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Assignment statements in procedural languages 

generally include the assignment of values to 

a limited class of expressions (such as subscripted 

arrays). It is the purpose of this pa.per to 

generalize the notion of assignment by proceeding 

along the lines of Schwartz' "Sinister Calls" 

[Schwartz 71). The topics set forth below are 

motivation, technical details, and useful examples. 

The technical details include several abstract 

definitions. The useful examples include some 

surprises (like let (1 2 Vj< n I A(j} 2 A(j+l)) 

expanding into a bubble sort. 
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WHY? 

In most languages certain constructs select parts of a data 

structure but values cannot be assigned to these parts. For 

example, the APL assignment '(1 1 ~ M) + E' should clearly 

mean 'assign the vector E to the diagonal of the matrix M'. 

Unfortunately APL permits only names and subscripted arrays to 

be assigned values. Any selection expression should .be permitted 

because otherwise a design rule called 'programming generality' 

is violated: a construct should be permitted whenever it makes 

sense. 

The designers of Algol 60 defined the for-statement in the 

following way: 

"Step-until-element. A for element of the form 

A step B until C , where A, B, and C, are arithmetic 

expressions, gives rise to an execution which ma.y be 

described most concisely in terms of ·additional Algol 

st.atemenls as follows: 



V := A ; 

Ll: if (V-C) x sign (B) > 0 then go to Element E~xhausted; 

Statement S ; 

V := V+B 

go to Ll ; 

where Vis the controlled variable of the for clause and 

Element exhausted points to the evaluation according to 

the next element in the for list, or if the step-until

element is the last of the list, to the next statement 

in the program." [Naur et al. 60: 308) 

They had no idea at all that this definition had any flaws 

(so says Perlis). (What does 'for A[NEXT] + 1 step INC until 100 do;' 

mean where NEXT and INC are parameterless integer procedures? 

How many times are these procedures to be called? The intuitively 

consistent definition would call the procedures once each time 

the loop is to be executed.) Unfortunately, implementers took 

the definition literally. A verbatim implementation of the 

definition would require that the label 'Ll' not be used in 

certain places because the definition uses it. The macro 

expansion defined in this paper would treat such dE~finitions 

in an intuitively consistent fashion. 

HOW? 

The technical details of various macro schemes are presented 

below. There will be many neologisms defined in this paper. 

As Dodgson once remarked, " ... any writer of a book is fully 

authorized in attaching any meaning he likes to any word or 

phrase he intends to use". [Dodgson 97: 165) The meanings 

of these neologisms will appear below in logical order and 

in the glossary in alphabetic order. 

Blocks, statements, and expressions are all syntactic classes. 

A block is a sequence of statements each followed by a semicolon. 

In some of its uses it may be followed by an ending comprised 

of zero or more appropriate visual cues. Since the null string 

is not a statement, two semicolons in succession mark the end 

of a block. Statements include assignment statements, 
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go to statements, macro definitions, conditional statements, and 

generally anything which is defined by a macro definition. 

Expressions are constants having a priori values, ~~ogram variables 

which hold them, and anything which is defined by some definition 

of assignment. The meanings of VAR=CONSTANT and VAR=VARIABLE are 

given a priori. 

The naive macro scheme is defined in terms of the notions of 

similarity and simultaneous substitution. A parameter is a name 

which if related to the name of a syntactic class is assumed to be a 
member of that class (BLOCK,STMT, ... ); otherwisef it is assumed to 
be an expression. A correspondence is a mapping from parameters 
to expressions. Such a mapping can be applied to a phrase by 

replacing each parameter in the phrase by its corresponding 

expression. This is called simultaneous substitution. Two phrases 

are similar if, for some correspondence, they are identical under 

simultaneous substitution, applying the correspondence to each of 

them. This meaning is perhaps too general -- successive restrictions 

which are acceptable are: 
(1) no parameter occurs in both phrases, 
(2) one of the phrases has no parameters, 
(3) each parameter occurs exactly once in the other phrase. 

The uses of similarity in the various macro schemes below all 

comply with these restrictions. 

The processor for the naive scheme must recognize statements 

of the form 'macro BFORM; BLOCK ENDING', remember them and process 

other statements by finding definitions for them in which BFORM 

and 'STATEMENT;' are similar blocks. The correspon,1ence which 

makes them similar is applied to BLOCK and each statement of 

the resulting block is generated. Statements for which.the macro 

processor has no definition are not processed by it any further. 

Each generated statement is processed in turn. The following 

statement should make naive a synonym of macro: 

macr~ naive BFORM; BLOCK ENDING;; 

macro BFORM; BLOCK ENDING; end naive 

It should be included in a test deck for any implementation. 

A statement is expandable if it has an a priori meaning or if 

each statement generated by its macro expansion is expandable. 

Let X be a program variable. Then an expression Eis trievable 

if the statement X=E is expandable. It is storable if E=X is 



expandable. A register is any expression which is both 

trievable and storable. 

The intent of a program is a collection of intended assertions 

about the program and assumptions about the data. 1\.n assertion 

is valid if it can be derived from these assumptions. A 

program is valid if each intended assertion is valid. 

