
SETL Newsletter# 71

Deducing the logical structure of

objects occurring in SETL programs.

April 17, 1972

J. Schwartz

One of the next main problems to be faced in our work

on SETL is that of optimization. This Newsletter, which

continues Dave Shield's Newsletter 45, is intended to revive

and carry forward discussion of this problem.

I shall concentrate on a particular aspect of the overall

optimization problem,that of discovering, at compile time,

the logical 'type' ior 'structure' of the objects occurring

in a SETL program. More specifically, we would like to be

able to predict the type (e.g. integer; string, etc.) of atoms

and the structure (e.g. set of strings; sequence of integers;

triple of string, integer, and set of strings; etc.) of compound objects

This information, if available, would permit many time-

consuming type-checks to be bypassed. If combined with

information concerning the operations applied to particular

objects within a program, it might in some cases make it

possible to choose special data layouts automatically. The

overall lines of an attack on the type-analysis problem will be

sketched below, under the simplifying assumption that sub-

10utines are not transmitted as arguments in the code being

analyzed; this assumption enables us to view the flow

structure of a program in an entirely static, rather than in

a partly dynamic manner.

Main subheadings:

1. A representation of the flow and operation structure

of a SETL program.

2. Detailed resolution of variable names.

3. A lattice of variable structures, and the effect of

SETL operations on the elements of this lattice.

4. A global structure-predicting algorithm.

SETL 71-2

1. A representation of the flow and operation structure

of a SETL program.

Our aim is to relate each SETL program P to an interpretable

graph involving operations on data structures, and to analyze this

graph, deducing the type/structure of each data item

appearing in P. For this purpose, we use a somewhat modified

program flow graph made up of basic blocks connected by a

successor relation. To each block there will belong a sequence

of operation items derived from the operations present in the

sec~ion of code which the block represents. A block B will be

a successor of a block B if B terminates in a conditional (or

calculated) transfer which might have Bas target. Read

statements, iterations over sets, and subroutine calls require

special consideration. First as to subroutine calls.

We consider each call

sub (a, b+c, d, ..•) ;

as an unconditional transfer to the subroutine, preceded by

a set of assignments

argl = a; arg2 = b+c; arg3 = d; etc.

and followed by a labeled second set of assignments

label: a=argl; d=arg3; etc.

A return statement within the subroutine sub is then treated

as conditional or calculated transfer having as target each of

the labels affixed in this way to a 'point of return' from sub.

Functions are treated similarly, a function invocation

f(al, ... ,an) being regarded as a subroutine call

subf(result,al, ... ,an) preceded by the initialization

result= n;
A function return

return a;

is then regarded as being equivalent to

result= a; return;

SRTL 71-3

Next consider iterations over sets. We assimilate each

iteration

(Vx e:: a) block;

to the following less specific code, which has an equivalent

effect on all variable types:

cont:

quit:

X = :}a;

if <indefinite) go to quit;

block;

go to cont;

where the conditional transfer shown has both the first

statement of block and the label quit as possible targets.

A set-former {e(x), x e:: a I C(x)} is reduced to the explicit

iteration

temp=n.R-; (Vx e:: a I C(x)} temp= temp with e(x} ;;

which defines it; and similar reductions are made for

existential and universal quantitifiers. An iteration of

the form (k < Vn < m) block; is reduced to

cont:

quit:

n = some integer;

if<indefinite> go to quit;

block;

go to cont;

Read statements, which can hardly be treated in any other

way, I propose to treat declaratively, i.e., by attaching to

each read statement a declaration giving, in the form to be

explained below, the structure of the item which the statement

will read.

These conventions allow us to represent any SETL program

by a graph consisting of blocks containing SETL primitive

operations, and terminated by a transfer to some indefinite one

of a group of possible successors. No subroutine calls, read

statements, or explicit iterations will remain in this abstracted

SE.TL 71-4

representation of a program. The primitive operations which

can occur are:

+, -, *, I, II
e, ~, 9'..!:_, representing all operations producing boolean values

~, min, abs

~' and, representing boolean operations

3, with, less (which stands also for lesf)

pow(a), npow(k,a), hd, tt .

explicit tuple- by enumeration and set-by-enumeration operations

indexing 1 f(a), f(a,b) etc. As will be seen below, the

case of a constant index is treated in a somewhat different

way from the case of a variable index.

indexing in its second form: f{a}, f{a,b}, etc.

