
SETL Newsletter 90

Preliminary reflections on the

use of SETL in a data-base context.

1. Introduction.

December 5,1972
J. Schwartz

A set-theoretic language allows very natural statement
of many of the retrieval requests characteristic for the use of
data-base systems, and many investigators of such systems
currently incline toward a set-theoretic view of their logical
structure. However, the use of secondary memory in data base

systems presently quite inevitable, and is not clearly consistent

with a set-theoretic rather than with a more primitive approach.
A l~nguage for use in connection with large files requires dictions
in aid of certain fundamental optimisations affecting the pattern

in which data is moved between secondary and central memory.
This newsletter will propose such dictions,giving them a form

compatible with our present 'incore' SETL so as to allow SETL

to be part of an overall file-manipulation system. The dictions
to be proposed give syntactic form to certain semantic concepts

and primitive operators. We shall now define these concepts,
operators, and dictions, and shall subsequently use them to treat
a number of simple prototype problems, thereby illustrating the
optimising force of the proposed system.

2. Files.
We define the notion of file as follows. It is a tuple

(1) (body, length, function-code-mapping)

The body of a file is from the logical point of view merely a
very long tuple, but one which is in general too long to fit into

central memory.

It is of course precisely in view of this last-mentioned circumstance
that we introduce the concept of a file, rather than relying
exclusively on the logically simpler and more powerful set-th~oretic
notions amply available in SETL.

The length of a file is merely the length of its body.

Ea.eh component of the body of a file is a set of tuples,
having the form

(2) f (function-code-1, •••), (function-code-2, •••• '> , •••) •

Each such component is in general small enough for all the data
representing it to fit comfortably into central memory or to be
handled efficiently using a virtual memory. Thus calculations

involving only a single file-body component, and perhaps modifying
this component, can be regarded as 'incore' calculations. We
shall sometimes refer to a file-body component, as a file item.

The function codes appearing in (2) are small integers.

One such code flags each of the attributes of a file item

stored in the file component indexed by i.

The system user will think of these attributes as being named
(by character strings) rather than as being numbered. The name
(i.e., character string) to number correspondence which is necessary
in view of this last remark is precisely the function-code-mapping
appearing as the third component of (1). Suppose, for example,
that a file stores the attributes 'name', 'address', •telephone
number' of its items. Then, for this file, the third component of (1)
might be

(3) ((tname',1), (1addressr,2) ('telephone number',3) }.

In this case a particular file component might be

(4) ((1, 'JOHN D;JE') , (2, '111 MAIN STREET') ,

(3, 8770664) , (3, 4607381));
this example shows how a multi-valued attribute would be handled.

It should be noted that when file components are stored on
secondary memory, the sets and tuples of which they consist
(a,nd any further sets, tuples, strings, etc. which are contained
therein) are represented in a self-describing external form,
allowing unambiguous reconstruction after re-read.

A file in the sense of a triple (1) is always an incore item~
though of course the body of the file will normally be stored on
secondary memory, only necessary locators being kept incore as
part of (1). Each file will belong to the range of a comprehensive
system catalog-of-files. The integer n such that catalog-of-files
(n) is equal to a given file is called the file number of the
given file.

A file index is logically a pair

(5) (fileno, i temno)

consisting of an item number and a file number. The index is
only valid if fileno is no more than the size of the system
file catalog (and hence designates a file) and if itemno is no more
than the length of the file which fileno designates. File indices
will be specially flagged, and should therefore be regarded as
belonging to a seperate SETL semantic class (~ filei tern) existing
equally with strings, booleans, sets,etc. File indices will be
treated as atomic, and allowed to be components of vectors, members
of sets, and values of mappings; in particular, we allow them to
be values of file item attributes.

The following basic operations, added to the presently
existing SETL operations, support our proposed file system.

a) Creating a file: x = makefile;

this creates a file of length zero with a null body, and having
items without any defined attributes.

b) Destroying a file: destroy x;

this deletes a file and erases its body.

c) Defining initial or additional file attributes.
WWW

(6) x = name attrof file;

4

Here 'name' must be a character string, and 'file' a file. The
value x returned is a specially flagged pair consisting of the
file number of'file' and the function code of the attribute 'name'
such an item may be called a file attribute; file attributes
constitute yet another atomic semantic class.