The data is valid if it complies with the assumptions. A 

statement in a program is valid if it is expandable and the 

program is valid. The assertions posed but not intended may be 

called the extent of the program. (E.g. "this program requires 

at most ... "). An optimizer will modify a program in such a 

fashion as to influence its extent without damaging its validity. 

Such a modification has no net effect -- if the original 

program is Vqlid only when the modified version is valid. 

A statement in a valid program is superfluous if removing it 

has no net effect. Another statement is equivalent to it if 

replacing it with the other statement has no net effect. Two 

adjacent statements in a valid program commute if reversing 

their order has no net effect. 

Every program language has a domain of values V, which are 

indestructible, a family of mappings from Vn into V, and a 

countable set of program variables, each of which may assume 

any value in the domain. Given program variables XJ , ... ,X and 
. n 

a mapping f: Vn-+ V, then f(X 1 , ... ,xn) is a function which may 

or may not have a simple representation in the programming language. 

A function f(x1 , ... ,Xn) is safe between points Ll and L2 in 

a program if the assertion is valid that (Vt) ( (f (x
1

, ... ,Xn) =t at Ll) 

~ {f(x1 , ... ·,xn)=t at L2)). It is safe over any phrase which has 

one entry point and one exit point if it is safe between those 

points. A constant is a function which is safe between any two 

points in the program. A function is a subfunction of another if it 

is safe whenever the other is safe. 

A trievable expression Eis conformable to a storable expression 

S whenever S=E is a valid statement. Let X and Y be program 

variables, and let Q be a register. X conform~ to Q whenever X=Q 

is superfluous following a valid statement Q=X. Whenever Y=Q is 
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superfluous following Q=X and, for some function f(X1 , ... ,Xn), 

the assertion that Y = f(X 1 , ... ,Xn) is valid following 

(Q=X; Y=Q;), then Q is retrievable, and f(X
1

, ... ,x) is its n 
transfer function. (X may or may not be among x1 , ... ,Xn.) 

A register Q is restorable whenver the statement Q=X is 

superfluous following a valid statement X=Q. Wheneiver Q is 

also retrievable, it is a field. 

consider the following trieval and storage operations: 

macro X=value(Y) ;; X=Y; end =value; 

macro value(Y)=X;; end value=; 

A trievable expression Eis a defined function whenever value(E) 

is a field. In assertions, references to the transfer function 

f(X 1 , ... ,Xn) of value(E) may be abbreviated as E or as Xi 1 ... Xik ~ E 

should xi 1 , ... ,Xik not be explicitly named in E. If value(E) 

is not a field, then Eis said to have side effects. 

Two functions are isomorphic if each is a subfunction of 

the other. Theorem: Isomorphism is an equivalence relation. 

The data space of a function is its equivalence class under 

isomorphism. Any property of functions which is preserved under 

isomorphism applies equally well to data spaces. Data spaces 

may be safe, constant, equal (isomorphic), subspaces (subfunctions), 

etc. If every common subspace of two data spaces is a subspace 

of some particular common subspace, then this particular subspace 

is their intersection, (which is uni~uely determined). The union 

of two data spaces has a similar meaning. Theorem: If <X,Y> is 

the pairing function (CONS in LISP) and F,G are functions, then 

the union of their data spaces i~ the data space of ~,G>. 

Theorem: The closure of the set of all defined functions of a 

valid program under union and intersection is a lattice over~, 

the subspace relation. The superior node of this lattice is 

the data ba3e of the program and the inferiqr node is its constant 

space. Two data spaces are independent if their intersection is 

the constant space. Otherwise they overlap. We write 0 1 1 ••• Inn 

to mean that 0 1 , ... ,D
0 

are mutuallf independent data spaces. 
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A block is restricted to a data space if every independent 

data space is safe over the block. A data space is live at 

some point in a program if putting some block restricted to 

that data space at that point would have a net effect. It is 

dead otherwise. A data space is marred by a block if it is 

not safe over the block. If every subspace of a data space 

is either marred by a block or dead on entry to the block, 

then that data space is mashed by the block. Point L2 in a 

program cannot be reached from point Ll if (True at Ll:, False at L2) 

is valid. 

Theorem: A data base is dead at some point in a program if 

it is mashed before any defined function is trieved for which 

the- data base is a subspace of the given data space. 

These observations may be amusing: 

(1) A field F may be made safe over a block by using the macro 

macro ~ save F across BLOCK;; -l TEMP 

TEMP=F; BLOCK F=TEMP; end save; 

(2) Functions inherit properties of their data spaces; fields 

are functions; 

(3) The constant space-is forever dead; 

(4) The program variables are mutually independent fields 

( 5) A field may be used as a temp in a block if it is dead 

before and dead after the block 

(6) An optimizer or a garbage collector may deallocate 

a dead field unless it is a constant (never throw nil away!) 