The operations f[a], f[a,b] are treated as if they

were f{3a}, f(3a,3b), etc.

The indexed assignment f(x) = a is treated as if it

were f = f less ~f with <x,a>;

The indexed assignment f{x} = a is treated as if

it were f = f less 9-f with <x,3a>;

and the other forms of indexed assignment are treated

in corresponding fashion.

Multiple assignments are broken down to several

simple assignments.

SETL 71-5

2. Detailed resolution of variable names.

Our overall problem is to track the effect on data-object

type of each of these primitive operations. We will do this

by associating a calculated object-type with each variable

name occurring in a program. Of course, names of similar

form occurring in disjoint name-scopes are to be treated as

distinct. We will in fact wish to make an even finer resolu

tion of names than this, treating identical names as distinct

even if they occur in the same name scope, provided however

that ~he variables they designate are never
1
live

1

at the same

time. The following specific rule is proposed: Let A be a

variable name. A flow graph-edge which is part of a path

leading to a use of A which is not preceded by an assignment

to A is an edge along which A is live. Consider the subgraph

GA of the program graph G which includes only those edges along

which A is live. The strong-components (maximal strongly

connected subregions) of GA are called the A-components of G.

We introduce an individual resolved name in place of A for

each such A-component and logically identify each strong

component GA to a point. This reduces GA to a loop-free graph.

Each occurrence a of a name A along an arc of GA not belonging

to a strong-component of GA is translated into an occurrence

of a corresponding resolved name A. according to the following
J

rule: if the edge containing a is a successor of exactly one

strong-component C of GA, then Aj is the resolved name associ

ated with c. If the edge containing a is a successor of several

s:.rong components, within which A has been assigned resolved names

Aj , Ak , At , ... , then on the edge A is assigned the name

Aj or Ak or At. More precisely, we introduce yet another name

A', and proceed as if assignments A'= Aj; A'= Ak; etc.

had been encountered. The naming scheme that results is

illustrated in the following figure.

SETL 71-6

Al

A3=A2

A4

AS= A3 or

AS

exit

3. A lattice of variable structures, and the effect of

SETL operations on the elements of this lattice.

Next we outline the lattice A of structure~representing

elements which we shall use to describe the nature of variables

occurring in SETL programs. This lattice contains 'maximal'

elements representing particular types of atoms, and a unique

'minimal' element w representing the lack of all compile-time

knowledge of a variable's structure. The 'type' w may also be

thought of as corresponding to the generai SETL object, which

may be an arbitrary atom, set, or tuple. Elements of ~ which

are sufficiently complex will be identified with w; that is,

it is only when the type of SETL variables remain simple

that we will attempt to follow these types in detail.

SETL 71---7

Elementary types are:

~ (type of undefined atom); I (integer); C (character string);

B (boolean, i.e., true or false); BB (boolean string);

N (nullset); T (null-tuple); w (undefined type)

Compound types are formed from simpler types using the

following operations.

[t]

type alternation, t 1 'or t 2

set whose elements are of type t 1
i

type of known length whose components

are of known types t 1 ,t2 , ... ,tk

tuple of indefinite length whose

components are known to be of type t.

Only the alternation of elementary types will be carried

explicitly. Other alternations will be reduced to simpler,

and generally less explicit, forms using the following rules:

{t1 }ielementary type+ w, except that {t1 }JN + {t1 }

{t1ll<t2,···> + w

{ tl} I [t2] + w

{t1ll{t2l + {t1lt2l
I I I I

<t1,t2,··· ,tk>l<t1,t2,··· ,t~> + <t1lt1,t2lt2, ... >

for type-tuples of same length
I I I I I

<t1,t2,··· ,tk>l<t1,t2,· .. ,tj> + [t1lt2l • .. jtklt1l ••• ltj]

for type-tuples of different length

<t1 , ... ,tk>jelementary type+ w

<tl, ... ,tk>I [t] +[t1lt2l•••ltkltl

[t] I elementary type+ w, except that [t] IT+ [t]

Using these rules, alternation signs can always be moved to

'innermost' position. Note also that tit= t.

