
SETL NEWSLETTER NO. 83

USER EXPERIENCE AND HUMAN FACTORS

IMPROVEMENT OF SETL

November 1, 1972

J. Schwartz,
et al.

This newsletter collects user impressions of the present
SETLB system, with a view toward reaching a consensus concerning
'human factors' or 'usability' issues which deserve future attention.

This first draft (by J.Schwartz) should be reviewed by the
members of the SETL group, emendations made, and parts added as

appropriate. It is intended merely to start the process of
reaching an overall consensus.

1. OVERALL IMPRESSIONS: DEBUGGING.

Even in its present imperfect state, the SETLB system seems
very good. It is possible to program complex processes with
ease, and should, as we have hoped form the beginning, focus our
:'.it'.:tention on the larger issues of programming (algorithm invention
and overall strategy) by overcoming a very significant part of the
mass of programming irritation inevitable if other approaches are
used. The removal of these difficulties will cause other issues,
perhaps marginal for other methods, to assume a more central role

in our considerations. If 80 percent of a problem is solved, the
factors affecting the unsolved 20 percent become significant.

SETLB debugging is significantly easier than debugging at,say
The FORTRAN or PL(l level. Error - symptoms generally occur near
causes, so that the fix to be made is often obvious. The 'HELP'
debugging aid is quite effective, especially the store trace.
The flow trace seems almost useless. The subroutine entry trace should
probably allow another level, in which arguments are printed as
the subroutine is entered. Tracing with HELP on is a quite effective
method of early debugging. The store trace should print values of
of variables read by a. 'READ' statement,

and assignments made by IS. FR~., and IN. should
also be detectable. Unexpectedly, the ASSERT feature does not
seem too useful, perhaps because the language level of SETLB is
already high, making ASSERT expressions as complicated as the
statements to which they would relate.

Use of SETLB seems to decrease the bug-content of programs
to a remarkable degree. The commonest bugs are

1. Trivial 'immediate crash' bugs caused by
mispellings, non-initialisations,conflicting
uses of variable names, name scope misunderstandings

and misusages, etc.

ii.Logic bugs, i.e., fundamental errors in the
algorithm being used

iii. System bugs, i.e., bugs related to discrepancies
between the implemented SETLB and the more highly

rational 'publication SETL'.

Comments on bugs of Category i :
a)Warnings for likely small errors, as 'NL' for 'NL.', 'PRINT'

for 'PRINT.' should be given in the suspicious variable 11st.

b)The suspicious variables list is still only marginally useful,
as it tends to include too many variables whose use is legitimate.
The following improvements are possible:

ba) count each occurence of a token as label as two ordinary
occurences, and each occurence of a token as subroutine or
function name as three occurences.

bb) List the cards on which suspicious variables occur
along with the variable name.

be) If a variable is suspicious, check for a variable of like
spelling, and 11st any such along with the suspicious variable.

c) Sophisticated compile-time analysis of the type of values
which variables will assume can detect a useful variety of bugs
of both the misinitialisation and misspelling types; a
consideration which underscores the potential importance of this
type of analysis.

d) The present crash messages would be considerably more
useful if they gave the symbolic names of the routines found in
the call - chain at the time of crash. This can be done easily,
using the following scheme:
When the SETLB preprocessor encounters a 'define sub ••• ' or
'definer sub ••• ' it can record the name 'sub',and,on beginning its
second pass, insert an initial call of the form record (sub, = sub).

This call can append a pair consisting of the
internal BAIM subroutine pointer and the external subroutine name
to a 'subroutine list', which can be consulted by the crash-message
generator to enable subroutine names to be included in crash messages.

Alternatively, the crash message processor can search the
symbol table for a variable whose value is identical with a
subroutine pointer, and take the external name of this variable
as the external subroutine name.

e) An automatic analysis of name-scope relationships, with
appropriate print-outs, might be useful.

Bugs of category ii require extensive rethinking, but can
hardly be cured by system improvements. There is probably not
much that can be done about bugs of type iii before the new SETL
system becomes available.

Code consisting largely of expressions to be evaluated seems
to be considerably less bug-prone than procedural code realising
equivalent logical function. This suggests an effort to expand
the 'expression' part of the SETL syntax and semantics.

2. Turnaround, interactive use. The significant proportion of
bugs that can be found easily makes some method for 'quick fix'
highly desirable. Here obvious improvements could come from
greater efficiency(a factor of 5, or still better 10, would
significantly affect the range of experiment possible) and smaller
memory size. Code-paging appears to offer interesting possibilities.
The garbage-collector 1 space exhausted' routine should probably
request more space, or perform a SAVESETL operation allowing subsequent
continuation in a larger space, rather than simply terminating.

