
SETL Newsletter 86

Proposal for a temporary, but easily

implemented, software paging scheme.

November 8, 1972

J. Schwartz

The memory size required for SETLB runs is now becoming

so large that some method of reduction is urgently required.

This newsletter will propose a scheme, based upon software

paging of code (on a subroutine-by-subroutine basis, and

at moment of call) which it should be easy to implement.

It involves a combination of simple patches at the SETLB and

the BALM level. The compilation of subroutines by SETLB must

be slightly modified, and two simple primitives added to BALM.

At the BALM level, it would also be desirable to make some

extensions, probably easy also, to the 'save status' and

'resume' routines. The scheme is easy because it pages

principally subroutines created at the SETLB level, rather

than paging all the routines in the BALM and BALMSETL libraries.

1. Patches at the SETLB level.

If a subroutine or fuction was to be paged, its SETLB

compilation would be modifed as follows:

definef f(arg1 , ... ,argn); ... , end f;

would be compiled as (we write in SETLB, but the

transcription to B~LMSETL should be obvious; explanations

are given following the code text itself)

definef setlbfnct(arg
1

, ... ,argn), ... ; end setlfnct;

setlbfnct = recoru(setlbfnct,savenumber);

/* 'record' is one of the two BALM-level primitives that

must be created*/ compute; do;

definef fname(arg 1 , ... ,argn);

sub= bringin(savenumber);

resuLt = sub(argl, ... ,arg n);

callno(savenumber) = callno(savenumber)-1;

return result;

end fname;

SETL 86-2

Quite similar code, of obvious form, would be used for

subroutines. The auxiliary routine bringin has the

following form.

define£ bringin(subnumber)

callrec(subnumber) = callcyno; callcyno = callcyno+l;

if callcyno ~ maxcyno then callcyno = ·l;

sub= pagevect(subnumber); callno(subnumber) = callno(subnumber)+l;

if sub ne O then return sub;;

/* otherwise, subroutine must be reloaded*/

sub= retrieve(subnumber); /*'retrieve' is one of the

two BALM-level primitives that must be created*/

return sub;

end bringin;

The conventions implicit in the above code are as

follows:

setlbfnct - is a reserved, global name, used simply as

a temporary to hold a pagea.ble procedure until it

is 'recorded' by the 'record' primitive.

savenumber - is generated by a counter maintained in

the SETLB compiler. A separate number is generated

for each pageable subroutine.

callno - this is a.BALM vector, whose n-th component

records the number of times that the n-th pageable

procedure has been called. This information is kept

to prevent active routines from being rolled out

and retrieved in separate copies.

callcyno - an auxiliary counter, kept cycling from 1 to

maxcyno, and used so as to make it possible to tell

which routines have been called most recently. this

information is of course used when in a space-pinch

it must be decided which routines should be rolled out.

SETL 86-3

callrec - a BALM vector, whose n-th component records the

last call-cycle on which the n-th pageable subroutine

has been called.

pagevect - a BALM vector, whose components are either

procedures or O. The component pagevect(n) is nonzero

if the n-th pageable procedure is present in core;

in this case, pagevect(n) equals the n-th pageable

procedure.

The BALM-level primitive record sets up the information

needed to page a procedure; the retrieve primitive brings

the binary from of a procedure in from external storage.

Notice that except during an initial record operation, a good

binary copy of a pageable procedure will always be available

on external storage, so that dynamic 'rollout' operations

are unnecessary.

We now go on to describe the innner workings of these

two primitives, and of certain associated garbage-collector

actions.