SE.TL 71-8

Next, we introduce the rule that 'bracketing' in a type

structure may not be carried more than three levels deep.

Higher degrees of nesting are removed by replacing the most

deeply nested substructures by w. Thus, for example,

< < < <tl,t2>, t3>, t4>, t5>

becomes

< < <w,t3>, t4>, t5> .

Each elementary SETL operation acts in a certain way on

our algebra of types. Salient details are as follows for

the case of the operator'+' (which typifies one class

of SETL primitive)

n + n = diagnostic; I+ I= I; C + C = C; B + B = BB ;

BB + BB = BB; N + N = N; T + T = T; w + w = w;

all other sums of elementary types give diagnostics, except

B + BB = BB; I+ w = I; C + w = C; B + w = BB;

BB + w = BB ; { t } + w = { w } ; [t] + w = [w]; etc.

<t1 ,t2 , ... ,tk> + w = [w] •

The rule for alternating types is as follows:

(t1 lt 2) + (t 3 lt 4) = alternation of all those combinations

t 1+t3 , t 1+t4 , t 2+t
3

, t 2+t4 which do not give diagnostics.

For sets, tuples, and sequences we have:
I I I I I

< t l , t 2 , ... , tk > + < t 1 , t 2 , ... , t j > = <t1,t2,···,t1,··· ,tj>;

{tl} + {t2} = {t1lt2};

[tl] + [t2] = [t1lt2l;

<t1 ,t2 , ... ,tk> + {t} = diagnostic;

<t1,t2,···,tk> + [t] = [t1lt2 tklt];

[t1] + {t2 } = diagnostic;

{t} +elementary= [t] +elementary= <t1 , ... > + elementary

= diagnostic,

unless the elementary is Nor T

SETL 71-9

Comparison operators like~' 9:!_, etc. always return the

value B; the membership test returns B if its second

argument is {t}, and a diagnostic otherwise. Operations

in general are distributive over the alternation sign I,
with elimination of 'impossible' cases, i.e., cases which

would lead to the issuance of diagnostics.

I continue to list the effect of the primitive SETL

operations on the family of data types which have been

introduced:

~ [t] = diagnostic; 3 <t
1

, ... > = diagnostic; ;, { t} = t;

[t1] with t 2 = diagnostic; ~t1 , ... > with t 2 = diagnostic;

{t1 } with t 2 = {t1 lt2};

less behaves similarly, except that {t
1

} less t 2 = {t
1

};

pow([t]) = diagnostic; pow(<t1 , ... >) = diagnostic;

pow({t}) = {{t}}; and similarly for the npow function.

Indexing:

[t1 J (I) =t
1

ln; [t1] (t
2

) = diagnostic if t
2

is not I.

<t1 , ... ,tk>(I) = t 1 lt 2 1 ••• jtkjn, unless I= j is a constant,

in which case <t1 , ... ,tk>(N) = tj .

{<t1,t2,t3,···>}(tl) = <t2,t3,··•>I~;

{[t1 J}(t 1) = [t
1

]jn;

{<t1 , ... >}(t2) = n if t
1

¥ t 2 .

{[t1]}(t2) = ~ if t 1 1 t 2 .

In most other cases these operations give a diagnostic.

Similar rules apply for functional application to several

arguments and to functional application in its second form.

For example,

{<t1,t2,t3,···>}{tl} = {<t2,t3, .•. >};

{<t1 ,t2 ,t3 , ... >}{t} = N if t ¥ t 1 , etc.