If no attribute 'name' of the items of 'file' initially exists,
one will be created when (6) is called.

To test for the existence of an attribute, a direct reference
to the third component of (1), possibly in the form

(7) if file (3) (name) ne O then •••

can be used, of course, it might be useful to have a standard

for the boolean condition 'file (3) (name) 0 1 •

d) Retrieving and setting the value of a file attribute.

Suppose that f is a file attribute and x a file index referencing
the same file. Then we write f(x) for the quantity retrieved
by the following rule. Let f = (fileno, fatcode '> , and let
x = (fileno, n) • Then

(8) z = (catalog-of-files (fileno)) (n) (fatcode).

Similarly, f (x) is an abbreviation for

(9) x = (catalog-of-files (fileno)) (n) (fatcode),

while such generalised notations as f(x,k) are available as
abbreviations for

(10) f = (catalog-of-files (fileno)) (n) (fatcode, k),
etc. These syntactic constructs are also useable in left-hand
forms. Thus, for example, f (x) = z is an abbreviation for

(11) (catalog-of-files (fileno)) (n) (fatcode) = z,
etc. If x is a file index and fa file attribute, both
referencing the same file, then

may be used to add the n-tuple (ul' ••• , un) to the set f (x) •

This mechanism is of course useful for adding additional values of
multi-valued attributes.

An integer n may be converted into file index of the form
(5) by use of the operation

n indexto file

this produces a pair (fileno, n) (cf. (5) in which' fileno' is the
file number of 'file'

e) Creating, revising,and nulling file items.
Lets be a set of the form (2), i.e. a set which can be a component
of some particular file (this requires that the first component
of every tuple of (2) should be a function code valid for the filer).
Then we may write

(12) x = s into r;

This modifies r, adding s as a new component(concatenated to the
body of r.) The value of x returned is a file index, which of
course references this newly added item. If x is a file index
(referencing r) we allow the diction

(13) r (X) = S ,

6

which modifies all the information stored in the file body component

referenced by x. The values must be a set, and this set must

have the form (2),i.e., must consist of tuples each of which has

a first component which is an integer valid as a function code
for the filer. The elements of the sets will be checked for

validity at the time that the assignment (13) is made.

The special assignment

(14) r(x) = nl;

is of course allowed. This recovers the space normally required

to store the information associated with the x'th entry of the
file x. A 'null entry' is retained in r, so that x remains a
valid index tor even after the 'null assignment' (14) is executed.

f) Iterator over files, file former NUmber of components;

If f is a file, then we allow various dictions of the form

(15) (v x E: f) block;

which specify that a given process is to be repeated for all the

components of f. Iteration is in the serial order of file
components, a vital fact which the programmer is encouraged to
exploit. More generally, we allow

(16) (V X E: f c(x)) block;

which,as should be clear from the sematics of the corresponding
construction in SETL, bypasses each iteration for which the Boolean
expression C(x) has the value'false'. Still more generally, we
allow compound iterations

of essentially the same compound form as is familiar from prior

material on SETL. However, at most one file is allowed in the
sequence of range restrictions occuring in (17). This restriction
is imposed for reasons of efficiency. If more than one file
were involved in an iterator like(l7), very extensive input-output
sequences might thoughtlessly be called for. One will normally
strive energetically to avoid double iterations over files, for
this purpose passing either to the use of presorted files (cf.
the discussion of the sort primitive given below) or to the use
of procedurally coded special loops. A few examples of such
loops are given in a later section.

Each of the iterator dictions (15), (16), and (17) implies
a corresponding compound operator diction as well as set-former,
existential and universal quantifier dictions. Thus, if f is a

file, we allow

(18) [max: x ~ f] salary(x);

[+: x E: f l dept(x) ~ 13) salary(x);

:3: x E: f, y E: others 1 dept (x) -~g_ dept (y)

and salary (x) 3 (salary(y) + 1000)

if V x E: f I salary (x) lt 10000 then ••••

(x E: fl salary (x) gt 40000}

etc. As generally in SETL, seauences of range restrictions are
allowed in expressions of the form (18); we continue to impose
the restriction that at most one of these range restrictions can

imply iteration over a file.