Every time a garbage collector is invoked, it must be 

restricted to some data space which is dead at the point 

of invocation. 

neomacro definitions 

Naive macro definitions have a very simple interpretation 

but a very complicated unintuitive bi::-havior. Not only al!"e so • .1e 

expressions evaluated many times, but local names may interfere 

with the interpretation in some common cases. We will first 

modify the naive expansion scheme to include provision for local 

variables, then we will invent a new scheme of protected defini
tions which provides for global variables, frozen variables 
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and shorter expansions as well. These definitions can be 

compiled like procedures or expanded in line. Later we will 

define two more schemes, the symmetric 'definition (which is 

just.an abbreviation) and the expression definition (which 

connects function definition to statement definition). 

All these inventions will be defined in terms of naive macros. 

In order to provide for the introduction of unique names to 

an expansion, we make a block similar to a form (FORM) also similar 

to ~. FORM -, VARS where VARS is a list of names not 

occurring in FORM. We make these names correspond to variable 

names uniqteto that expansion: names guaranteed not to occur 

elsewhere in the program. Consider this definition, call, 

and possible expansion: 

macro I- do S; -f LO; LO: S; go to LO;; 

do do LO+ l; 

L0607: L0608: LO+ l; go to L0608; go to L0607; 

Indeed the names correspond in an intuitive way. This device 

is analogous to the local statement of IMP [Irons 70:33]. In 

fact, the local statement could be defined by: 

macro r local VARS in BLOCK; "i Doit; -
macro ~ Dolt; -I VARS; 

BLOCK; end Dolt; 

Dolt; end local; 

An expression f(e 1 , ... ,en) is similar to a form f(x1 , ... ,xn) 

when each subexpression e. corresponds to a variable x. of the 
J J 

form. Local variables y 1 , ... ,Ym and global variables z
1

, ... ,zk 

are augmented to the form by writing z 1 ... zk r- f (x1 ~ ... ,xn) 1 y 1 .. ·Ym 

and making these automatic correspondences: 

X• . 
J 

. 
z, 

J 
Y· J 

e . 
J 

z. 
J 

y~Xp 
J 

as it was j = l, ... ,n 

global parameters made explicit j=l, ... ,k 

local names become unique .to an expansion. 

The naive expansion of the definition 

macro z 1 ... zk ~ f(x 1 , ... ,xn} ~ y 1 ... ym; body; 

may take place as though all the parameters were stated explicitly. 



The global parameters z1 , ... ,zk are global in the dynamic sense: 

they are those variables in use at the call (as in lu>L). Any 

variables of the body which are not in the form are global in 

static sense: those in use at time of compilation of the 

definition (as in Algol 60). These globals will have somewhat 

more use in terms of protected definitions. A macro definition 

of the new kind is called a protected definition. It has 

two forms, implicit and explicit (the former being more common) , 

both defined as follows: 

macro def STMT; BLOCK end CUES;; 

def STMT; Xi 1 ... Xik r BLOCK -, Xf1 ... Xfm end CUES; 

(where xi
1

, ... ,Xik are live before BLOCK and Xf 1 , ... ,Xfm 

are marred by BLOCK) end def STMT; 

macro r def STMT; Xi1 ... Xik ~ BLOCK -! Xf1 ... Xfm; 7 T1 ... Tn; 

macro r STMT; --f T1 ... Tn;; 

(V XiJ. unless suppressed) Ti.=Xi.; 
J J 

call or expand TBLOCK; 

(V Xf. unless suppressed) Xi.=Ti.; end ·sTMT; 
J J J 

(where BLOCK is similar to TBLOCK wherein the variables 

x1 , ... ,Xn of STMT correspond to the distinct variables 

T1 , ... ,Tn. If both Ti.=Xi. and Xi.=Ti. are generated, 
J J J J 

then those assignments are suppressed which would cause 

subexpressions of Xi. to be trieved twice or assigned 
J 

twice) end def f- -i ; 

Certain initializations and finalizations are suppressed whether 

or not they have a net effect on thE- program. These suppressions 

are necessary in order that no definition be expanded more often 

than is intuitively reasonable. Perhaps this definition can 

be worked out in a cleaner fashion so that no statements need 

be suppressed. At any rate, the action is: initialize some 

parameters, call the routine or expand the definition, and 

finalize some parameters. This works for definitions of= as 

well as for many other statement forms. I assume that the explicit 

definition initializes and finalizes in the orders ~Jiven explicitly; 

but that the implicit definition carefully defaults these orders to 

preserve their order in STMT (e.g. def A(J)=X; X JA r ... 1 A;). 
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The following definitions may clarify the use of the protection 

scheme. Then we will prove some theorems about it. 

def RO= <Rl, R2>; Rl R2 I- call LISP.CONS; ~ RO; 

def Rl=hd RO; RO r call LISP.CAR; ~ Rl; 

def R2=tl RO; RO I- call LISP.CDR: -{ R2; 

which are necessarily primitive. And the storage definitions: 

def <A,B>=C; A = hd C; B = tl C .. 
I I 

def hd C = A; C = <A, tl C>;; 

def tl C = BJ: C = <hd c, B>;; 

are not. In the primitive case the variables are the names 

of fixed locations (like machine registers) and the syst~m is 

expected to use them. Of course, such a variable can be made 

into a temporary by saving it in another temporary and restoring 

it later. Good optimization can make statements like 

<x,Y>=<Y,X> boil down to T=X; X=Y; Y=T; but the optimizer 

must know the trivial identities involving CONS, CDR, and CAR 

(following CONS, both CAR and CDR are superfluous). 

