
SETL NEWSLETTER# 72 

An introductory explanation of SETL, 

a status review, and a profile of 

SETL User-Group 

17 April 72 

D. Shields 

In this newsletter we present a brief profile of the 

current status of the SETL project. It is hoped that this 

profile will indicate the overall relations between the 

various groups currently at work; indicate to the NYU 

systems group how t~e SETL project is currently using the 

oprating system, and how the operating system may be expected 

to be used in the near future. 

The goal of the project is to implement the programming 

language SETL. In brief, SETL is a language of very high 

level which has sets as its fundamental data-type, these sets 

have as members the standard "atoms" of most programming 

languages -- integers, booleans, character strings, etc. 

Sets may themselves contain sets; and sequences, or "ordered 

sets" are provided. Sequences roughly correspond to the 

"vectors" found in many programming languages. 

The language provides the standard set-theoretic operators 

(addition/deletion of object in set, test of set membership, 

a set former), and the standard operations on the primitives 

(addition of integers, catenation of character strings, etc.) 

Syntactically, the language is of the level of Algol or PL/1, 

except that no declarations are necessary since object "types" 

(set, atom, sequence) may vary dynamically. Storage alloca

tions is dynamic and is handled by the system, which thus 

must provide a garbage-collector. 

SETL is intended to provide an abstract, set-theoretic, 

executable language for algorithm specification, i.e., one 

in which the programmer defines his algorithm abstractly 

without worrying about particular implementation details 

relevant to efficiency, this abstract description is based 

on set-theoretic notions, and the description is executable 

in that there exists facilities for "running" the algorithm 



SETL 72---2 

to determine its correctness, execution properties (time, memory, 

etc.}. In this abstract view, a program is an implemented algorithm 

-- the algorithm contains the description of the necessary abstract 

objects which must be formed (which sets must be computed, as 

for example, a "symbol table"} and which operations must be 

performed (e.g., when something must be "added" to a symbol table}, 

and the implementation of the formation of the objects and the 

opeations on them so that the algorithm can be executed. For 

example, we view a FORTRAN compiler as consisting of two funda

mental pieces: a description of all the operations that must be 
I 

done to recognize' and compile FORTRAN -- input of cards, test 

of statement types, compilation of code which may involve 

register allocation, etc.; and the binding together of these 

abstract pieces into something executable (choice of data 

structures to be used by the compiler, the conventions for linking 

with the operating system, etc}. 

A much more complete description of the underlying assumptions 

behind SETL is contained in the introduction of the SETL NOTES. 

How then is SETL implemented? An implementation may conveni

ently be divided into three parts: 

(a} a translator which accepts SETL source and produces 

output in some lower level language, which we shall 

denote as the LL. 

(b} A run time library, or RT4 of routines written in LL 

which support the basic set operations on the data 

structures chosen to represent the sets, sequences 

and atoms of SETL. 

(c} A facility for executing the LL-translation of a SETL 

program. 

This division is convenient in that it allows parallel development 

of theneeessary parts; moreover, the parts- are independent in 

that different parts may be implemented in different ways without 

affecting substantially the design of the other parts. For 

example changes in the syntax of SETL would of course require 

a change in the translator (a}, but little, if any, modification 

of the executor {c). The above division serves to define a plan 

of attack for creating a particular realization of SETL, and 



SE.TL 72--3 

helps to clarify the design- and implementation-tradeoffs involved. 

For example, suppose we want to "implement" in an installation 

where only PL/1 is available. We could proceed as follows: 

(a) Realize the translator by writing a PL/1 preprocessor 

which accepts SETL-like source and produces PL/1, or 

eliminate the need for a translator by requiring the 

programmer to express his SETL algorithm in PL/1 using 

a combination of "pure" PL/1 and calls to routines in 

the RTL. 

(b) Write the RTL in PL/1; i.e., decide on hbw:sets, 

sequences, etc. are to be implemented, and code the 

necessary library routines in PL/1. 