Files being large, we will generally wish to extend iterations
over as small a part of a file as possible. To make this
convenient, we allow starting and 'while' modifiers to be attached
to a file iterator. A starting modifier, if present, defines the
initial file component from which an iteration is to begin (if no

such modifier is present, iteration over a file begins with the
first component of the file.) The syntax of a starting modifier

is as follows:

(19) (V x € f starting xfirst •••),

Here, xfirst must be a variable (or, more generally, an expression)

whose value is an index to the file f; in the iteration (19)
the initial value of x is xfirst, and iteration continues onward
from this component.

A 'while' modifier, if present, states a boolean condition
which must be true if iteration is to continue. If a while

modifier is present in an iterator and has the value false, the
iteration is terminated. 'T'he syntax of a while modifier is as
follows:

(20) (V x £ f starting xfirst while C(x) •••)

Modified iterators of the form (20) are allowed to appear in

such compounds as

(21) (V x £ f starting xfirst while c(x),y~s I D(x,y))

etc., under restrictions which will readily be deduced from the
preceeding discussion. Modified iterator-over-files are also
allowed in compound operators, set formers, and in existential

and universal quantifiers. Thus, for fa file, we allow

8

(22) [max: x£f starting xfirst while name(x) ~ a] salary(x);
axef starting xfirst while dept(x) ~ 13,y €others I

salary (x) ~ (salary (y) + 1000)

(x £ f starting xfirst while dept(x)~ 13 I
salary(x) _5! 40000),

etc.

In addition to the set former construct of standard SETL, we

provide a file former. The value of a file former expression is
a file. The syntax of a file former is

(23) (:attribute-name1 : (expression1) :attribute-name2 : (expression2) : •••

:attribute-namek: (expressionk), (iterator) I (condition)).

(24)

An example of the use of a file former is

subfile = (: 'name' : name (m) : 1 salary 1 : salary(m), me: personell
I dept (m) eo 13 and salary (m) le 10000);

In (23), attribute-namej must be a SETL variable whose value
is a string; each such attribute-name value comes to be an
attribute of the file created by (23), precisely as if

(25) attribute-namej = attribute-namej attrof file;

((6)) had been executed. The semantic significance of

(23) is defined by agreeing that the file formed by
(23) is identical with that formed by the following procedure.

(26) file= makefile;

attribute-name1 = attribute-name1 attrof file;

• • •
attribute-namek = attribute-namek attrof file;

(iterator) newitem = nl into file;

attribute-name1 (newitem) = expression1 ;

• • •

attribute-namek (newitem) = expressionk; end;/* of iterator scope*/

When several files must be processed 'against each other'
we will normally wish to sort each of these files into a desirable
order (cf. below) and to process them using some specially
contrived, handwritten loop. To faulitate this, the function

(27) fnext x

is provided. If x is a file index, the value of (27) is the
index of the next file component after x.

The length of a file is the number of its components. As
might be expected, this is evaluated by the expression

(28) # file.

g. A sorting primitive. Sorting is a process of concentrated
(and optimised) regrouping which brings specified data items
into significant relationships of physical and sequential
proximity. In the SETL file system we propose, sorting is
accomplished by writing

(29) newfile = compareop sort file;

In (29), 'compareop' is a binary, boolean valued function which
applies to a pair of file indices. The value of compareop(a,b)
is to be true if and only if component a is to preceed component
bin the sorted order desiredo The sorting process invokved by
(29) will make optimal use of the secondary storage device on
which files are maintained.

