
SETL Newsletter 87 
Workplan for the next phases 

of the SETL project. 

November 15,1972 
J. Schwartz 

This newsletter will outline the next main phases of our 
work, along lines which it is hoped are reasonable. The first 
phase will be fleshed out with a fair amount of detail; subsequant 
phases considerably less so. 

Phase 1. Development of a faster SETLB system; enhancement of 
same. 

Phase 2. New SETL syntax installed; associated semantic changes. 

Phase 3. Development of SETL optimiser and data structure 
elaboration language. 

Phase 1 in detail: Our essential strategy during phase 1 
will be to use the logic, and much of the text, of the BALM system~ 
adapting it however to drive Hank Warren's new run time library 
(SRTL) The basic tactic will be to use a BALM translator very much 
like the present translator, but to have this link to the SRTL 
routines for the execution of prinitives. This will permit 
systematic transition from the present BALM-written run-time 
libra.ry (BALMSETL) to the much faster new SRTL. Subphases will 
probably be as follows: 

Phase 1.0: Modify the BALM translator to generate inline code 
which handles SRTL data formats for the BALM semantic types 
(which will in large part become identical with corresponding SETL 
semanti~ types), rather than the present BAIM-BALMSETL data formats. 



This will involve replacing the present BALM garbage collector 
with the SRTL garbage collector(which is already debugged)and 
redoing in LITTLE a relatively small number of offline BAIM 

primitive routines, presently written in a mixture of FORTRAN 
and assembly language. This will give us a functioning BALM 

system, at essentially the present level of efficiency,compatible 
however with the SRTL library. This system will serve as a 
development and test-generation matrix during the remainder of 
phase 1. 

Phase 1.1. Progressively install SRTL routines for the 
important SETL primitives. If necessary, we can simply install 
one Set-Theoretic primitive after another, testing them as we go. 
However, if an appropriate technical plan for doing so can be 
devised, it might be better to interface between SRTL and the 
presently existing BALMSETL routines,progressively replacing BALMSETL 
library code as one goes. (The problem which must be faced along 
this line is that of interfacing with the data-object repre
sentation used in the run-time library.) This phase would then 
culminate in what is essentially the BAIM/SRTL system for which 
we will aim.At first, however, the system might be cluttered with 
removable bits of interfacing code. 

Phase 1.2. By removal o~ all extraneous bits o~ inter~acing 

code we would immediately produce the BALM/SRTL system which is 
our find phase 1 goal. 

Additional ongoing work during this phase will be: human 
factors and syntactic improvements, work toward an interactive 
system, optimisation of LITTLE, development of a big library of SETL 
algorithms.. Proposed syntax improvements during this phase: if tree 
statement installed, regularisation of multiple assignment, local 
rather than global as default for variables, possible elimination 

of'do; - compute;' in SETLB. 



Improvements in BALM: introduction of modified BEGIN-END having 
no implication for labels, to allow elimination of the irritating 
label-related restrictions which now affect us. 

During this phase we will also rewrite the SETLB translator in 
SETL, possibly emphasising use of the BAIM operations, and possibly 
adding a few efficiency-vital primitives (such as a lexical scan a 
top-down parse interpreter primitive, etc.). 

An improved method allowing the easy installation of LITTLE-written 
primitives should also be worked. out. This should package the following 

action in a convenient form: compile a LITTLE subroutine or subroutines 
representing a primitive, apply the system loader to it if 
necessary, bring it into the SETL memory area and set up all links 

needed to make it available as a primitive. 

A 360/LITTLE and a 360/Translator will also be prepared. 

We may also want to think some about the use of secondary 
memory thru SETL,i.e. , its use for data base experiments. 

Phase 2. in general outline: Phase 2 will be characterised by 
the development of a new SETL front end. The principal facilities 
to be provided by this front end are as follows: Systematic 
narnescoping capable of supporting large libraries of routines; 
us~r-definable object types with operations applying in an 
object-kind dependent way; modification of argument values from 
within subroutines and systematic implementation of the 
'sinister call' facility described in a. previous newsletter. 

During phase 2 of our work we should profit substantially 
from the availabilty of a SETLB system fast enoug'h to allow its use 
for algorithmic experimentation on a fairly wide scale. 



4 

we should attempt to stick to the development method which we 
preach: 

ation 
by just 

initial development of all algorithms in SETL, annot-
in the DSEL to define an implementation precisely, followed 

enough lower-level coding (in LITTLE) to reach acceptable 
efficiency. Lower-level code packages ought normally be primitives 
which can be interfaced to existing SETL operations. 


