(1 1 ~ M) + E' should clearly

mean 'assign the vector E to the diagonal of the matrix M'.

Unfortunately APL permits only names and subscripted arrays to

be assigned values. Any selection expression should .be permitted

because otherwise a design rule called 'programming generality'

is violated: a construct should be permitted whenever it makes

sense.

The designers of Algol 60 defined the for-statement in the

following way:

"Step-until-element. A for element of the form

A step B until C , where A, B, and C, are arithmetic

expressions, gives rise to an execution which ma.y be

described most concisely in terms of ·additional Algol

st.atemenls as follows:

V := A ;

Ll: if (V-C) x sign (B) > 0 then go to Element E~xhausted;

Statement S ;

V := V+B

go to Ll ;

where Vis the controlled variable of the for clause and

Element exhausted points to the evaluation according to

the next element in the for list, or if the step-until

element is the last of the list, to the next statement

in the program." [Naur et al. 60: 308)

They had no idea at all that this definition had any flaws

(so says Perlis). (What does 'for A[NEXT] + 1 step INC until 100 do;'

mean where NEXT and INC are parameterless integer procedures?

How many times are these procedures to be called? The intuitively

consistent definition would call the procedures once each time

the loop is to be executed.) Unfortunately, implementers took

the definition literally. A verbatim implementation of the

definition would require that the label 'Ll' not be used in

certain places because the definition uses it. The macro

expansion defined in this paper would treat such dE~finitions

in an intuitively consistent fashion.

HOW?

The technical details of various macro schemes are presented

below. There will be many neologisms defined in this paper.

As Dodgson once remarked, " ... any writer of a book is fully

authorized in attaching any meaning he likes to any word or

phrase he intends to use". [Dodgson 97: 165) The meanings

of these neologisms will appear below in logical order and

in the glossary in alphabetic order.

Blocks, statements, and expressions are all syntactic classes.

A block is a sequence of statements each followed by a semicolon.

In some of its uses it may be followed by an ending comprised

of zero or more appropriate visual cues. Since the null string

is not a statement, two semicolons in succession mark the end

of a block. Statements include assignment statements,

SETL59-3

go to statements, macro definitions, conditional statements, and

generally anything which is defined by a macro definition.

Expressions are constants having a priori values, ~~ogram variables

which hold them, and anything which is defined by some definition

of assignment. The meanings of VAR=CONSTANT and VAR=VARIABLE are

given a priori.

The naive macro scheme is defined in terms of the notions of

similarity and simultaneous substitution. A parameter is a name

which if related to the name of a syntactic class is assumed to be a
member of that class (BLOCK,STMT, ...); otherwisef it is assumed to
be an expression. A correspondence is a mapping from parameters
to expressions. Such a mapping can be applied to a phrase by

replacing each parameter in the phrase by its corresponding

expression. This is called simultaneous substitution. Two phrases

are similar if, for some correspondence, they are identical under

simultaneous substitution, applying the correspondence to each of

them. This meaning is perhaps too general -- successive restrictions

which are acceptable are:
(1) no parameter occurs in both phrases,
(2) one of the phrases has no parameters,
(3) each parameter occurs exactly once in the other phrase.

The uses of similarity in the various macro schemes below all

comply with these restrictions.

The processor for the naive scheme must recognize statements

of the form 'macro BFORM; BLOCK ENDING', remember them and process

other statements by finding definitions for them in which BFORM

and 'STATEMENT;' are similar blocks. The correspon,1ence which

makes them similar is applied to BLOCK and each statement of

the resulting block is generated. Statements for which.the macro

processor has no definition are not processed by it any further.

Each generated statement is processed in turn. The following

statement should make naive a synonym of macro:

macr~ naive BFORM; BLOCK ENDING;;

macro BFORM; BLOCK ENDING; end naive

It should be included in a test deck for any implementation.

A statement is expandable if it has an a priori meaning or if

each statement generated by its macro expansion is expandable.

Let X be a program variable. Then an expression Eis trievable

if the statement X=E is expandable. It is storable if E=X is

expandable. A register is any expression which is both

trievable and storable.

The intent of a program is a collection of intended assertions

about the program and assumptions about the data. 1\.n assertion

is valid if it can be derived from these assumptions. A

program is valid if each intended assertion is valid.

The data is valid if it complies with the assumptions. A

statement in a program is valid if it is expandable and the

program is valid. The assertions posed but not intended may be

called the extent of the program. (E.g. "this program requires

at most ... "). An optimizer will modify a program in such a

fashion as to influence its extent without damaging its validity.

Such a modification has no net effect -- if the original

program is Vqlid only when the modified version is valid.

A statement in a valid program is superfluous if removing it

has no net effect. Another statement is equivalent to it if

replacing it with the other statement has no net effect. Two

adjacent statements in a valid program commute if reversing

their order has no net effect.