11

3. Some examples.

We will now use the dictions proposed in sections 2 and 3

to program various typical retrievals. For the following examples,

we suppose that a large 'personell' file is given, and that (at least)

the following attributes of 'file' items are stored in the file:

name:

department:

manager:

accumtaxes:

a character string

an integer

an index to the personell file

taxes paid to date (say, in fiscal year)

a) Find all employees named 'a' who work in a department also

containing an employee named 'b'.

bdepts • {dept (m) ,m£ personell I name (m) ~ b }

print {: val: (a,m, dept (m)) , m£ personell dept (m) E: bdepts

and name (m) 3 a} •

b) Find all employees named 'a' who work in a department containing

more than 25 employees.

count= nl· _,

(Vm£ personell) count (dept(m))= count (dept(m)) ormo +1;;

print {:val: <a,m,dept (m) >, m£ personell

name (m)~ a and count dept(m)) ~ 25}

In the preceeding x orrn y is a function returning the value

if x ne n then x else y.

c) Example (a) using an alphabetised index leading from

employee names to their indentifying indices in the personell file.

This index is assumed to constitute a file called 'index'. In the

following code, we assume a routine 'firstn', essentially of

search type (though it may even be assisted by having 'condensed

version' of 'index' available, possibly even incore.), which locates

the first item in 'index' containing a given name.

firstb
bdepts

= firstn (b,index);
= (dept (item (x), x £ index starting.firstb

while name (x) ~ b };
print (:val: (a, item (x), dept (1 tem(x))) ,

xg index starting firstn (a,index) while name (x) !t!1 a};

Note that the 'index' file assumed in the above could be
produced from the personell file by executing the following code:

12

index= namecompare sort (:name: name(m) :item: m, m£ personell};

The binary boolean function 'namecompare' used in this code
1s defined in term of a string primitive alphbigger as follows:

define namecompare (ma, mb):
return name (ma) alphigger name (mb);
end namecompare;

d) Using the same index assumed in (c), find all employees
named 'a' who work in a department containing at least one other
employee of the same name.

J..)

count= nl;
(Vxe: index starting (firstn (a, index) is start)while name (x) ea a)
count (dept (x)) = count (dept (x)) ormO + 1 ; ; -print (: val: (a, i tern (m), dept (i tem(m))) ,

IDE: index starting start while name i tem_(m) eq a

I count (dept(item(m))) ~ 2);

e) Given a file of taxes paid in current period (by employee

number,i.e., the index of an employee in the personell file)
update the 'accumtaxes' entries in the personell file. We assume
that not every employee occurs in the 1file of taxes paid', and
also that this file can contain several entries for a particular
employee. A programmed loop is used.

I* sort the file of taxes paid in current period, putting
it into order of increasing employee number * /

curtaxfile = compa.renumb sort curtaxfile;
I* the binary operator 'comparenumb' returns true

taxitem = 1

if two items of curtaxfile are in the relative order

of employee number * /
. ,

(V x E: personell)

(while (employeeno (taxitem) is curemp) le x doing

taxitem = nextf taxitem) if curemp eo x then

accumtaxes (x) = accumtaxes (x) + tax (taxitem);; end while;

end Vx;

f) Find all employees who have the same name as precisely
two other employees. This becomes quite procedural.

index= (:name: (m) :item:m, m£ personelll;
namecompare sort index;
namenow = O; items= nl;

x file= makefile; set= 'set' attrof xfile;
(V x € index)

iftree
toomany ?

noopn, namesame?

countup, exact?
addto + restart,
restart;

toomany: =(#items) gt 3;

noopn: noop;

namesame: = name (x) ~ namenow;

countup: if(# names) lt 3 then item (x) in items;;

exact:= (#names)~ 3;

restart: items= (item(x) 1;

addto: y = nl into xfile; set (y) = items~

end iftree:

end V:

I * now print xfile * /

(V x € xfile) print name (3 x), x; end V xj

14

4. An important optimisation: jamming.

Iteration over an entire file may be a lengthy and expensive
process. It is therefore important to detect cases in which
several operations which might otherwise require seperate
iterations over the same file can be performed together during
a single iteration over the file. This optimisation is the
analog for files of the procedure of 'loop combination' or 'jamming'
by which the contents of several independent do-loops with
identical limits are combined into a single loop to save iteration
count overhead. Of course, the corresponding file optimisation
can have a much greater advantage than would normally be attained
by incore loop combination.