(c) Execute our SETL programs by compiling and then 

executing using the available PL/1 compiler. 

The previous approach may conveniently be characterized as the 

"subroutine-library" method, a common software implementation 

method often used to implement statistics or linear-programming 

packages. Another approach, the "interpreter approach" is 

as follows: 

(a) Design an abstract SETL-like machine which has as its 

basic operations the basic operations of SETL --

set membership, iteration over sets, etc. Assembly 

language for this machine thus has the flavor of SETL 

programs in which the programmer has reduced all the 

complicated forms of the SETL syngax himself. Call 

this language the SIL, for ~et implementation !anguage. 

(b) Construct an interpreter for SIL, thus providing the 

execution facility (c). 

(c) Obtain a translator by hand-translation of the SETL 

to SIL translator written in SETL to SIL, thus 

providing (a). 

(d) Similarly obtain the RTL by hand-translation of the RTL 

written in SETL, this task may be simplified by hand 

translating only the parts necessary to obtain a "minimal" 

system, and then treating the rest of the RTL as just 

another program to translate into RTL. 



SE.TL 72---4 

As a historical note, observe that an approach commonly used in 

the past corresponds to writing (a}, (b}, and (c} in assembly 

language; this approach may be characterized as the "manufacturer's" 

method. 

Currently (Spring 72} the SETL group is working on two SETL 

implementations: 

SETLB - consisting of 

(a} A FORTRAN-written translator accepting as input 

a simplified subset of SETL, and producing as output 

BALMSETL text. 

(b) BALMSETL, consisting of an RTL library for SETL written 

in BALM, and a modification of BALM which in effect 

replaces the standard BALM syntactic forms by calls 

to the appropriate procedures in the RTL. 

(c} BALM,an extensible language system already implemented 

by Malcolm Harrison. The BALM system uses the "interpreter" 

approach previously mentioned with an interpreter written 

in FORTRAN, while the BALM RTL and translator were 

obtained by using a previously existing version of BALM 

written in a combination of FORTRAN and assembly language. 

SETL/LITTLE, consisting of 

(a} a parser, originally written in SETL which is being hand

translated into LITTLE, making use of the RTL being written 

in LITTLE. This parser outputs LITTLE. 

(b} An RTL, written in LITTLE, based on an RTL written in SETL 

in which sets are represented as hash addressed vectors 

of lists. (This is also the RTL used in BALMSETL}. 

(c} A compiler for LITTLE, a low-level FORTRAN-like language 

currently being implemented, which produces relocatable 

binary code for the 6600. 

SETLB is intended as a tool for verifying algorithms already 

written in SETL, both for purposes of publication and implementa

tion, and as a means of discovering some of the issues and 

problems that will become important when SETL is available 

(for example, preliminary use of SETLB indidates that some thought 

should be given to providing a variety of input-output routines, 



SE.TL 72-5 

so that the user may display a set in the same way as he is 

thinking of it, as for example, a tree or graph). 

SETL/LITTLE has as its goal the description of a complete 

SETL system expressed in a low-level language which may conveni

ently be transported to other operating-system/ hardware 

configurations. That is, this system will consist of a parser 

and RTL written in LITTLE, and the LITTLE system itself, which 

will include a compiler written in LITTLE for LITTLE and the 

facilities for transporting LITTLE to other machines and 

operating systems. We remark tpat the BALM system also has the 

facilities (and goals) for transportation to other environments, 

but that the SETL group feels that, due to the high level of both 

BALM and SETL, a portable SETL system must itself be 

expressed at a fairly low level. 

The LITTLE language is intended as a low level machine

independent language for the specification of systems programs. 

Developmental work on this language was begun at NY U in 1968. 