Every program language has a domain of values V, which are

indestructible, a family of mappings from Vn into V, and a

countable set of program variables, each of which may assume

any value in the domain. Given program variables XJ , ... ,X and
. n

a mapping f: Vn-+ V, then f(X 1 , ... ,xn) is a function which may

or may not have a simple representation in the programming language.

A function f(x1 , ... ,Xn) is safe between points Ll and L2 in

a program if the assertion is valid that (Vt) ((f (x
1

, ... ,Xn) =t at Ll)

~ {f(x1 , ... ·,xn)=t at L2)). It is safe over any phrase which has

one entry point and one exit point if it is safe between those

points. A constant is a function which is safe between any two

points in the program. A function is a subfunction of another if it

is safe whenever the other is safe.

A trievable expression Eis conformable to a storable expression

S whenever S=E is a valid statement. Let X and Y be program

variables, and let Q be a register. X conform~ to Q whenever X=Q

is superfluous following a valid statement Q=X. Whenever Y=Q is

SETL-59-s

superfluous following Q=X and, for some function f(X1 , ... ,Xn),

the assertion that Y = f(X 1 , ... ,Xn) is valid following

(Q=X; Y=Q;), then Q is retrievable, and f(X
1

, ... ,x) is its n
transfer function. (X may or may not be among x1 , ... ,Xn.)

A register Q is restorable whenver the statement Q=X is

superfluous following a valid statement X=Q. Wheneiver Q is

also retrievable, it is a field.

consider the following trieval and storage operations:

macro X=value(Y) ;; X=Y; end =value;

macro value(Y)=X;; end value=;

A trievable expression Eis a defined function whenever value(E)

is a field. In assertions, references to the transfer function

f(X 1 , ... ,Xn) of value(E) may be abbreviated as E or as Xi 1 ... Xik ~ E

should xi 1 , ... ,Xik not be explicitly named in E. If value(E)

is not a field, then Eis said to have side effects.

Two functions are isomorphic if each is a subfunction of

the other. Theorem: Isomorphism is an equivalence relation.

The data space of a function is its equivalence class under

isomorphism. Any property of functions which is preserved under

isomorphism applies equally well to data spaces. Data spaces

may be safe, constant, equal (isomorphic), subspaces (subfunctions),

etc. If every common subspace of two data spaces is a subspace

of some particular common subspace, then this particular subspace

is their intersection, (which is uni~uely determined). The union

of two data spaces has a similar meaning. Theorem: If <X,Y> is

the pairing function (CONS in LISP) and F,G are functions, then

the union of their data spaces i~ the data space of ~,G>.

Theorem: The closure of the set of all defined functions of a

valid program under union and intersection is a lattice over~,

the subspace relation. The superior node of this lattice is

the data ba3e of the program and the inferiqr node is its constant

space. Two data spaces are independent if their intersection is

the constant space. Otherwise they overlap. We write 0 1 1 ••• Inn

to mean that 0 1 , ... ,D
0

are mutuallf independent data spaces.

.I

i
.!

!

S!!:'l'l..- !:> 9- b

A block is restricted to a data space if every independent

data space is safe over the block. A data space is live at

some point in a program if putting some block restricted to

that data space at that point would have a net effect. It is

dead otherwise. A data space is marred by a block if it is

not safe over the block. If every subspace of a data space

is either marred by a block or dead on entry to the block,

then that data space is mashed by the block. Point L2 in a

program cannot be reached from point Ll if (True at Ll:, False at L2)

is valid.

Theorem: A data base is dead at some point in a program if

it is mashed before any defined function is trieved for which

the- data base is a subspace of the given data space.

These observations may be amusing:

(1) A field F may be made safe over a block by using the macro

macro ~ save F across BLOCK;; -l TEMP

TEMP=F; BLOCK F=TEMP; end save;

(2) Functions inherit properties of their data spaces; fields

are functions;

(3) The constant space-is forever dead;

(4) The program variables are mutually independent fields

(5) A field may be used as a temp in a block if it is dead

before and dead after the block

(6) An optimizer or a garbage collector may deallocate

a dead field unless it is a constant (never throw nil away!)

Every time a garbage collector is invoked, it must be

restricted to some data space which is dead at the point

of invocation.

neomacro definitions

Naive macro definitions have a very simple interpretation

but a very complicated unintuitive bi::-havior. Not only al!"e so • .1e

expressions evaluated many times, but local names may interfere

with the interpretation in some common cases. We will first

modify the naive expansion scheme to include provision for local

variables, then we will invent a new scheme of protected defini
tions which provides for global variables, frozen variables

SETL-59-7

and shorter expansions as well. These definitions can be

compiled like procedures or expanded in line. Later we will

define two more schemes, the symmetric 'definition (which is

just.an abbreviation) and the expression definition (which

connects function definition to statement definition).

All these inventions will be defined in terms of naive macros.