SETL 71-10

Corresponding rules for {t1}[t
2

J, etc. are derivable

from these. For example, {t1 }[t2 J is {t
1
}{~ t 2 }.

The rules which have been stated allow a sequence of

type-calculations to be associated with each basic block

of a SETL program. We now turn to discuss the manner in

which these 'elementary' type-calculations are integrated

to allow a type to be computed for each resolved variable

name occurring in an entire program.

4. A global structure-predicting algorithm.

We intend, unless this proves to be hopelessly inefficient,

to compute overall types using a rather naive process which goes

through the abstract flow-graph version of a program iteratively

and repeatedly, assigning less and less 'specific' types to

each variable until this process is stabilized. More

precisely, we start with the first block of a program, and

taking the type of each constant (and of each data item

read) to be known. The type U ('uninitialized') is at the

start of our processing associated with each variable name.

Then each calculation is taken up in sequence, and yields an

object of calculable type (which may, of course, be the

completely indefinite type w). An assignment of a quantity

of a type t 2 to a variable A with which the type t 1 is

associated will give A the value t 1 1t2 . We work our way through

all the blocks of the program graph in turn, maintaining a

workpile of blocks to be processed. As a block is processed,

we note any change (always from more to less specific)

in the types associated with the variables occurring in it.

If the processing of a block works any such change, we must

on completing the block add all its successors to our workpile,

since the information associated with variables occurring in

these blocks may require revision.

Sketch-algorithms, written in SETL, are as follows:

SE.TL 71-..11

define typeprocess (pgraph);

/* the main 'driver' of the type-analysis process*/

<cesor, ops, head>= pgraph;

/* 'cesor' is the successor map defining the program flow.

we take each node to be a blank atom, and 'ops' to be a

map sending each such node to a tuple representing the

operations in the block represented by the node*/

work= {head}; (while work ne !:!!) node from work;

modif = blockprocess(ops(node));

/* the routine blockprocess, works its way through the successive
!

operations of a block, updating the type of each variable

occurring in the block. if any type is thereby modified,

the value t is returned; otherwise the value f */

if modif then work= work+ cesor(node) ;;

end while; return;

end typeprocess;

definef blockprocess(optuple);

/* the components of optuple are themselves tuples, representing

the primitive operations of a SETL program in the following way.

monadic ops: <result variable, opcode, input>

binary ops: ~result variable, opcode, inputl, input2>

ops with more inputs: <result variable,opcode,inputl, ... > */

modif = f;

(1 < \Jn _:: #optuple) <result ,opn> = optuple (n);

if newtype(opn) is newt~ 'i' then continue; else

type(result) = newt alt (type(result) is oldtype) ;; - -
/* newtype(opn) calculates the type of an operation result

from knowledge of the operation and tbe type of all its inputs*/

/* ~l~ reduces to canonical form the 'alternation' of a variable's

former type and the result-type calculated by newtype */

if type(result) ne oldtype then modif=!;;

end \Jn; return modif;

end blockprocess;

definef tl alt t2;

/* this routine embodies those rules for calculating type

alternations which were stated in section 3 */

SETL 71-12

/* the encoding used for types is as follows:

elementary types are represented by the characters

I, C, N, T, B, A (for BB), 0 (for D), U (for w), and

D {for impossible or 'diagnostic' type);

an alternation of elementary types is represented by a

string concatenation of these characters*/

/* the type· {t} is represented by the set whose only element

is the object representing the type t;

in the same sense, <t> represents the type [t],

and <-t 1 , ... ,tn,0> represents the type <t1 , ... ,tk> */

go to· {<str,elem::,, <Set,setc>, <-tupl,tupc>} (~ tl);

setc: if ~ t2 ~ set then return' { ~ tl al t 3 t2} else if t2 ~ N then

return tl; else return 'u';

tupc: if #tl .9:!, 1 then go to truetup;;

/* otherwise a sequence is represented*/

if~ t2 ~ tupl then go to seqtup;

else if t2 ~ 't' then return tl;

else return 'u';;