Assignment itself can be defined: 

def 

def 

A+ B; 

A-+ B; 

def A +-+B; 

A= 

B + 

B •• 
I I 

A •• 
I I 

<A,B> -+ <B ,A>;; 

each of which does the intuitively correct action. 

composability theorem: A statement f(e 1 , ... ,en) involving 

subexpressions e
1

, ... ,en is expandable using the protected 

definition 

def f (x1 , ... ,xn); INITIAL ~ g (x
1

, ... ,xn) i FINAL; 

provided that: 

( 1) INirIAL c· {x - le. is trievab:.e} 
- J J 

(2) FINAL C {x. I e. is storable} 
J J 

(3) g (T 1, ... , T n) is expandable with Tl, ... ,Tn being 

program variables. 

[Proof: the generated naive macro definition is: 
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macro f(x 1 , ... ,xn) -t T1 ... Tn 

(Vx. c INITIAL unless suppressed) T.=x.; 
) ) ) 

g(Tl, ... ,Tn) 

(Vxj c FINAL unless suppressed) xj=Tj; end f; 

If Tj=ej is generated in the second line, then xj c INITIAL, 

and e. is trievable (by hypothesis 1), hence T.=e . .is expandable. 
) ) ) 

Likewise, if e.=T. is generated in the fourth line, then x.cFINAL, 
) ) ) 

and e. is storable (by hypothesis 2), hence e.=T. is expandable. 
J J J 

The third line is expandable by hypothesis, hence f(e 1 , ... ,en) 

is expandable according to the definition of the term.] 

In point of fact, the definition of assignment is ambiguous. 

Consider the two definitions and assignment: 

def y = f(x
1

, ... ,xn); call f;; 

def ( ) - w · call g ,· ,· g zl' .•• , zm - ' 

g(d
1

, ••• ,dm) = f(e
1

, ••• ,em);; 

which we assume to be expandable. Which definition is expanded first? 

Both orders are shown below: 

/* g first*/ 

( Vi I . . . ) z . =d . ; 
l. l. 

/* w = f(e 1 , ... ,en) */ 

( V j I ... ) x . =e . ; 
) ) 

call f; 

w = y; 

(Vjl-·-> 
call g; 

e .=x.; 
) ) 

(Vi I ... ) di = z. ; 
l. 

/* f first*/ 

l ___ 

(\lj1 ••• ) X, -· e.; 
) ) 

call f; 

/* g(d1,··· ,dm)=y */ 
( \Ii I . . . ) z . =d . ; 

l l. 

w=y; 

call g; 

(Vil ••• ) d. =z.; 
l. l. 

(Vjl ••• ) e.=x.; 
) ) 

assuming that y is not initialized by f and w is not finalized by g. 

The expansions are almost alike: only initializations of left-hand 

variables and finalizations of right-hand variables are out of place. 

Stated as a theorem, this observation become3: 



Theorem: If no protected definition. used in the 

expansion of a statement initializes left-hand 

variables nor finalizes right-hand variables, 

then the order of expanding them is immaterial. 

(Proof omitted]. 

But the hypotheses of the theorem are rather commonly violated 

(cf. the definition of hd C =A). Which order is to be 

preferred? Initializations are frequently commutable because 

they rarely involve side effe1ts. The finalizations might be 

made in left to right order (so f would be expanded first). 

If the choice depends only upon the sequential order of the 

definitions, then further analysis becomes cumbersome: 

(what does '<A,B>=(A+<3,4>) mean when+ is defined by 

def X=(Y+Z); X=Z; Y=Z;; 

Will A be 3 or <3,4>?) 

If g is expanded first then initializations are made from left 

to right and finalizations from right to left, completing the 

evaluation of (X+<3,4>) before assigning X=3. This might prove 

to have more intuitive appeal. If within a definition, the 

finalizations are made from left to right, then <X,X,X>=<l,2,3> 

is equivalent to X=3. This achieves the intuitive rule of 

evaluating subexpressions completely before finalizing cognate , . .. -

expressions. Then J=J+(J+3)+J is equivalent to J=J+6. 

Furthermore, <sign(X), abs(X)>=<-1,12> is equivalent to X=-12 

unless X=O. Many wonderful theorems about the preservation 

of properties when fields are independent lurk in dark corners 

waiting to be discovered. (1:30 A.M.) 