In order to provide for the introduction of unique names to

an expansion, we make a block similar to a form (FORM) also similar

to ~. FORM -, VARS where VARS is a list of names not

occurring in FORM. We make these names correspond to variable

names uniqteto that expansion: names guaranteed not to occur

elsewhere in the program. Consider this definition, call,

and possible expansion:

macro I- do S; -f LO; LO: S; go to LO;;

do do LO+ l;

L0607: L0608: LO+ l; go to L0608; go to L0607;

Indeed the names correspond in an intuitive way. This device

is analogous to the local statement of IMP [Irons 70:33]. In

fact, the local statement could be defined by:

macro r local VARS in BLOCK; "i Doit; -
macro ~ Dolt; -I VARS;

BLOCK; end Dolt;

Dolt; end local;

An expression f(e 1 , ... ,en) is similar to a form f(x1 , ... ,xn)

when each subexpression e. corresponds to a variable x. of the
J J

form. Local variables y 1 , ... ,Ym and global variables z
1

, ... ,zk

are augmented to the form by writing z 1 ... zk r- f (x1 ~ ... ,xn) 1 y 1 .. ·Ym

and making these automatic correspondences:

X• .
J

.
z,

J
Y· J

e .
J

z.
J

y~Xp
J

as it was j = l, ... ,n

global parameters made explicit j=l, ... ,k

local names become unique .to an expansion.

The naive expansion of the definition

macro z 1 ... zk ~ f(x 1 , ... ,xn} ~ y 1 ... ym; body;

may take place as though all the parameters were stated explicitly.

The global parameters z1 , ... ,zk are global in the dynamic sense:

they are those variables in use at the call (as in lu>L). Any

variables of the body which are not in the form are global in

static sense: those in use at time of compilation of the

definition (as in Algol 60). These globals will have somewhat

more use in terms of protected definitions. A macro definition

of the new kind is called a protected definition. It has

two forms, implicit and explicit (the former being more common) ,

both defined as follows:

macro def STMT; BLOCK end CUES;;

def STMT; Xi 1 ... Xik r BLOCK -, Xf1 ... Xfm end CUES;

(where xi
1

, ... ,Xik are live before BLOCK and Xf 1 , ... ,Xfm

are marred by BLOCK) end def STMT;

macro r def STMT; Xi1 ... Xik ~ BLOCK -! Xf1 ... Xfm; 7 T1 ... Tn;

macro r STMT; --f T1 ... Tn;;

(V XiJ. unless suppressed) Ti.=Xi.;
J J

call or expand TBLOCK;

(V Xf. unless suppressed) Xi.=Ti.; end ·sTMT;
J J J

(where BLOCK is similar to TBLOCK wherein the variables

x1 , ... ,Xn of STMT correspond to the distinct variables

T1 , ... ,Tn. If both Ti.=Xi. and Xi.=Ti. are generated,
J J J J

then those assignments are suppressed which would cause

subexpressions of Xi. to be trieved twice or assigned
J

twice) end def f- -i ;

Certain initializations and finalizations are suppressed whether

or not they have a net effect on thE- program. These suppressions

are necessary in order that no definition be expanded more often

than is intuitively reasonable. Perhaps this definition can

be worked out in a cleaner fashion so that no statements need

be suppressed. At any rate, the action is: initialize some

parameters, call the routine or expand the definition, and

finalize some parameters. This works for definitions of= as

well as for many other statement forms. I assume that the explicit

definition initializes and finalizes in the orders ~Jiven explicitly;

but that the implicit definition carefully defaults these orders to

preserve their order in STMT (e.g. def A(J)=X; X JA r ... 1 A;).

SE'l'L-S~ -~

The following definitions may clarify the use of the protection

scheme. Then we will prove some theorems about it.

def RO= <Rl, R2>; Rl R2 I- call LISP.CONS; ~ RO;

def Rl=hd RO; RO r call LISP.CAR; ~ Rl;

def R2=tl RO; RO I- call LISP.CDR: -{ R2;

which are necessarily primitive. And the storage definitions:

def <A,B>=C; A = hd C; B = tl C ..
I I

def hd C = A; C = <A, tl C>;;

def tl C = BJ: C = <hd c, B>;;

are not. In the primitive case the variables are the names

of fixed locations (like machine registers) and the syst~m is

expected to use them. Of course, such a variable can be made

into a temporary by saving it in another temporary and restoring

it later. Good optimization can make statements like

<x,Y>=<Y,X> boil down to T=X; X=Y; Y=T; but the optimizer

must know the trivial identities involving CONS, CDR, and CAR

(following CONS, both CAR and CDR are superfluous).

Assignment itself can be defined:

def

def

A+ B;

A-+ B;

def A +-+B;

A=

B +

B ••
I I

A ••
I I

<A,B> -+ <B ,A>;;

each of which does the intuitively correct action.

composability theorem: A statement f(e 1 , ... ,en) involving

subexpressions e
1

, ... ,en is expandable using the protected

definition

def f (x1 , ... ,xn); INITIAL ~ g (x
1

, ... ,xn) i FINAL;

provided that:

(1) INirIAL c· {x - le. is trievab:.e}
- J J

(2) FINAL C {x. I e. is storable}
J J

(3) g (T 1, ... , T n) is expandable with Tl, ... ,Tn being

program variables.

