SET!	L NEWSLETTER 80	September 28, 1972
Algo	orithms in the SETLB Test Package	Kent Curtis
1.	<u>Huffman Coding Algorithm</u> Produces a Huffman tree and code table given	(SETL Notes,Page 249) a set of
characters and a frequency of use function over that set.		
2.	Huffman decoding algorithm Produces a string of characters from an inpu	(SETL Notes, P. 251) t Huffman
binary string given a Huffman code tree.		
3.	Make sequence of tuple	
Produces sequence of form $\{(n,x_n)\}$ from tuple $\{x_1,\ldots,x_n\}$.		
4.	Function composition Forms $G(F(x))$ given $F(x)$ and $G(y)$.	
5.	<u>Function inversion</u> Produces F ⁻¹ (x) given F(x)	
6.	<u>Cycle form of Permutation</u> Produces cycle form of permutation given as a	(SETL notes, P.239) map
7.	<u>Inverse of Permutation</u> Inverts a Permutation given as map	(SETL notes, p. 239)
8.	Inverse of a Permutation in cycle form Inverts a Permutation given in cycle form	(SETL notes, P.240)
9.	<u>Permutation generator</u> Generates all permutations of n objects in le	(SETL notes, P. 140) exical order.

10. Linear Time Median finding algorithm

Finds k <u>th</u> number, in ascending order, of a set of numbers. This algorithm, due to Floyd, el al. in 1971, runs in linear time.

- 11. Write elapsed CP time as a message in output file. Utility routine
- 12. <u>Pocket sorting Algorithm</u> (SETL notes, p. 115) Sorts sequence of integers using p pockets.
- 13. <u>Tree Printing Routines</u> Prints binary or ordered tree in tree-like format.
- 14.Ford-Johnson Tournament Sort(SETL notes, p. 116)Sorts by a minimum-comparison method
- 15. <u>Alphabetic Sort</u> (ALPHSORT) Compares two character strings and returns true if they are not in normal alphabetic order.

16. Interval Print Package

Prints flow graph given set of paths and a set defining order in which to print nodes.

- 17. <u>Natural two-way merge</u> (SETL notes, P. 113) A fast internal sorting algorithm using two buffers.
- 18. Lexical Scan Setup Routine (SETL notes, P. 128) Reads input string of SETL code, checks lexical accuracy and completeness of data and prepares input tables and string for lexical scanner.

19. <u>Several programs to generate primes and prime factors</u>. By Sieves, etc.

20. Piglatin

A table lookup "translator" routine with an auxiliary string breakup routine. Also, a 4-word "English to German" dictionary and programmed "piglatin" dictionary.

21. Instant Insanity

Solves the "Instant Insanity" puzzle using a backtracking algorithm.

Some Other Algorithms in Progress

 Nodal span parsing algorithm - Sam Marateck
Top-down parse generator routine - Sam Marateck Generates a parsing routine given a formal grammar in
Backus normal form

3. Table compaction algorithm - Lynn Jaffe Algorithms for compressing tables used in the generalised precedence parsing method.