The biggest gains in quick - fixability would come if it were
possible to get down to interactive sizes. Online subroutine
patching is desirable. For this purpose, the following scheme
might be used.

a) On entry to any subroutine, save (stack) the values of all
global variables accessed by the subroutine. (Only those which

might be modified need be saved.)

b) When a crash is detected, return control to the user's console.
He will then have the option of typing

FIX SUB
where 1 SUB 1 is some subroutine name. This will back up the
subroutine call stack to the first occurence of SUB on the stack
(if none such occurs, it will clear the stack and prepare for a
complete program rerun). At the same time, all variable values will
revert to the values which they had immediately before the first
stacked call to SUB. The source text of SUB will be retrieved,
and put into an edit mode. After editing, SUB will be retranslated,
and execution can resume with entry to the new version of SUB.

3. Subroutine libraries and the creation of an Extensive

Programming Environment:

The abstract character of SETL should (and to some extent,
already seems to) make library subroutines usable at a much higher
level of function than is now the case. Because of SE'TL's
abstractress, there-exists a real chance that independently written
routines manipulating compound data structures should cohere.
In languages of the F.ORTRAN-PL/1 level this highly unlikely since

discrepancies in data layouts, pointer systems, etc. tend strongly
to cause catastrophic incompatibilities.

This consideration suggests that the SETL user should be kept
in contact with an extensive library of subroutines, and be able
in a simple way to call any one of these routines into his
'workspace'. Fully satisfactory implementation of this idea will
undoubtedly require the development of a sophisticated, systematic

namescoping scheme like that outlined in Newletter 76. In the
following paragraphs, a much more primitive scheme, but one whose
implementation for use with the presently existing SETLB would
be relatively easy, will be proposed.

Note that the scheme envisaged here will only become practical

after paging of code blocks is implemented, so that one no longer
pays a severe penalty for including in frequently executed
subroutines in one's workspace.

The subroutine library will consist of
a) A catalog file, organised on an alphabetised keyword basis,

from which routine names and short descriptions can be retrieved
online.

b) A subroutine source-text file. From this file, the text of
subroutines can be retrieved. This file will be broken up into
named 'sublibraries', and the retrieval of a subroutine will be by
sublibrary and subroutine name. Subroutines can be associated into
named 'groups', the group name being suI'ficiant to retrieve all the

subroutines of the group. With each subroutine there will be
provided a comment indicating the routines which it calls, and all
global variables which it modifies. To include a subroutine
(or group) into a users code, one will type an instruction having
approximately the following form:

include (library - name) ((routine/group - specifier * 1)) ; or
include (library-name) ((routine/group - specifier * 1) +

(variable - specifier * 1)) ;

Here
(routine/group - specifier) --+, (*name) l , (*name) / (*name)
(variable - specifier)-, (*name) / (*name)

The intended semantics are deducible from consideration of the
following example. If one writes

include optlibre.ry (dg, intof /intervlof + intervals/ints,

cesor/sucessor);
one specifies that the routines 1 dg' and 'intof' from the
specified library are to be included in one's program. The first
of these is to retain its name; the second is to be renamed 'intervlof',
presumably to avoid a name conflict. All refereces to 'intof',
occuring in text retrieved from the library, are to be changed to
read 'intervlof', this essentially means that a parameterless
macro is to be applied during the 'include' process. Similarly,
the global variables 'intervals' and'cesor' are to
and 'sucessor' ; this allows them to be referenced
the program in which they are to be included. All

be renamed 'ints'
globally from
other global

variables occuring in the original 'dg' or 1 intov' are to be
renamed in some manner protecting them from accidental reference.

4. Input - output issues; Data object library.

A variety of powerful output utilities is desirable,
especially if some general, 'format driven• utilities can be
developed. Two dimensional and tabular output forms are especially
desirable; nave Shields 'print as map' and 'program graph print', as
well as J.Schwartz 'tree print' are initial steps in this direction.
A logically formatted input utility, allowing tables and compound
structures of various kinds to be punched in convenient, minimally
punctuated, ways would also be desirable.

Reading sets in their present print format is very annoying,
and would be catastrophic if it became necessary to find an item
in a large set. The print routine should use some standard alphabet
isation procedure to arrange the items to be printed.