[Proof: the generated naive macro definition is:

SETL-5 9--10

macro f(x 1 , ... ,xn) -t T1 ... Tn

(Vx. c INITIAL unless suppressed) T.=x.;
)))

g(Tl, ... ,Tn)

(Vxj c FINAL unless suppressed) xj=Tj; end f;

If Tj=ej is generated in the second line, then xj c INITIAL,

and e. is trievable (by hypothesis 1), hence T.=e . .is expandable.
)))

Likewise, if e.=T. is generated in the fourth line, then x.cFINAL,
)))

and e. is storable (by hypothesis 2), hence e.=T. is expandable.
J J J

The third line is expandable by hypothesis, hence f(e 1 , ... ,en)

is expandable according to the definition of the term.]

In point of fact, the definition of assignment is ambiguous.

Consider the two definitions and assignment:

def y = f(x
1

, ... ,xn); call f;;

def () - w · call g ,· ,· g zl' .•• , zm - '

g(d
1

, ••• ,dm) = f(e
1

, ••• ,em);;

which we assume to be expandable. Which definition is expanded first?

Both orders are shown below:

/* g first*/

(Vi I . . .) z . =d . ;
l. l.

/* w = f(e 1 , ... ,en) */

(V j I ...) x . =e . ;
))

call f;

w = y;

(Vjl-·->
call g;

e .=x.;
))

(Vi I ...) di = z. ;
l.

/* f first*/

l ___

(\lj1 •••) X, -· e.;
))

call f;

/* g(d1,··· ,dm)=y */
(\Ii I . . .) z . =d . ;

l l.

w=y;

call g;

(Vil •••) d. =z.;
l. l.

(Vjl •••) e.=x.;
))

assuming that y is not initialized by f and w is not finalized by g.

The expansions are almost alike: only initializations of left-hand

variables and finalizations of right-hand variables are out of place.

Stated as a theorem, this observation become3:

Theorem: If no protected definition. used in the

expansion of a statement initializes left-hand

variables nor finalizes right-hand variables,

then the order of expanding them is immaterial.

(Proof omitted].

But the hypotheses of the theorem are rather commonly violated

(cf. the definition of hd C =A). Which order is to be

preferred? Initializations are frequently commutable because

they rarely involve side effe1ts. The finalizations might be

made in left to right order (so f would be expanded first).

If the choice depends only upon the sequential order of the

definitions, then further analysis becomes cumbersome:

(what does '<A,B>=(A+<3,4>) mean when+ is defined by

def X=(Y+Z); X=Z; Y=Z;;

Will A be 3 or <3,4>?)

If g is expanded first then initializations are made from left

to right and finalizations from right to left, completing the

evaluation of (X+<3,4>) before assigning X=3. This might prove

to have more intuitive appeal. If within a definition, the

finalizations are made from left to right, then <X,X,X>=<l,2,3>

is equivalent to X=3. This achieves the intuitive rule of

evaluating subexpressions completely before finalizing cognate , . .. -

expressions. Then J=J+(J+3)+J is equivalent to J=J+6.

Furthermore, <sign(X), abs(X)>=<-1,12> is equivalent to X=-12

unless X=O. Many wonderful theorems about the preservation

of properties when fields are independent lurk in dark corners

waiting to be discovered. (1:30 A.M.)

In many cases the storage and trieval definitions 0f an

expression are remarkably alike. Two abbreviations which exploit

this symmetry are:

I

I
j

l

SETL-59-12

(1) macro sym def FORMl=FORM2; STMT;;

where

def FORMl=FORM2; STMT; end trieval;

def FORM2=FORM1; rey STMT; end stora9e; end~ def;

macro rev EXPRl=EXPR2;; EXPR2=EXPR1; end rev=

macro rev if COND then STMTl else STMT2;;

if. COND then rev STMTl else rev STMT2; end rev if;

macro rev (VCOND) STMT;; (VCOND) rev STMT; end rev V;

(2) macro r defx FORM = EXPR; ~ VAR;

sym def VAR=FORM; VAR=EXPR; end defx;

macro ~ defv FORM = EXPR; 1 VAR;
def VAR = FORM; VAR = EXPR; end (FORM)=;

Now, conditional expressions are defined by_:_
macro VAR = (if COND then EXPRl else EXPR2) ;;

sym def if COND then VAR=EXPRl else VAR=EXPR2; ~(if);

And these examples bear some interest:

sym def stk X = Y; X = <Y ,X>;

sym def X ~ Y = Z; <X,Y> = <Z,X>;

defx A max B = (if A < B then B else A) ;

de fx parts = <RANK, RI:IO, DEL, ABASE , VBASE > ;

defx tasks= ES!. JOBFILE;

defx A[J] = (if pair(J) then <A[hd J], A(tJ~ J]> else A(J));

The sym def statement form is just an abbreviationi· but the defx

statement form is the key definition which permits expression

macros. Of course, it depends heavily on the notion of assignment.