The original design intent for LITTLE was for simplification of 

the process of transporting the LITTLE compiler to various 

computers; however, the problems posed by using LITTLE to 

transport SETL have both intensified the pressures to obtain 

a locally working LITTLE compiler so that debugging of the SETL 

implementation may proceed, and have shown that LITTLE itself 

must be extended in some way toward the level of a "systems

programming" language -- for example, the I/O facilities to be 

provided by LITTLE are currently being extended, and those 

optimizations of code particularly relevant to SETL are being 

incorporated in the LITTLE compiler. 

In the preceding few paragraphs we have briefly outlined the 

main design goals and the thrust of the current efforts toward 

achieving an implementation of SETL. We now give a brief 

description of the current status of the major program products 

being developed. 

We begin with the current status of SETLB. As has been 

outlined, the SETLB system consists of a preprocessor, which 

produces BALMSETL, the BALMSETL system itself, and the BALM system 

already available at NYU. The SETLB preprocessor consists if about 



80000 lines of FORTRAN code, is in the final stages of 

debugging,and should be available for use within a week or so. 

The BALMSETL system has been available for about two months, 

and is being revised slightly to mate more smoothly with the 

pre-processor. The BALM system in its current form has been 

available for about a year, and is currently being extended 

to produce machine-level code for the 6600, instead of inter

pretative-code for a generalized BALM machine. 

The SETL-LITTLE system consists of a SETL parser 

currently being converted into LITTLE from the original source 
I 

in SETL, the BTL, and the LITTLE compiler. About 3000 lines 

of LITTLE code for the parser, and approximately 3000 lines of 

code in LITTLE for the RTL have been completed; each of these 

pieces is perhaps 30 to 40 percent complete in terms of code

volume, and perhaps 80 to 90 percent complete in terms of 

design. The LITTLE compiler consists of a lexical front end, 

consisting of about 4000 lines of FORTRAN code, which is 

debugged and available (the front end includes a macro-processor 

and a cross-reference feature), together with a parser, consist

ing of some 2000 lines of FORTRAN code (the parser proper is 

itself generated by a FORTRAN written program which accepts 

a Backus description of LITTLE and produces the parser in 

FORTRAN); the semantic verification and code generation routines 

have been expressed in FORTRAN and are in debugging. 

The last phase of the LITTLE compiler, the assembler which 

produces relocatable CDC 6000 series machine code is currently 

being translated into FORTRAN and is in the initial stages 

of debugging. (We note that the LITTLE compiler was originally 

written in LITTLE, and then translated into assembly language 

macros using a FORTRAN-written translator; the compiler has now 

been translated into FORTRAN from LITTLE,.using an adaptation 

of the lexical processor for LITTLE to produce FORTRAN). 

Efforts in the near future will be directed toward completing 

the SETL/LITTLE system just outlined; and the support of the 
SETLB user group, consisting of some people in the SETL group 

proper, and others - both students and interested users - who 

will be exploring the possibilities offered by language much 



SETL 72-7 

like SETL. Note that the completion of SETLB in a few weeks, 

and the availability of a working version of LITTLE in a few 

months, will place upon the SETL group the additional burden 

of supporting its own user group. 

In the preceding few pages we have outlined briefly the 

scope of the SETL project and the current status of the 

development work. We now proceed to give some details which 

may help to outline the demands of the SETL group on the 

CIMS 6600 facility, and the shape these demands may assume 

in the next few months. We begin by noting that the SETL 
I 

project is a substantial software development effort, that 

the SETL group forms one of the main users of the CIMS computing 

facility, and that the nature of the SETL effort requires a 

fairly close (and hopefully friendly) relationship with the 

CIMS systems group. It is our hope that the SETL group can 

also provide useful "input" to the systems groups, both by 

pointing out the deficiencies and merits of the current 

operating system, and by indicating some directions which 

operating system development effort should take. Indeed, the 

main goal of this report is to begin a definition of the SETL 

group as a "coherent user", so that the systems group may both 

anticipate the problems which may arise from members of the 

SETL group, and the ways in which the two groups may interact. 

