
SETL Newsletter No. 75 

BALM Bulletin No. 13 
June 1, 1972 

E. Milgr om 

Some Thoughts on the Use of BALM to Implement SETL 

The purpose of this newsletter is to present some thoughts 

derived from my use of the BALM language and system to implement 

a preliminary version of SETL called BALMSETL (see SETL News

letter #66). These remarks are mostly suggestions for 

modifications to (improvements of?) BALM; a few conclusions 

have been drawn concerning some aspects of SETL brought to light 

by this implementation. 

1. BALM -- general remarks. 

1.1 My general opinion is that BALM has proven to be very useful 

as a tool to produce a first implementation of SETL. 

It has, however, become a truism to state that the present 

(interpretative) version of BALM is excruciatingly slow and 

large. Even with the gain in speed of 15 expected from the 

compiling version which should be available soon, the system 

will still be slow and, of course, it will be even larger. 

I believe that the time has come to investigate the reasons 

for these drawbacks. If this is not done very soon, I think 
that BALM will lose its appeal and that its future will be 

rather limited. Some suggestionsfor tools to investigate 

the preformance of BALM are mentioned below. 

If it is verified that the main reason for the slowness of the 

BALM simulator is the amount of time spent unpacking 

instructions and branching to the appropriate code, I would 
suggest the introduction of higher-level (i.e. more powerful) 

BALM machine instructions and the suitable modification of 

the compiler or a re-design of the BALM machine. 

1.2 A dilemma which faces all language designers is the choice 

between high and low level of expressiveness. BALM tends to 
incorporate both very high level and rather low level features. 

My opinion is that some low level features are missing in order 
for a user to be able to use the language for systems programming. 



SETL 75-2; BALM 13-2 

I think the language should include several levels of detail; 

the lower levels should provide optimal declarative features 

to specify facts which the compilershould be able to take 

advantage of whenever possible. Even lower level features 

woul be related to storage structure organization; not 

everybody likes the way every structure must be represented 
in terms of lists and vectors; one should be able to design, 

within the limitations clearly indicated by the system (most 

notably for garbage collection purposes), one's own 

storage structures. 

1.3 The storage management mechanisms are incomplete, a few 

additional features would make programming easier and more 

efficient (see 2.3). 

1.4 Name scoping rules are not as barbaric as many seem to think: 

one can get easily accustomed to them. The question is 

rather whether one should get accustomed to unconventional 

name-scoping rules. Indeed, it is not clear what benefits 

are derived from the BALM name-scoping: if no special 
advantages are obtained, I would suggest that the Algol-60 

or PL/1 conventions be adopted to avoid unnecessary confusion. 

1.5 Error handling facilities are poor. There should exist a 

(slower and larger) debugging version of the system with 

exhaustive compile-time and run-time tests. Moreover, since 

many errors are detected during code-generation, it would 
be useful to number the lines of the source text and pass these 

numbers to the code-generator in order to localize such 

errors more easily. 

This version of the system should include the tracing features 

of section 2.1 below and all kinds of other traces such as 

variables trace (selective or not) procedure calls trace, etc. 

1.6 In conclusion, it would seem that a number of language 

features of BALM are derived from implementation constraints: 
they stem directly from the desire to keep the translator as 

simple and straightforward as possible. Compiler simplicity 

should not, however, be the prime goal of the irnplementators 

of BALM. Rather, a more complete frame of "conventional" features 

should support the BALM language (comments, macros, goto's, 
name-scoping, handling of parameters, ... ). 



SETL 75/BALM 13 -3-

2. Some suggestions for BALM 

2.1 Measurement tools 

In the absence of a complete explanation for the time and space 

requirements of the system, I would suggest the creation of a 

special version of the simulator incorporating exhaustive measure

ment tools. In fact, a complete trace should be available, including 
in various degrees of detail the space requirements and giving also 

accurate timing figures. The space requirements involve the symbol 

table, the stack and the heap. As an elaboration of the current 
I 

facilities provided by BLM4STAT for the heap alone, one should be 

able to get a message every time a block of heap is required 

which is larger than a given integer N. The present feature 

which involves giving a message every time a total of N words have 

been requested should be retained. 

It should also be useful to be able to obtain the total space 

requirements for every procedure called in a run (stack and heap), 

together with a cumulative history of CPU cycles for every procedure. 

2.2 High-Level vs. Low-Level 

In order to be useful as a systems programming tool of acceptable 

efficiency, BALM should allow more precise control over a number 

of essential features. One should be able to inform the compiler 

explicitl of certain properties of the data IF ONE WISHES TO DO SO. 

I propose therefore the introduction of optional declarations 

allowing for instance the specification of the type of a variable 
in order to allow a more complete syntax check at compile-time. 

Similarly, the declaration of operators should include optional 
types for the operands. 

Another source of inefficiency is the high level of the structures 

used to form aggregates of data. It should be possible to create 

new types of values at the same level as the BALM primitives. 

If the structure of these primitives was known and if one had 

access to the fields of the machine words (mode, type, information 
field, etc), it would be possible, for instance, to create the 
SETL type "blank atom" by creating a new value for the type field 

instead of representing blank atoms as vectors with 3 components 

(4 words). Such a facility, admittedly to be used with caution 



SETL 75/BALM 13 -4-

by the more sophisticated user, would also enable one to create, say, 

lonr integers or short character strings in a much more efficient 

way. In other words, a lower level data definition facility would 

be very useful in systems programming work. 

2.3 Storage Management 

2.3.1 [r~e_s!orage_lis! 

I think that the language should include a RELEASE command to 

return a structure which is known to be inactive to a free 

storage list, or a number of such lists: one for list elements, 

one for vectors of size N, one for vectors of size cN etc. 