In many cases the storage and trieval definitions 0f an 

expression are remarkably alike. Two abbreviations which exploit 

this symmetry are: 
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(1) macro sym def FORMl=FORM2; STMT;; 

where 

def FORMl=FORM2; STMT; end trieval; 

def FORM2=FORM1; rey STMT; end stora9e; end~ def; 

macro rev EXPRl=EXPR2;; EXPR2=EXPR1; end rev= 

macro rev if COND then STMTl else STMT2;; 

if. COND then rev STMTl else rev STMT2; end rev if; 

macro rev (VCOND) STMT;; (VCOND) rev STMT; end rev V; 

(2) macro r defx FORM = EXPR; ~ VAR; 

sym def VAR=FORM; VAR=EXPR; end defx; 

macro ~ defv FORM = EXPR; 1 VAR; 
def VAR = FORM; VAR = EXPR; end (FORM)=; 

Now, conditional expressions are defined by_:_ 
macro VAR = (if COND then EXPRl else EXPR2) ;; 

sym def if COND then VAR=EXPRl else VAR=EXPR2; ~(if); 

And these examples bear some interest: 

sym def stk X = Y; X = <Y ,X>; 

sym def X ~ Y = Z; <X,Y> = <Z,X>; 

defx A max B = (if A < B then B else A) ; 

de fx parts = <RANK, RI:IO, DEL, ABASE , VBASE > ; 

defx tasks= ES!. JOBFILE; 

defx A[J] = (if pair(J) then <A[hd J], A(tJ~ J]> else A(J)); 

The sym def statement form is just an abbreviationi· but the defx 

statement form is the key definition which permits expression 

macros. Of course, it depends heavily on the notion of assignment. 

A register is a file if every value stored in it may be 

retrieved once. If all values stored in a file have been retrieved, 

the file is empty and it should not be trieved until more values 

are entered. For each file type, there should be a field which 

defines empciness of the file. For stk we might write: 

defv stk X be empty 

def stk X be empty= b; 

= -, pair (X) ; 

if b then X=0 

else if -1 pair(X) then error;; 
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Then stk X may be cleared by writing 'let stk X be empty'. 

If the file is not supposed to be empty at some point, then 

'let, (stk X be empty)' generates an error if it is. 

This is equivalent to 'if stk X be empty then error' which 

verifies that the file is not empty. Remark: the occurrence 

of 'stk X' in 'stk X be empty' generates neither storage 

nor trieval expansions for 'stk X'. 

The census conditions on a file are easily described by 

defining a file operator ( v') which counts all values entered 

and retrieved. iThe second definition is the well-formedness 

condition for a census (the first gives meaning to assertions): 

def assert b; if 7 b then error; 

defv ·c /\. > o = ('tJy e range(C) I y ~ 0); 

def X = F ✓ C; X=F; C(X)=C(X)+l; assert C /\.> 0; 

def F ✓c = X; F=X; C(X)=C(X)-1; assert C I\ • .::_, 0; 

def b = F ✓c be empty; b=F be empty; assert b:=(Vye::range(C) ly=0);; 

de f F vC be empty = b; F be empty = b; 

if b then C = nl 

else assert (~ye:: range(C) !y>0) ;; 

With these definitions, if FILE is a file and CENSUS 

is a temp then FILE ✓ CENSUS is a file which may be used in 

place of FILE and which incorporates the requirements of files. 

A quantity Fis a file if and only if FIC may replace every 

occurrence of F with no net effect on the program, ·c being a temp. 

A priority queue is a file which always yields its smallest 

entry. The following definitions make er A a priority queue. 

defer A be empty= b; if b then A=nl else if A=nl then error;; 

defv eg_ A be empty = (A=nl) ;; 

def ~ e,g_ A=X -1 b,j ,k; b=true; j=#A:t-1; A(j)=X; 

(while b /\ (j>l) doing j=k) k = j72; let(A(k)~(j)) nPe -, b;; 

end def; 

def ~ x=eg_ A -,b,j ,kiA(#A) nee (A(l) nee X) = Q; j=l; b=true; 

(while b/\j<#A72 doing j=k) k=2*j; 

if k<#A then if A(k+l) _s A(k) then k=k+l; 

let (A(j) ~ A(k)) ~-. b;; end de_f; 
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The~ operator was defined earli~~- It permits a register 

to be saved before it is assigned (X nee OLDX=NEWX; ) 

A generalized deque can be built rather easily if the symmetric 

sum operator is defined on atoms (or any other associative and 

commutative operator for which A ED A= n and A ED'2 = A; n is most 

convenient but any particular value can'be substituted; 

if At B then the exact value A ED Bis not important.) 

Genuinely symmetric lists will be defined, and stack operations 

will be permitted on either end. LINK and VAL are two SETL 

functions. 

def A to B; LINK(A) = LINK(A) ED B; LINK(B) = LINK(B) ED A; 

end merge/break; 

~ SA be empty = (LINK(A)=Q) ;; 

def ~Abe empty =b; if b then A=newat 

else if LINK {A) =n then error;; 

def r X= ~ A"1T; X=VAL(A); A~ T=LINK(A); A to T; end pop; 

def ~ S A = X -fT; A nee T=newat; VAL (A) =X; A to T; end push; 

Then a function walker can look like: 

let (S OUT be empty) A (s NEXT be empty) ; S NEXT=TOP; 

{while, 9_g_ NEXT be empty) 

begin TEMP=9SI NEXT; £g_ OUT=TEMP; 

if atom(TEMP) then continue while; 

let GEN be empty; LEFT= GEN; 

{V<x,y> e TEMP) S GEN= y; 

GEN to NEXT; TEMP=s LEFT; NEXT=LEFT; end while; 

The deque in GEN was built up and flipped around with ~o effort. 
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HUH? 