1eqtup: if #t2 ~ 1 then return < hd tl alt hd t2>;

else return <hd tl alt [alt: l~n< #t2]t2(n)>;;

truetup: if~ t2 ~ tupl then go to tuptup;

else if t2 ~ 't' then

return <[alt: l< n< #tl] tl(n)>;

else return 'u' ;;

tuptup: if #t2 ~ #tl then

return [+: l_:: n_:: #tl] <tl (n) alt t2 (n) >

else return <[alt: l_::n<#tl] tl(n) alt

[alt: 1~ n< #tiJ t2(n)>;

elem: if~~ t2 ni str then return t2 alt tl;

else set = · {tl (n), l_:: n~ #tl} + · {t2 (n), 1 < n < t2};

return [+: c € set]c;;

end alt;

SRTL 71-.13

definef newtype(opntup)

/* this function receives as input a tuple consisting of an

operation sign and its arguments, and produces as output

the type of the operation result. if the stated inputs

are invalid for a particular operation, the special output

'd' = diagnostic type is produced*/

/* note that this routine embodies a variety of special observa

tions like those set forth in the second part of section 3.

we shall not give the whole of the rather miscellaneous code

that this routine requires, but only a few suggestive ~ragments*/

<op,args> = optup; /*sort out particular operations involved*/

go to { <pls ,plscas>, <mins ,minscas>, <tms, timscas>,

<tliv,divcas>,< mod,modcas>, < max,maxcas >, ... }(op);

/* here follows sample code for treatment of the 'plus' operation*/

plscas: <al,a2,-> = args;

switch: go to {<set, plset>, <tupl,pltup>, <str,plelem>}(~ al)

plset: if~ a2 ~ set then return { al alt a2};

else if a2 ~ 'n' then return al; else if a2 ~ •u•

then return 'u' else return 'd';;

pltup: if a2 ~ 't' then return al; else if a2 ~ 'u' then return 'u';

else if~ a2 ne tupl then return 'd';

else if (#al) 9.:!:. 0 ~(#a2) 9.:!:. 0 then return

al (1: #a1-1) + a2 (1: #a2-l) + <O>;

else return <[alt: l:< n< (#al-1) max 1] al(n) alt

[alt: 1< n< (#a2-1) max 1] a2(n)>;

end if;

/* enter here if first argument is elementary*/

plelem: if (~ a2) ~ str then <a2,al,-> = <al,a2>;

go to switch;;

/* otherwise have two elementary arguments*/

return elbin(pls, al, a2) ;;

... /* and so forth. the routine elbin computes the type

of a combination of elerntnary types*/

end newtype;

SRTL 71-14

definef elbin(op,al,a2};

/* computes the type of a binary combination of elementary types*/

set=· {if elbintab(op,al(n} ,a2(m}} is ebt ne ~ then

ebt else 'd' I 1 < n ~ #al, 1 < m < #a2};

if set ne· {'d'} then set= set less 'd' ;;

return [+: c e set]c;

/* the table 'elbintab' gives the type of every possible valid

combination of elementary operands. the entries pertaining

to the 'pls' operation are as follows*/

/* <pls,I,I,I>, <pls,C,C,C>, <pls,B,B,BB>,
I

<pls,N,N,N>, <pls,T,T,T>, <pls,B,A,A>,

<pls ,A ,B ,A>, <pls, U, I, U>, ~and so forth * /

/* in the actual implementation, a better (denser} multi-level

encoding of this information should of course be devised*/

end elbin;

Experimentation with the algorithm in the form sketched above

should show whether it attains an acceptable efficiency. If not,

a revised version making use of 'use-definition chaining'

much in the manner that has been proposed for the constant

propagation process might be more efficient.

Note also for future use that this algorithm begins to

reveal something of the process that should be used in knitting

together SETL programs in the presence of data structure

elaborations. Such similarity between the problem discussed

in this newsletter and the more difficult problems connected

with data structure elaboration comes from the fact that the

manner in which a variable's va~ue is 'encoded' can be regarded

as constituting a generalized 'type' attaching to the variable.