The following proposal describes one possible formatted read
scheme. Strings read would be broken into substrings using blanks
as delimiters. Formats would have the following external syntax,
and a correspond corresponding internal (abstract) syntax:

(format) --+ (format-part) l [(delimited-part * 1)]
(format-part)~ s (format-item-string) I (format-i tern-string)
(delimited-part)-(* symbol)(* symbol)(format-part)
(format-item-string)- ((format-item * 1)) I

(a (:format-1 tern * 1))

(format-item)-(* integer)(format-part) I(* integer)
(*integer) s l

Two examples are:

(*symbol)(format-part) I(* symbol) I
(*symbol) s

(1 (.) /s (1.))

and
[(> ()(,)) < 2 () (,)].

The semantic reading-rules associated with the syntactic
structure of a format is as follows. Ea.eh format item dictates
the reading of a number of tokens, which, on reading, are formed
into substructures. An item of the form

(*integer)

dictates the reading of a fixed number of tokens.
An item of the form

< * integer) s
dictates the reading of a fixed number of tokens, and the
formation of them into a set (consisting precisely of the tokens read).
In general the presence of an s in a format-i tern indicates that
the tokens (or groups of tokens, see below) read by the format-item
are to be formed into a set rather than inserted into a tuple.

An item of the form

(*integer) <format)
dictates the reading of a fixed number of groups of items, each to
be read in the manner specified by the format occuring within the
item. Thus, for example, if we read A BCD E Fin the format

(2 s (3))

we get < _::: A,B,C2, _::: D,E,F~).

If we read in format s (3 (2)) we get

<: (A, B) , (C, D) , (E, F) > •

The groups of tokens read by the various format items of a
format-item-string are made into a tuple 1 or into a set if the
format-item-string begins with the symbol's'. This tuple (or set)
is the read-result of the format-item-string.

A format item of the form

(* symbol)

reads a succession of tokens, up to the first occurence of an
instance of (*symbol) • These are formed into a tuple, or into a
set if the (*symbol) is immediately followed by an 's'.

A format-item of the form
(* symbol) (format)

reads a sucession of groups, up to the first occurence of an instance
of (* symbol) • Each group read is of the layout indicated by
the (format) occuring in the format-item. This produces a sequence
of read-results which are formed either into a tuple, or into a set
if the (*symbol) is immediately followed by an 's'.

Some examples: if

A B C D E F • B D E • D A E
is read in the format s (l • s), the following set results:

this
text
A B

~ (A ~ B, C, D, E, F ~) ,

is a reasonable input format to use
defining the structure of a graph.

C D. E F G H / is read in
then the read-result R

in reading, let us say,

If X Y z.
the format (1 (.) /s (1

((X, Y, Z) , ~: (A (B C D)) , (E, (F, G, H)) 2) .

.)) '

This is a reasonable format in which to read information describing
a function of two variables; the actual function F can then be
expressed in terms of R by writing

F = < ((R(l) (N), Y(l), (Y{2)) (N)) ,

1(= N (="'" R(l), Y- R (2) _2;

The semantics of formats of the simple form (format-part*)
should be clear from the preceeding remarks.

More complex formats, having the structure

[(delimited-part * 1)]
are used for reading recursive structures; we shall call them
recursive formats. Their semantics is as follows. Each
(delimited-part) which occurs will have the form

(*symbol) (*symbol) (format-part)
we call the first (* symbol) of the (delimited-part) its opener,
and shall refer to it as sl in the next few paragraphs. The
second (* symbol) of the (delimiter-part) we call its closer;
this will be designated as s2. The (format-part) occuring in
a delimiter-part we call the read format part of the delimited
part.

The read :rormat of the <delimited-part> occuring first within a
recursive format F will be called the prime read format of F.

To read a string of tokens using a recursive format F we
proceed as follows. We begin to read in the prime read format F of
F; since F' is a non - recursive format, the conventions which
have been explained above apply. Whenever the opener- symbol of a
< delimited - part) P is encountered, we recursively suspend the
presently governing read format, and begin to read in the
read-format of P. We continue to use this read-format until the
closer-symbol of P encountered, at which time we revert to
whatever read format P' was previously in use. The read-result R
collected between the moments at which the opener-symbol and the
closer-symbol of P were encountered is treated as if it were a
single token read by pr •

An example will clarify the effects attained by the recursive
conventions just explained.
First suppose that we use the recursive format

[< > (> (1,)) < - > (~ s (1,))] • -

This will read in something very like the normal SETLB read format.
The reader may verify that, according to the above rules, input

(1) (A, B, c, < D, E, F, (G, H '> > , I '> -

will be read to create the tuple which (1) designates. A variant
format can be used to use blanks instead of commas as delimiters,
thus simplifying input perparation. This format is

[< > ())
if the input

(A B C

< > s (>)].