Several surprises have turned up. It was thought that only 

a few expression types could reasonably be defined as fields. 

This is not the case. Storage definitions have been found which 

make fields out of many constructs in SETL and APL.. The first 

and foremost is a boolean operation, membership: 

def xcS=b; if b then S = S with x 

else S = s less x; 

Assigning a truth value to a predic~te in this case causes the 

predicate to assume that truth value. (A bit is any predicate 
which is a field to which true and false both conform.) We can 
write 'let, (3cA)' by declaring: 

def let b; b=true;; 

def, b=z; b =, z;; 

In principle, A can be viewed as a bit vector and the statement 

becomes A
3 

= false. In practice, however, such vi,~wpoints are 

ignored. A statement like 'let PRED' means "make PRED become 

true -- I care not how". An alternative definition would have 

changed x instead: 

def xcS=b; if b then x = min(S) 

else x = max(S)+l; 

which is certainly a field when Sis a set of inte9ers. 

The more general definition is usually to be preferred. 

Yet another definition makes xcS a field (because i = ts is 

superfluous afters= ts). 

def xcS=b; if b then x=tS else x=newat 

where ts is a random element of Sand newat is always a value 

distinct from all values previously generated. 

Whenever the value of a field must be changed, the storage 

operation may make random changes. The definition of flip aids 

in describing this phenomenon: 

def b=flip; b=even(SEED); SEED=MODULUS!RC+RA*SEED;; 

which is a random condition. Assume that T=flip is superfluous 



whenever T is dead (i.e. SEED is not a variable of contention 

in the intent of the program). The definition of either 

permits a random choice between two variables: 

defx (either A or B) + (if flip thE:!!_ A else B); 

Then the logical connectives become: 

def a/\ b=c; if c then <a,b> = <true,true> 

else if al\ b then (either a or b)=false_;; 

defx a Vb = (--i a)/\ (--i b) ; 

defx a:,b = (-, a) V b; 

defx a-:f b = (aA-, b) V (b A, a); (proof, anyone?) 

The set theoretic operations can be defined as fields: 

def A int B = z; (VxcAuBuZ) xcA /\xcB = xcZ;; 

def A u B = z; ( VxcA~ByZ) xe::AVxcB = xcz ;_; 

def A B = z; (Vxe::A~B~Z) xe::A :JXCB = -, xe::Z;; 

def A C B = Z; (VxcA ~ B) xeA .:> xeB = z .. 
I I 

def A e B = Z; ( VxcA~B~Z) (xcA) -:f (xcB) = (xcz) ; end sym diff; 

And they might be used in: 

let (x c A int B) /\ -, ((y c A ~ C) Vb); (deterministic) 

let (x s A int B) ::::> ((y C A ~ C) V b) ; (random changes) 

The storage definition of quantified expressions leads to some 

intriguing results. Let VCOND be any phrase like VxcS or 12Vj<#A; 
• 

and let 3[COND] correspondingly be like 3[x]cS or 12 3[j:l<#A. 

The storage definition for universal quantification may then be: 

macro (VCONDIPRED)=b;; 

if· b then (while '3 [COND] I -a PRED) let PRED 

else error; end V; 

macro (3CONDIPRED) = b;; -t (VCOND!-,PRED) = b;; 

Naively found, a violation of PRED is corrected, then the search 

starts over. The transitive closure of a set Sunder a function 

can be defined: 

macro r C= f closure S; ~ x; C=S; let (VxcS!f(x)cS); end closure; 



SETL--59' -1 7 

A sequence A can be sorted by simply demanding: 

let (1 <Vj < JS I S(j) <S(j+l)); -- - - -
if the earlier definition of 2 is accepted: 

def X2,Y=b i if blX_sY then <X, Y>= <Y ,X> i end 2. ; 

Setting this "sorted" bit generates the bubble sort but a clever 

enough optimizer would convert that to a radix sort .. The tree 

sort (or heap sort) can be given in a few lines: 

(l<Vm~n) ~ (l<Vj_sm) IA(j) 2, A(j+2)i 

(n>Vm>l) let A(l) ~ A(m)/\(1< Vj2 mf2l (A(2*j) rA<mL2*j+l))2A(j)) i 

but many superfluous tests are made. Maximum and minimum are 

defined by: 

defx X r Y = (if X < Y then Y else X) i 

defx XL Y = (if X < Y then X else Y) i 

Remark: X r y = z has transfer function z r (X L y) • 

Various arithmetic expressions can be fields. They are tabulated: 

definition 

def sqrt(R)=Zi R=Z**2ii 

def sign(R)=Zi R=sign(Z)*abs(R) ;; 

def abs(R)=Zi R=sign(R)*abs(Z) ii 

def floor(R)=Zi R=floor(Z)+fract(R) ;; 

def fract(R)=Z; R=floor(R)+fract(Z) ;; 

def M mod N=Z; M=M-(M mod N)+(Z mod N) ;; 

transfer function (on reals) 

abs(Z) 