2. Patches at the BALM level.

a) The 'record' primitive record(proc,n) has the

following internal.structure:

do;

sizevect(n) = size (in words) of proc;

write proc out to external storage (probably using the

operating-system WRITEMS) function;

locvect(n) = address of this external copy;

callree(n) = 0; /* since routine has never been called*/

pagev~ct(n) = proc;

proc = 0; /* kill to make garbage-collectible*/

return; end;

SETL86-4

b) The 'retrieve' primitive retrieve(n) has the

following internal structure:

do:

request a block equal in size to sizevect(n)

from the garbage collector;

read the piece of code located by locvect(n) into

this block (probably using the operating system

READMS function);

return the start address of the block; end;

In the above, sizevect and locvect are probably FORTRAN

arrays in the interpreter-code area of BALM. The array locvect

may in fact be identical with the 'directory' which the

operating system requires for its READMS-WRITMS functions.

c) The garbage~collector must be modified in the

following rather trivial way.

ci) Immediately before the issuance of the 'can retrieve

less than 5% of storage; goodbye' termination insert the

following line (transposed to FORTRAN)

if canget(tenpercent * memorysize + blockneeded) then

go to garbstart;;

here

memorysize - size of memory in which currently running

blocksize - size of block requested from garbage collector

tenpercent - O~ or some ot~er reasonable constant

blockneeded- block requested from garbage collector

garbstart - first statement of garbage collector. By

transferring to it, we start up the garbage collector

compaction procedures, after the routine 'canget'

has dumped enough code blocks to free the space

which is required.

SETL 86-5

The 'canget' routine canget(nwds) acts as follows:

do:

insert n into an unused field of the n-th word of the

callno vector

sort (i.e. heapsort) callno on the values of

maxcyno + callcyno - callno(n) (mod maxcyno)-

this gives an ordering of pageable procedures from least to

most recently called;

put accumulated_space = freespace collected on last garbage

collector run;

work thru the sequence of sorted routines thus obtained,

beginning with the least recently called, the and doing

the following:

if callno of routine k is positive, bypass it,

otherwise add sizevect(k) to accumulated_space;

if accumulated_space is no less than nwords, put

result= true, and go to restore;

end of loop;

result= false;

restore: re-sort the callno vector into its original order;

return;

end of canget procedure;

A count of the total number of paging operations

might be kept by the retrieve routine, and

'excess paginy' error termination enforced.

SETL 86-6

3. Generalization to other BALM procedures; SAVE; RESUME.

a) The following scheme, based on the abov~ could be

used to make routines of the BALM or BALMSETL library pageable.

If procd is a procedure with n arguments, execute:

makepage(procd(arg1 , ... ,argn)),

where

makepage(procd(x)) means

do procd - record(procd,global ctr), globalctr=globalctr+l,

procd = proc(x), sub - bringin([present value of globalctr]),

result= sub(x),

callno([present value of globalctr}) = callno([present value

of globalctr])+l,

return(result) end end.

By calling makepage to a suitable list of present library

routines we might get down to smaller sizes.

b) The SAVE routine should be modified to save not

only core status (after compression) but also the set of

disc records set up by the record routine. This would merely

append a string of records (sep~rated by end-record marks)

to the end of the present BALM save file format. During the

save operation, locvect(n) would be changed to give the order,

in this sequence of records, of the binary copy representing

the n-th pageable procedure. The RESUME routine would then,

in addition to its present actions, read this sequential

sequence of records and write them (probably using WRITMS)

to randomly-accessible disc records, reinitializing corres

ponding locvect entries during this process.

SETL 86-7

4. Bells and whistles.

The scheme suggested might be adequate to support

operation on the 7600. For this use, it should be

generalized to support two levels of paging, one to

masscore, the other to disc. Presumably appropriate

routines akin to READMS - WRITMS are already available

for this purpose.

To give convenient user control over the choice of

subroutines and functions to be paged, a declaration could

be added to SETLB, having the syntax

This would stash away a set of subroutine names.

Subroutines not appearining in this collection would be

compiled normally; subroutines in the collection would be

compiled with the modifications indicated above. Even

better, since it would permit incremental definition of

the set of pageable routines, would be the slightly more

general syntactic form

where n is an integer.

(cf. section 1 above) to

This would set the savenumber counter

n,

name 1 , ... ,namek pageable as

n, n+l, n+2, ...

and hence make the procedures

procedures numbered