In some cases, an optimiser will be able to determine that it

is possible to combine several iterations-over-files into a single
iteration. It might also be useful to provide dictions allowing
such cases to be signalled by the user. For example, some type of
syntactic parenthesisition might be used to mark a group of

statements all of which were to be performed during one common
iteration over a large file.

Since data base systems will normally be used in a timeshared
mode, one may wish not only to combine iterations initiated by a
given user, but even to collect independent iterations over the
same file initiated by several independent users,
them all at once in a single pass over the file.
be substantially enhanced by this procedure.

and to perform
Efficiency may

5. Various important problems which this newsletter evades

or ignores.

A data retrieval system will normally be used by persons
who wish to enter queries and receive information, but who

.lb

prefer very strongly to avoid all involvement with programming in
its normal procedural sense. From this point of view, it must
be admitted that far too many procedural details show through in
the style of retrieval programming illustrated in the
section 3.Comprehensive removal of this objection probably requires
a system which can choose approprate search strategies automatically
by the use of some type of dynamic optimisation procedure. It
is not at all clear how this should be done; at any rate the
preceeding proposal merely evades this very important question.
In favor of such evasion, it may of course be argued that the
creation of an appropriate set of procedural file oriented dictions
is a necessary preliminary to the development of file-search
optimisation techniques.

Data base systems will normally be us~d in timeshared mode,
and therefore require a comprehensive set of system protections,

which ration and control the ability to create files (especially

large or premanent files), and to access or modify files or fields
within files. Moreover, mechanisms which 'jam' iterations over
files initiated by several seperate users into a smaller number of
iterations can be quite important to overall system efficiency.
Of course, all these issues, together with the dictional problems
they raise, are ignored in the present newsletter.

6. The file concept and file-namepulation techniques from a

more general point of view.

The progress of hardware technology is rapidly bringing us
to a point at which logic can be associated with memory on a
for more lavish basis than that to which past experience has
made us regard as normal. In the limit, these technological
advances might allow a small computer to be associated with
every one of a great many small memory blocks out of which a very
large computer memory (say, a 1024 bit memory) was put together.
It is worth assaying the effect that this might have on the file
notions reflected in the prior parts of this newsletter. In such
an environment both memory size and computing power in the sense

.l (

of comparisons performed (lavishly available for parallel operations)
will be much less significant comstraints than they are at presente
The most crucial constraint is apt to be internal communications
bandwidth, i.e., access to the master buses which carry information

from •one computer section to another, or which'brodcast' information
from one computer section to all or many other sections. In such
a situation, a central process is obviously the regrouping of
information to bring into physical proximity items of information
which must iteract. This last remark underscores the importance
of sorting in the handling of large amounts of data; as notej
previously, sorting is a process of concentrated (and optimised)
regrouping which brings specified data items into proximity.
From this point of view, the file notion can be seen as a general
scheme for imposing a pattern of physical proximity on the
manner in which we store values which may very likely interact in
particular,the values of various 'attributes' of a single 'object')

Additionalaly, files have an overall serial order
having exploitable implications for physical proximity of data.
The extraction or production ofnew files from old is undertaken
partly for the algorithmic significance (as sets) of these new
files, but partly also for the proximity implications of the
file-build process.

The set-theoretic dictions which SETL embodies may have an
interesting degree of appropriateness to the type of

'active memory' computer configuration which we contemplate.
Note in particular that a set of file indices could in principle
be represented by numerous disjoint subparts, one in each memory
section to which a mincomputer was attached. This might allow
us to recognise that certain iterations of the form

(V X € file) block;

could be carried out in parallel. The parallel evaluation of
various associated expressions of set-former, existential, and
compound operator type might then also become possible. One

might even hope to design an optimiser which could unravel the

inter-memoryblock communications implications of a sequence of
SE'TL statements, and atomatically 'precondition' for
execution by generating appropriate sorting operations. This
line of thought, though optimistic, raises problems deserving
of study.

18