(if R=O then O else sign (Z) 

(if R=O then O else abs(Z)) 

floor(Z) 

fract(Z) 

z mod N 

def M mod N=Z; M=M-(M mod N)+Z;; Z mod N but MfN X M mod N 

def MfN=Z; M=N*Z+(M mod N) ii Z if Z :,0, otherwise? 

def even(M)=b; M mod 2=(if b then O else l)ii b restricted to true,fal~ 

def V V=Z; V[Z) = V[VV]ii Z restricted to permutationt 

where t and Ware the grade up 

and grade down operations of APL. 

def V j_ W = Ni W = VT N;; (x/V) IN 

where ..J... and T are encode and decode of APL 

defv (i,j) = j+{i*(i+l)f2) ii i,j,k restricted to 
--,._ 

def (i,j)=ki i=floor((sqrt(1+8*k)-l)f2); nonnegative integers 

j=k-i; end decoding; 
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Dualities 

Some operations which are complementary can be defined as 

fields. The similarity-substitution package is a good example: 

def D = Pl'\,P2; if Pl and P2 are similar then D=their correspondence 

else D=false; end='\,; 

def Pl'\,P2=D; if D~false then Pl = application of D to P2 

else P2 = n; end'\,=; 

Given the meanings of similarity, correspondence, and substitution 

defined on page 3 , then Pl'\,P2 is a field.i If Pl=> P2 is a rule 

in some transformation (like the macro processor), and a third 

pattern Fis similar to Pl then F'\,P2 = F'\,Pl will cause F to 

assume ;i. ts transformed value . 

Try, for example: F=(x*(y-q)+x*q)-x*z, Pl=(a-b)+b, 

and P2=a. After F'\,P2=F'\,Pl, then F= x*(y-z). 

Other complementary operations which demand scrutiny are: 

1. parse-print, really just another similarity-substitution 

2. request-return, for various allocation schemes. 

3. suspend-resume, the primitives of control, 

scheme; 

4. swap in-swap out, (page in-page out), for use in operating systems 

5. input-output , especially using coroutine control 

6. ying-yang, consider all opposing actions. 

Flaws with this approach (to give fair warning) include the 

limitations on macros (no decisions during expansion) and the 

copying of too many marred data spaces (explicitly if not 

implicitly) . One may want to test whethe~ a parameter is storable 

before initializing it and one should not have to state explicitly 

what happens to fields which are not to be changed (see hd, tl, 

floor, fract, sign, ... and try defx last x 7 (if pair(X) 

then tl X else X) or try defining ~ in APL so (1 l ~ M)+E works). 
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Final disclaimer: 

I make no claim that any of the SETL-like statements 

are legal SETL statements. I have assumed that the, reader 

is familiar with SETL, APL, Algol, PL/1, LISP and Algebra. 

GLOSSARY 

assertion - a property of a program which is in question 

assumption - properties which the data for a program is 

assumed to have 

bit - any predicate which is a field. True and fa!se conform to it. 

block - a sequence of statements each followed by a semicolon 

commute - two adjacent valid statements commute if reversing 

their order has no net effect 

conformable - a trievable expression Eis conformable to a 

storable expression S whenever S=E is a valid statement 

conforms - a value which may be stored into a register 

and retrieved intact conforms to it 

constant - an expression which represents a particular value 

constant space - the data space of all constant functions; 

it is a subspace of any other data space 

contains - every function contains its subfunctions 

co:::-respondence - a mapping from parameters to phras,es 

data base - that (smallest) data space of which each data space 

of a defined function is a subspace 

data space - the equivalence class of a function under isomorphism 

dead - a data space which is.not live 

defined function - a function for which value(function)• is a 

field, where value( ) is defined by: 

macro X=value(Y) ;; X=Y;; macro value(X)=Y;;; 

equivalent - two statements are equivalent if replacing a valid 

occurrence of one by the other has no net effect 

expandable - a statement is expandable if either it is primitive 

or every statement generated in processing it is expandable 

expression - any phrase at a level lower than statements 

extent of a program - assertions posed but not intended 
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field - a retrievable register which is restorable 

file - a register which can be assigned a series of conformable 

values and later spew them out (subject to a transfer function) 

finalization - assigning parameters their computed values after 

a definition 

function - a mapping in terms of program variables 

generated statement - each statement produced by the expansion 

of a macro definition 

independent - data spaces 0
1

, ... ,Dn are mutually independent 

(D
1
1 ... In) if D. overlaps D. implies i=j 

n 1 J 
initialization - evaluation of p~rameters on entry to a protected 

definition 

intent 0f a program - some arbitrary collection of a.ssertions 

about the program and assumptions about the data 

isomorphic functions - functions which are subfunctions of 

each other 

live - a data space is live if marring it would have a net effect 

macro - any scheme which permits the definition of abbreviated 

statement forms; the naive (or holy) macro scheme in particular 

marred - not safe 

mashed by a block a data space for which every subspace is 

either marred by the block or dead on entry to it. 

naive macro definition - _a macro scheme which depends only on 

similarity and substitution with very few bells and whistles 

net effect - a property of modifications to a valid program. 