A register is a file if every value stored in it may be

retrieved once. If all values stored in a file have been retrieved,

the file is empty and it should not be trieved until more values

are entered. For each file type, there should be a field which

defines empciness of the file. For stk we might write:

defv stk X be empty

def stk X be empty= b;

= -, pair (X) ;

if b then X=0

else if -1 pair(X) then error;;

SETL-59-13

Then stk X may be cleared by writing 'let stk X be empty'.

If the file is not supposed to be empty at some point, then

'let, (stk X be empty)' generates an error if it is.

This is equivalent to 'if stk X be empty then error' which

verifies that the file is not empty. Remark: the occurrence

of 'stk X' in 'stk X be empty' generates neither storage

nor trieval expansions for 'stk X'.

The census conditions on a file are easily described by

defining a file operator (v') which counts all values entered

and retrieved. iThe second definition is the well-formedness

condition for a census (the first gives meaning to assertions):

def assert b; if 7 b then error;

defv ·c /\. > o = ('tJy e range(C) I y ~ 0);

def X = F ✓ C; X=F; C(X)=C(X)+l; assert C /\.> 0;

def F ✓c = X; F=X; C(X)=C(X)-1; assert C I\ • .::_, 0;

def b = F ✓c be empty; b=F be empty; assert b:=(Vye::range(C) ly=0);;

de f F vC be empty = b; F be empty = b;

if b then C = nl

else assert (~ye:: range(C) !y>0) ;;

With these definitions, if FILE is a file and CENSUS

is a temp then FILE ✓ CENSUS is a file which may be used in

place of FILE and which incorporates the requirements of files.

A quantity Fis a file if and only if FIC may replace every

occurrence of F with no net effect on the program, ·c being a temp.

A priority queue is a file which always yields its smallest

entry. The following definitions make er A a priority queue.

defer A be empty= b; if b then A=nl else if A=nl then error;;

defv eg_ A be empty = (A=nl) ;;

def ~ e,g_ A=X -1 b,j ,k; b=true; j=#A:t-1; A(j)=X;

(while b /\ (j>l) doing j=k) k = j72; let(A(k)~(j)) nPe -, b;;

end def;

def ~ x=eg_ A -,b,j ,kiA(#A) nee (A(l) nee X) = Q; j=l; b=true;

(while b/\j<#A72 doing j=k) k=2*j;

if k<#A then if A(k+l) _s A(k) then k=k+l;

let (A(j) ~ A(k)) ~-. b;; end de_f;

-SETL-59-14

The~ operator was defined earli~~- It permits a register

to be saved before it is assigned (X nee OLDX=NEWX;)

A generalized deque can be built rather easily if the symmetric

sum operator is defined on atoms (or any other associative and

commutative operator for which A ED A= n and A ED'2 = A; n is most

convenient but any particular value can'be substituted;

if At B then the exact value A ED Bis not important.)

Genuinely symmetric lists will be defined, and stack operations

will be permitted on either end. LINK and VAL are two SETL

functions.

def A to B; LINK(A) = LINK(A) ED B; LINK(B) = LINK(B) ED A;

end merge/break;

~ SA be empty = (LINK(A)=Q) ;;

def ~Abe empty =b; if b then A=newat

else if LINK {A) =n then error;;

def r X= ~ A"1T; X=VAL(A); A~ T=LINK(A); A to T; end pop;

def ~ S A = X -fT; A nee T=newat; VAL (A) =X; A to T; end push;

Then a function walker can look like:

let (S OUT be empty) A (s NEXT be empty) ; S NEXT=TOP;

{while, 9_g_ NEXT be empty)

begin TEMP=9SI NEXT; £g_ OUT=TEMP;

if atom(TEMP) then continue while;

let GEN be empty; LEFT= GEN;

{V<x,y> e TEMP) S GEN= y;

GEN to NEXT; TEMP=s LEFT; NEXT=LEFT; end while;

The deque in GEN was built up and flipped around with ~o effort.

SETL~59-15

HUH?

Several surprises have turned up. It was thought that only

a few expression types could reasonably be defined as fields.

This is not the case. Storage definitions have been found which

make fields out of many constructs in SETL and APL.. The first

and foremost is a boolean operation, membership:

def xcS=b; if b then S = S with x

else S = s less x;

Assigning a truth value to a predic~te in this case causes the

predicate to assume that truth value. (A bit is any predicate
which is a field to which true and false both conform.) We can
write 'let, (3cA)' by declaring:

def let b; b=true;;

def, b=z; b =, z;;

In principle, A can be viewed as a bit vector and the statement

becomes A
3

= false. In practice, however, such vi,~wpoints are

ignored. A statement like 'let PRED' means "make PRED become

true -- I care not how". An alternative definition would have

changed x instead:

def xcS=b; if b then x = min(S)

else x = max(S)+l;

which is certainly a field when Sis a set of inte9ers.