The main factors of interest to the systems group would seem 

to be as follows: 

(a) A profile of the various subprojects currently under way: 

this profile to include the people involved, the nature 

of a typical job, the parts of the operating system used 

most often by these jobs, and any special hardware 

demands on the jobs. 

(b) Critical parts of the operating system as far as the 

SETL group is concerned; i.e., those parts of the 

operating system used by all subprojects, in that an 

error or improvement here will be felt by all members 

of the SETL group. 



SE.TL 72-8 

(c) File maintenance - the creation and maintenance of files. 

This area is in fact the most critical component of (b) 

above, and is treated separately due to its importance, 

and also due to the "file oriented" nature of the 

operating system. 

(d} A profile of the users of the program products which 

the SETL group develops. Only a brief description is 

possible at this time, since most of the efforts to date 

have been internal to the group and it is only recently 

that some programs have become sufficiently debugged 
I 

and polished so that they can be used by epople not 

directly involved in the SETL implementation effort. 

This user group will probably develop first for SETLB, 

and will consist of many users not too experienced 

with the CIMS operating system, so that some efforts 

may have to be directed toward creating a "hospitable" 

environment for them in which these users may conveni

ently use SETLB without adversely affecting the 

operating system. 

We now proceed to give more details in each of the above 

areas; each area will be described on a separate page, in the 

hope that this description can be conveniently kept up to date 

without needless textual rearrangement. 



SETL 72-9 

PEOPLE-Profile 

The members of the SETL group who now or soon will be 

major users of the computing facilities are as follows 

(these are the people to see if questions about a particular 

project or program arise): 

Jack Schwartz - director of SETL project; design and 

programming of LITTLE front-end, and the preprocessor for SETLB. 

Bob Abes - LITTLE I/O, extensions of LITTLE, and 

LITTLE implementation. 

Kurt Maly - SETL parser and its implementation in 

LITTLE. 

Elie Milgrom - BALMSETL and SETLB/BALMSETL interface. 

Bob Paige - development of BALM translator to produce 

machine level code for BALM (this effort promises a 

substantial speedup in BALM, and is critical if the users 

of SETLB are not to swamp the operating system); 

partial responsibility for file maintenance. 

Dave Shields - "polishing'' of LITTLE front-end and 

SETLB preprocessor for efficient match with operating 

system; LITTLE optimization and implementation. 

Aaron Stein and R. Bonic - LITTLE implementation, in 

particular, the development of LITTLE compiler. 

Hank Warren - construction of RTL in LITTLE and original 

design of RTL in SETL; overall responsibility for file 

maintenance. 



JOB-Profile 

The typical job of a SETL user has the following properties: 

a) No tapes are used; due to the number of people in the 

project, the problems of maintaining often used files on tape, 

and the recognition that frequent use of tapes would further 

narrow a critical system bottleneck. 

b) Free use of permanent files, since such files are frequently 

accessed and can conveniently be maintained. 

c) A job time limit of 10 100 8 seconds, except for BALMSETL jobs. 

d) A memory requirement of less than 110k
8 

of memory, except 

for BALMSETL jobs; typically 60k8. 

e) Perhaps 5 to 20 pages of output, except for listings of 

source files and occasional debugging rungs which may produce 

100-200 pages of output. 

f) No punched output. 

SETLB and BALMSETL jobs are compute-bound, and currently 

have an average job time limit of 250 8 seconds and 130K8 memory; 

when the new version of BALM is available, typical requirements 

might be 100 8 seconds and 150k8 memory. 



SETL 72--11 

SOFTWARE demands of SETL group 

The key pieces of software used by almost all members of the 

SETL group are as follows. 