< D E F (G H) ~ r>
is read in this format, the tuple (1) will be the read result.

.Li:::

A third example is as follows:

Suppose that we use the read format

[r (t ') r s (1 * (. s)) // * s (.)]

to read the input

A (B C D I E F • G H • I J I •

K L • M N) , p

The read-result will be

<: A, <: B, < C, D, <• . < E, F) , (G, H), (I, J '> > '> ,

(K, L), (M, N) ~, <• . ,, p > > > •

Summary of Comments.

This newletter has been circulated in draft to the members of
the SETL group. The following is an attempt to summarise those
comments most closely related to the basic issues of useability
raised above (A more complete account of comments will be found in
Newsletter 83A)

The present practice of interspersing data and program is bad;

seperate data files should be used to improve readability.

Concerning libraries and debugging: it is felt that the
documentation standards for presently existing SETLB algorithms are
too low, and that higher standards should be set (and followed).

A two column format, with comments systematically placed in
opposition to related code fragments, might be most desirable.
Such a format might be produced by a routine of the 'TIDY' type,
which would be a useful aid for library maintainance.

Some of the library functions described above could be provided
using UPDATE and Intercom Editor, though nontrivial problems
concerning a precuse approach remain to be worked out.

Concerning type i) bugs :
Some bugs could be avoided by having the SETLB processor check

the Did; ••• ; C9™PUTE; scoping.

Subroutine name recovery on crash is probably not difficult to
provide, and may be provided soon.

Concerning type ii)bugs. People should read and update SETLNEWS
and report problems rather than bypassing them. There may still be
some unprotected global names modified from within system routines.
These should be protected. A 'local name' default scoping rule
rather than the present 'global name' default would be less prone to
create bugs. A better solution to the present difficulties concerning
labels and transfers within BAIM DO/END
and BEGIN/END blocks would also eliminate one class of common
system-related pitfalls.

Concerning input-output: it is agreed that formatted input is
desirable, since the punctuation presently required is highly tedious
and error-prone. The suggestions offered above may be over-elaborate.
A simple formatted reader has been coded by D. Shields. This
supports formats of the form

FMT = ' (I, (I, I, S) , L) '
which then allows, e.g.

10 100 3 ABCD T.

to be read by the statement

IN = RDR (FMT),
giving the value

IN= (10, (100, 3, 1ABCD 1), T.)

on language extensions:
primitive, and expanded
pattern-match, would be

the present character-string package is too
facitities, providing some sort of
useful.

BALM does permit error-recovery when
space-exhausted; a feature permitting this fact to be exploited may
be implemented.

An interactively useable system would be quite desirable,
I

especially for educational uses. It is not clear whether code-paging
alone is sufficient to get down to interactive sizes; if excessive
paging I/O is to be avoided, it may first be necessary to reduce
the inherent size of code blocks by space optimisation and by
recoding some of the bulky present BALMSETL procedures at a
lower-level.

Various
language extensions and modifications were suggested; details will
appear in Newsletter 83A. suggestions included: considerably
freer formats for subroutine calls, user-definable object types and
operation meanings, user control over lexical conventions,expanded
character sets, and left-right symmetric notations for binary relations.

Additional comments

It would be helpful if the store trace could be expanded to
a "value assigned" trace which would display the current value
assigned to variables in iterators and possibly to each variable
in an assignment statement. This becomes more useful as the
algorithms become more complex. When the values assumed by iteration
variables take on the complexion of multiply nested sets and tuples
in a nested set of several iterations, life can become tedious.

Initialization is a problem and a source of annoying error.
One should be able to assume that a variable which has not been
otherwise initialized has the type which is appropriate for the
statement in which it first appears and has the null value for that
type. An exception must be made, of course, for type comparison
operations (e.g. TYPE. X EQ.) which require prior difinition
of x.

A move to implement operator precedence level
would be nice but not critical.

Carrying a junk variable at the end of multiple assignments
is unappealing.

The suspicious variable threshhold of 3 may be too high. Why
not lower the threshhold to one and count subroutines and functions
as two.

Clearer messages should be produced when a program crashes
because of grossly insufficient memory allocation. Some convenent
way of determining minmum core requirements would be useful in
avoiding the overestimation /lost run dillemima

The •macro redefined' warning message should give the line in
which the last previous definition or use or a quantity with the

same name occurred.