The more general definition is usually to be preferred.

Yet another definition makes xcS a field (because i = ts is

superfluous afters= ts).

def xcS=b; if b then x=tS else x=newat

where ts is a random element of Sand newat is always a value

distinct from all values previously generated.

Whenever the value of a field must be changed, the storage

operation may make random changes. The definition of flip aids

in describing this phenomenon:

def b=flip; b=even(SEED); SEED=MODULUS!RC+RA*SEED;;

which is a random condition. Assume that T=flip is superfluous

whenever T is dead (i.e. SEED is not a variable of contention

in the intent of the program). The definition of either

permits a random choice between two variables:

defx (either A or B) + (if flip thE:!!_ A else B);

Then the logical connectives become:

def a/\ b=c; if c then <a,b> = <true,true>

else if al\ b then (either a or b)=false_;;

defx a Vb = (--i a)/\ (--i b) ;

defx a:,b = (-, a) V b;

defx a-:f b = (aA-, b) V (b A, a); (proof, anyone?)

The set theoretic operations can be defined as fields:

def A int B = z; (VxcAuBuZ) xcA /\xcB = xcZ;;

def A u B = z; (VxcA~ByZ) xe::AVxcB = xcz ;_;

def A B = z; (Vxe::A~B~Z) xe::A :JXCB = -, xe::Z;;

def A C B = Z; (VxcA ~ B) xeA .:> xeB = z ..
I I

def A e B = Z; (VxcA~B~Z) (xcA) -:f (xcB) = (xcz) ; end sym diff;

And they might be used in:

let (x c A int B) /\ -, ((y c A ~ C) Vb); (deterministic)

let (x s A int B) ::::> ((y C A ~ C) V b) ; (random changes)

The storage definition of quantified expressions leads to some

intriguing results. Let VCOND be any phrase like VxcS or 12Vj<#A;
•

and let 3[COND] correspondingly be like 3[x]cS or 12 3[j:l<#A.

The storage definition for universal quantification may then be:

macro (VCONDIPRED)=b;;

if· b then (while '3 [COND] I -a PRED) let PRED

else error; end V;

macro (3CONDIPRED) = b;; -t (VCOND!-,PRED) = b;;

Naively found, a violation of PRED is corrected, then the search

starts over. The transitive closure of a set Sunder a function

can be defined:

macro r C= f closure S; ~ x; C=S; let (VxcS!f(x)cS); end closure;

SETL--59' -1 7

A sequence A can be sorted by simply demanding:

let (1 <Vj < JS I S(j) <S(j+l)); -- - - -
if the earlier definition of 2 is accepted:

def X2,Y=b i if blX_sY then <X, Y>= <Y ,X> i end 2. ;

Setting this "sorted" bit generates the bubble sort but a clever

enough optimizer would convert that to a radix sort .. The tree

sort (or heap sort) can be given in a few lines:

(l<Vm~n) ~ (l<Vj_sm) IA(j) 2, A(j+2)i

(n>Vm>l) let A(l) ~ A(m)/\(1< Vj2 mf2l (A(2*j) rA<mL2*j+l))2A(j)) i

but many superfluous tests are made. Maximum and minimum are

defined by:

defx X r Y = (if X < Y then Y else X) i

defx XL Y = (if X < Y then X else Y) i

Remark: X r y = z has transfer function z r (X L y) •

Various arithmetic expressions can be fields. They are tabulated:

definition

def sqrt(R)=Zi R=Z**2ii

def sign(R)=Zi R=sign(Z)*abs(R) ;;

def abs(R)=Zi R=sign(R)*abs(Z) ii

def floor(R)=Zi R=floor(Z)+fract(R) ;;

def fract(R)=Z; R=floor(R)+fract(Z) ;;

def M mod N=Z; M=M-(M mod N)+(Z mod N) ;;

transfer function (on reals)

abs(Z)

(if R=O then O else sign (Z)

(if R=O then O else abs(Z))

floor(Z)

fract(Z)

z mod N

def M mod N=Z; M=M-(M mod N)+Z;; Z mod N but MfN X M mod N

def MfN=Z; M=N*Z+(M mod N) ii Z if Z :,0, otherwise?

def even(M)=b; M mod 2=(if b then O else l)ii b restricted to true,fal~

def V V=Z; V[Z) = V[VV]ii Z restricted to permutationt

where t and Ware the grade up

and grade down operations of APL.