UPDATE - this program is used to maintain the source cards for 

all major programs; the heavy use of UPDATE is due to the conveni

ence and good design of the program, and the knowledge that UPDATE 

is used to maintain the operating system itself, so that any error 

in UPDATE must be viewed as a high priority critically important 

systems problem. Most users in the SETL group use UPDATE i* a 

standard, straightforward manner; since the deficiencies in 

UPDATE documentation preclude sophisticated use. 

RUN FORTRAN COMPILER - since FORTRAN is in fact the highest level 

reasonably efficient language available in the current operating 

system, most of the first level or bootstrap routines for LITTLE 

and SETL are being written in FORTRAN. RUN is used primarily to 

allow convenient interface with necessary assembly language 

routines written before the days of FTN, and to avoid the use 

of more than one FORTRAN compiler in what is, hopefully, a 

temporary situation in which existing languages such as FORTRAN 

must be used for a SETL implementation. 

PERMANENT FILES - known to the SETL group as "problem" or )"passing" 

files. These files are used as the main vehicle for inter-user 

communication e.g. when a SETL program product is completed, 

it is made avaiable to other uses as a permanent file. 

BALM - this is a language system developed at NYU by Malcolm 

Harrison. BALM is the target language for SETLB (via BALMSETL). 

We remark that BALM requires the use of FTN, and uses MACE I/O, 

and that the SETL user group is currently the major user group 

for BALM. 



SETL 72-12 

FILE MAINTENANCE for SETL Group 

Problems related to file maintenance are particularly 

important to the SETL group for two reasons: 

a) The files (source libraries, documentation, etc.) produced 

by the SETL/LITTLE groups in the past few years represent many 

man years of effort and several hundred thousand dollars of 

research money. 

b) The lack of facilities in the current operating system for 

providing "permanent" filErs on disc, archival storage facilities, 

and absolute backup facilities for file protection. Although it 

may be argued that such facilities exist, for an individual user, 

the description of the use of these facilities to the members of 

the SETL group may involve a much more detailed knowledge of the 

operating system than is necessary for work in the SETL implementa

tion (e.g. use of multi-file tapes, use of FET to label tapes, etc.). 

The problems encountered by the SETL group in maintaining files 

have resulted in the expenditure of at least four man months 

of effort in developing our own permanent file save-to-tape system; 

the development of an archive system to save files on tape; 

and the implementation recently of a policy of punching critical 

files at regular intervals and storing these files at off-site 

locations. 

In summary, the SETL group has had severe problems in maintain

ing important files and has had to develop its own methods for 

file maintenance; it is felt that these methods both indicate 

limitations in the current operating system, and define procedures 

which should perhaps be used by other users who have expended 

substantial effort and money in creating files which should be 

protected. 



SRTL 72-13 

Relevant Areas for Systems Group - SETL Group INTERACTION 

We conclude by further amplifying previous remarks about 

the possibilities for and benefits of interaction between 

the SETL group and the systems group: 

a) The SETL group has its own well defined internal goals 

which include the development of a substantial software product, 

numbering several tens of thousands of lines. Thus the SETL 

group serves to define to the systems group some problems in 

using the current operating system to implement a very
1 

large 

software package. 

b) Systems groups are too often forced to operate in a void 

in which the user community is seen as several hundreds of 

isolated users making various demands on the operating system. 

By providing a coherent description of a group of several users 

and by providing the means for interaction, it is hoped that 

the systems group can more precisely define the areas in which 

improvements and research are relevant. 

c) Since SETL ultimately hopes to obtain an implementation of 

various machine/operating system configurations, it is hoped 

that the systems group can help to point out some of the problems 

that may arise when SETL attempts to leave CIMS and survive 

at other installations. 

d) Since a fundamental goal of SETL is to provide a convenient, 

expressive tool for describing algorithms, it is hoped that 

such considerations may help give the systems group 

the opportunity to step away from day-to-day considerations 

and to approach the problems arising from the effort to create 

an abstract, machine independent realization of a set-theoretic 

based programming language. 