A variable allocation policy would then be used to obtain a new 

requested block either from the heap or from the free storage 

lists. Garbage collection would occur only when both the heap and 

the lists are exhausted. 

This would allow the system to take advantage of the programmer's 

knowledge that some area of core can be released. 

2.3.2 ~ace re~uest from the stack 

In many cases, a procedure requests a number of words as a local 

workpile, to be deleted on exit. Such a workpile would be most 

naturally implemented by allocating some space on the run-time 

stack. HoweveT BALM does not allow one to request space for a 

vector or a list on the stack or on the heap but according to 

a stack discipline. In consequence, such workpiles are allocated 

on the heap, used for a few cycles and then are left for the 
garbage collector to recover. This is a most inefficient way of 

handling temporary storage: it is the source of most of the garbage 

generated during a BALMSETL run. 
Similarly, system functions which return a vector or a list (e.g. 

VFORMS, LFROMV) should be directed whether to allocate this 
vector or that list on the stack or in the heap. 

2.4 Name Protection 

The facilities currently available are inadequate: the kind 

of protection they provide is not the one which is most desirable. 

In fact, what should exist is a scheme where, after execution of 

a FREEZE statement, all names previously defined can be accessed 



2. 5 

SETL 75/BALM 13 -5-

only on a read-only basis (no assignments). A statement such 

as THAW would allow one to make adjustments to protected 
variables until the execution of the next FREEZE. It should also 

be possible to FREEZE and THAW specific variables selectively. 

Pointer vs. Values, Copying, Parameters 

The fact that pointers are used extensively but are never 

mentioned (and are not even a legal data type) makes it difficult 

to remember at all times what the implications are of an assignment 

statement. If the values involved are simple (integers, labels, 

booleans) then assignment involves copying of the value; in other 

cases (compound values: vectors, lists, character-strings), the 

assignment involves copying a pointer to the structure. It is my 

experience that, even though the rule is simple, its implications 

are usually complicated enough to encourage the programmer to use 

an inordinate amount of copying -- just in case. This situation 

is made even more unbearable by the rather unconventional behavior 

of the parameters of procedures: these parameters cannot be modified 

by the execution of the procedure, but if they are compound values, 

they can be modified in some ways, but not entirely. As was the 

case for the name-scoping rules, I fail to see what advantages 

are derived from the rule governing the behavior of parameters: 

I think that a more traditional approach (even at greater cost 

to the translator and the simulator) would be beneficial for 

the users. It is worth pointing out that these rules are not 

modifiable by means of simple extensions and that all languages 
derived from BALM inherit then its peculiarities. 

To return to the copy problem, I would agree that one does not 

want the assignment statement to imply automatic copying of 

structures, since this rule lacks generality. However, the present 

situation is confused because of the diffe_rent treatment of simple 
and compound values. A more general scheme should allow both 
copying of values (simple or compound) and sharing of values (simple 
or compound): maybe this would help reduce the confusion. 

2.6 Labels, Goto's, Returns, etc. 

The current restrictions on the use of labels and goto statements 

seem to have been imposed with the aim of deterring users once and 

for all from using transfers. One could replace every DO-END 

block (within which no labels are allowed) by a BEGIN-END block, 



SETL 75/BALM 13 -6-

were it not for the fact that this would prevent one from using 

RETURN statements within that block to exit from an enclosing block. 
This situation occurs frequently; the language should thus be 
modified accordingly. The simplest way should be to make DO-blocks 

and BEGIN-blocks equivalent but for their behavior with respect to 

RETURN. Thus local variables could be associated with DO-blocks 

and a RETURN from such a block would involve the popping of the stack. 

2.7 Miscellaneous notes 

2.7.1 It would be worth while, from the BALMSETL point of view, to , 
I 

introduce a number of new BALM machine O£erators: these would' 

replace BALM coded procedures which are exuecuted frequently and/or 

which generate a lot of garbage. 
Equality operation for all the basic BALM data types. 
Copy operation for all the basic BALM types. 

A generalized conversion routine (from type to type) 

for all the basic BALM types. 

A general hashing function for primitive BALM types. 

Equality test for lists or vectors independently of the order 

of the ~lements. 
An operation returning the number of elements of a list. 

2.7.2 Qthef £r.2J)OS~d_m£dific~tio~s_ 

-- A null statement should be available to make it legal to write 

A= A+ 3, 

END 
The macro facility should be generalized, in particular, it 
should he possible to introduce lexical macro's to handle 
the cases where one or both patterns are not parsable, e.g. 

, END MEANS END 



SETL 7S/BALM 13 -7-

3. Some Notes Concerning SETL 

3.1 A number of limited tests have been done to check the time and space 

requirements of BALMSETL, in particular regarding the operations 

on sets and tuples. These tests have enabled me to decrease 

significantly the time and space requirements of some of the 

operations. It seems, however, that the basic data structure for sets, 

designed for efficient function application operations, is poorly 

suited for all the other set-operations. Since function application 

with more than three variables is rather infrequent, I would 

suggest limiting the nestirtg of the representation to 2 or 3 levels. 
It might also be worthwhile generating sets of tuples without 

nesting and converting such sets to the nested form at the first 

occurrence of a function applicating operation. Also, the current 

representation favors the first element(s) of a tuple and is so 

asymmetric that finding all the elements of a set with a given 

second component becomes horrendous. 

3.2 The method which consists of increasing the hash tables of sets 

by doubling their size (originally 8) every time a certain 

loadfactor is reached causes a lot of re-hashing and storage 

allocation when the sets are very large. In all cases where a 

set is built element by element, one should try to determine the 

size of the set before actually building it (whenver possible) 

and that information should be used to determine the original 

size of the hash table. 