def V j_ W = Ni W = VT N;; (x/V) IN

where ..J... and T are encode and decode of APL

defv (i,j) = j+{i*(i+l)f2) ii i,j,k restricted to
--,._

def (i,j)=ki i=floor((sqrt(1+8*k)-l)f2); nonnegative integers

j=k-i; end decoding;

SETL-5 9-18

Dualities

Some operations which are complementary can be defined as

fields. The similarity-substitution package is a good example:

def D = Pl'\,P2; if Pl and P2 are similar then D=their correspondence

else D=false; end='\,;

def Pl'\,P2=D; if D~false then Pl = application of D to P2

else P2 = n; end'\,=;

Given the meanings of similarity, correspondence, and substitution

defined on page 3 , then Pl'\,P2 is a field.i If Pl=> P2 is a rule

in some transformation (like the macro processor), and a third

pattern Fis similar to Pl then F'\,P2 = F'\,Pl will cause F to

assume ;i. ts transformed value .

Try, for example: F=(x*(y-q)+x*q)-x*z, Pl=(a-b)+b,

and P2=a. After F'\,P2=F'\,Pl, then F= x*(y-z).

Other complementary operations which demand scrutiny are:

1. parse-print, really just another similarity-substitution

2. request-return, for various allocation schemes.

3. suspend-resume, the primitives of control,

scheme;

4. swap in-swap out, (page in-page out), for use in operating systems

5. input-output , especially using coroutine control

6. ying-yang, consider all opposing actions.

Flaws with this approach (to give fair warning) include the

limitations on macros (no decisions during expansion) and the

copying of too many marred data spaces (explicitly if not

implicitly) . One may want to test whethe~ a parameter is storable

before initializing it and one should not have to state explicitly

what happens to fields which are not to be changed (see hd, tl,

floor, fract, sign, ... and try defx last x 7 (if pair(X)

then tl X else X) or try defining ~ in APL so (1 l ~ M)+E works).

• l

1

Final disclaimer:

I make no claim that any of the SETL-like statements

are legal SETL statements. I have assumed that the, reader

is familiar with SETL, APL, Algol, PL/1, LISP and Algebra.

GLOSSARY

assertion - a property of a program which is in question

assumption - properties which the data for a program is

assumed to have

bit - any predicate which is a field. True and fa!se conform to it.

block - a sequence of statements each followed by a semicolon

commute - two adjacent valid statements commute if reversing

their order has no net effect

conformable - a trievable expression Eis conformable to a

storable expression S whenever S=E is a valid statement

conforms - a value which may be stored into a register

and retrieved intact conforms to it

constant - an expression which represents a particular value

constant space - the data space of all constant functions;

it is a subspace of any other data space

contains - every function contains its subfunctions

co:::-respondence - a mapping from parameters to phras,es

data base - that (smallest) data space of which each data space

of a defined function is a subspace

data space - the equivalence class of a function under isomorphism

dead - a data space which is.not live

defined function - a function for which value(function)• is a

field, where value() is defined by:

macro X=value(Y) ;; X=Y;; macro value(X)=Y;;;

equivalent - two statements are equivalent if replacing a valid

occurrence of one by the other has no net effect

expandable - a statement is expandable if either it is primitive

or every statement generated in processing it is expandable

expression - any phrase at a level lower than statements

extent of a program - assertions posed but not intended

i
I
I

i
l

SETL-59-20

field - a retrievable register which is restorable

file - a register which can be assigned a series of conformable

values and later spew them out (subject to a transfer function)

finalization - assigning parameters their computed values after

a definition

function - a mapping in terms of program variables

generated statement - each statement produced by the expansion

of a macro definition

independent - data spaces 0
1

, ... ,Dn are mutually independent

(D
1
1 ... In) if D. overlaps D. implies i=j

n 1 J
initialization - evaluation of p~rameters on entry to a protected

definition

intent 0f a program - some arbitrary collection of a.ssertions

about the program and assumptions about the data

isomorphic functions - functions which are subfunctions of

each other

live - a data space is live if marring it would have a net effect

macro - any scheme which permits the definition of abbreviated

statement forms; the naive (or holy) macro scheme in particular

marred - not safe

mashed by a block a data space for which every subspace is

either marred by the block or dead on entry to it.

naive macro definition - _a macro scheme which depends only on

similarity and substitution with very few bells and whistles

net effect - a property of modifications to a valid program.

The modified version is valid if and only if the modification

has no net effect.

overlap - two data spaces overlap if some common subspace is live

parameter - a quantified name in a naive macro definition which

is used as a substitution point

pentachotomy ~aw - For any two data spaces A and B, exactly on~

of the following relations properly holds:

1. A=B , some data space
2. Ac B, A is a subspace of B, properly if A t- B
3. A~B, A contains subspace B, properly if At- B
4. A I B, A and Bare independent, properly if neither AcB nor BcA.
5. AX B, A and B overlap, properly if neither Ac:B nor Be A.