The modified version is valid if and only if the modification 

has no net effect. 

overlap - two data spaces overlap if some common subspace is live 

parameter - a quantified name in a naive macro definition which 

is used as a substitution point 

pentachotomy ~aw - For any two data spaces A and B, exactly on~ 

of the following relations properly holds: 

1. A=B , some data space 
2. Ac B, A is a subspace of B, properly if A t- B 
3. A~B, A contains subspace B, properly if At- B 
4. A I B, A and Bare independent, properly if neither AcB nor BcA. 
5. AX B, A and B overlap, properly if neither Ac:B nor Be A. 
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phrase - any syntactically well formed sequence of names 

and symbols in a program 

2rogram variables - a countable set of names each of which 

has an associated value at any particular time. The 

primitive statements VAR=CONSTANr and VAR=VARIABLE 

are assumed to replace this value with another. 

predicate - a boolean function 

protected definition - a macro scheme in which the parameters 

are treated as program variables which may be initialized 

before entering the definition, and finalized a.fterward 

reached - point L2 can be reached from point Ll if 

(true at Ll ::> false at L2) is not valid. 

register - an expression which is both trievable and storable. 

It may have strings attached. 

restorable expression - a register Q for which Q=X is superfluous 

following a valid statement X=Q. 

restricted - a block is restricted to a data space if every 

independent data space is safe over that block 

retrievable expression - a register Q for which a superfluous 

trieval Y=Q may follow Q=X, in which case therei must be some 

function such that (Y=function after Q=X; Y=Q;) 

is a valid assertion 

safe - a function is safe between two points Ll and L2 whenever 

(Vt) ( (function=t at Ll) .:) (function=t at L2)) is a valid assertion 

side effects - if the trieval of an expression cannot be 

superfluous, then the expression has side effects. 

I.e. value(expression) is not a field 

similar - two phrases are similar if some correspondence 

can be applied to both to make them equal 

simultaneous substitution (application of a correspondence) -

the scheme of replacing each occurrence of a parameter in 

a phrase with its corresponding phrase 

statement a primitive form with an a priori definition, 

or all but the final semicolon of a block which is similar 

to the first block form of some macro definition. Three examples: 

( 1) X=3 

(2) macro rev (VCOND) STMT;; (VCOND} ~ STMT; end rev 

(3) rev (Vx c ~ A W(x}} IA(x) = B(x) 
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storable expression - an expression E for which the statement 

E=X is expandable (X a program variable). 

subfield - the subfunction relation applied to fields. 

All fields are functions. 

subspace - the subfunction relation extended to data spaces. 

subfunction of a function - any function which is safe whenever 

the given function is safe. 

superfluous - a valid statement is superfluous if removing it 

has no net effect. A statement is superfluous at a given 

point in a program if inserting it at that point has no 

net effect. 
temp - a program variable (or field) which is dead before and 

dead after a given block 

transfer function of a retrievable expression - that function 

determined by the meaning of 'retrievable' 

trievable expression - an expression E for which the statement 

X=E is expandable 

vacuous - a field is vacuous whenever a store into it is super

fluous. E.g. value(field) is always vacuous. 

valid assertion - an assertion which can be derived from 

assumptions in the intent of a program. 
II 

II 

II 

data - data which complies with the intended assumptions 

program - a program for which all intended assumptions 

are valid 

statement - an occurrence of a statement in a valid program. 

value - any member of the domain of indestructible manipulable 

objects of a program; the I value' operator is de:f ined by: 

macro value(E) = X;; end no-op; 

macro X = value (E) ; X=E;; end identity; 
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Approximate syntax (simple repetition denoted by ( ... )*) 

BLOCK ::= ( STATEMENT;)* 

STATEMENT::= macro BFORM; BLOCK ENDING 

I EXPR=EXPR 

BFORM : := BLOCK 

(NAME)* r BFORM 1 (NAME)* 

ENDING : := 

end(SYMBOL)* 

STATEMENT : :+ def SFORM; BFORM ENDING 

sym def VAR=EXPR; EXPR=EXPR ENDING 

defx EXPR + EXPR 

SFORM : : = STATEMENT 

I (NAME)* r SFORM -I (NAME)* 

(defaulted) 

(visual cue 

(defaulted) 

and so on. The alternatives for STATEMENT would best be 

generated directly from the macro definitions. 
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The relationships among some of the properties discussed 

are shown in the following Venn diagram: 

* indicates subclas.ses for which my contrived examplE:!S appear 
to be contrived (3=X, meaning output X to device 3; and any 
field after its trieval definition has been deleted). 

An amusing account of Venn's Method of Diagrams may be found 
in [Dodgson 97: 174-176) with some historical perspective. 
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Oriental animal cycle of years, adapted from I Ching, the Book of Changes. Yang and 
yin symbol· at center represents duality in much of Chlnese tradition and philosophy. 