SETL-59 -21

phrase - any syntactically well formed sequence of names

and symbols in a program

2rogram variables - a countable set of names each of which

has an associated value at any particular time. The

primitive statements VAR=CONSTANr and VAR=VARIABLE

are assumed to replace this value with another.

predicate - a boolean function

protected definition - a macro scheme in which the parameters

are treated as program variables which may be initialized

before entering the definition, and finalized a.fterward

reached - point L2 can be reached from point Ll if

(true at Ll ::> false at L2) is not valid.

register - an expression which is both trievable and storable.

It may have strings attached.

restorable expression - a register Q for which Q=X is superfluous

following a valid statement X=Q.

restricted - a block is restricted to a data space if every

independent data space is safe over that block

retrievable expression - a register Q for which a superfluous

trieval Y=Q may follow Q=X, in which case therei must be some

function such that (Y=function after Q=X; Y=Q;)

is a valid assertion

safe - a function is safe between two points Ll and L2 whenever

(Vt) ((function=t at Ll) .:) (function=t at L2)) is a valid assertion

side effects - if the trieval of an expression cannot be

superfluous, then the expression has side effects.

I.e. value(expression) is not a field

similar - two phrases are similar if some correspondence

can be applied to both to make them equal

simultaneous substitution (application of a correspondence) -

the scheme of replacing each occurrence of a parameter in

a phrase with its corresponding phrase

statement a primitive form with an a priori definition,

or all but the final semicolon of a block which is similar

to the first block form of some macro definition. Three examples:

(1) X=3

(2) macro rev (VCOND) STMT;; (VCOND} ~ STMT; end rev

(3) rev (Vx c ~ A W(x}} IA(x) = B(x)

SETL-59-22

storable expression - an expression E for which the statement

E=X is expandable (X a program variable).

subfield - the subfunction relation applied to fields.

All fields are functions.

subspace - the subfunction relation extended to data spaces.

subfunction of a function - any function which is safe whenever

the given function is safe.

superfluous - a valid statement is superfluous if removing it

has no net effect. A statement is superfluous at a given

point in a program if inserting it at that point has no

net effect.
temp - a program variable (or field) which is dead before and

dead after a given block

transfer function of a retrievable expression - that function

determined by the meaning of 'retrievable'

trievable expression - an expression E for which the statement

X=E is expandable

vacuous - a field is vacuous whenever a store into it is super

fluous. E.g. value(field) is always vacuous.

valid assertion - an assertion which can be derived from

assumptions in the intent of a program.
II

II

II

data - data which complies with the intended assumptions

program - a program for which all intended assumptions

are valid

statement - an occurrence of a statement in a valid program.

value - any member of the domain of indestructible manipulable

objects of a program; the I value' operator is de:f ined by:

macro value(E) = X;; end no-op;

macro X = value (E) ; X=E;; end identity;

SETL--59-23

Approximate syntax (simple repetition denoted by (...)*)

BLOCK ::= (STATEMENT;)*

STATEMENT::= macro BFORM; BLOCK ENDING

I EXPR=EXPR

BFORM : := BLOCK

(NAME)* r BFORM 1 (NAME)*

ENDING : :=

end(SYMBOL)*

STATEMENT : :+ def SFORM; BFORM ENDING

sym def VAR=EXPR; EXPR=EXPR ENDING

defx EXPR + EXPR

SFORM : : = STATEMENT

I (NAME)* r SFORM -I (NAME)*

(defaulted)

(visual cue

(defaulted)

and so on. The alternatives for STATEMENT would best be

generated directly from the macro definitions.

References

[Dodgson 97] Charles Lutwidge Dodgson,

Symbolic Logic, Ma~millan & Co., London, 1897;

Republished: Berkeley Enterprises, New Y s:-k, 1955.

[Naur, et al. 60] Peter Naur (editor)

"Report on the Algorithmic Language ALGOL 60",

Communications of the ACM, vol. 3, no. 5, May 1960.

is ; ;)

[Schwartz 71] J. T. Schwartz, "Sinister Calls", SETL Newsletter

Number 30, Courant Institute working document, May 19 71.

[Irons 70] Edgar T. Irons, "Experience with an ExtEmsible Language,"

Communications of the ACM, vol. 13, no. 1, January 1970.

The relationships among some of the properties discussed

are shown in the following Venn diagram:

* indicates subclas.ses for which my contrived examplE:!S appear
to be contrived (3=X, meaning output X to device 3; and any
field after its trieval definition has been deleted).

An amusing account of Venn's Method of Diagrams may be found
in [Dodgson 97: 174-176) with some historical perspective.

I
I

1
I
I

,m liM.Hn
llillOH dO t!Y:U.

YEAR OF li!OUSE
1172 TZU 1981

11'-v ... ~

... ~""'

~

;,
~

·:3/

Oriental animal cycle of years, adapted from I Ching, the Book of Changes. Yang and
yin symbol· at center represents duality in much of Chlnese tradition and philosophy.

