
SETL Newsletter 91 

A 'grammarless' parse and a related 
procedure for retrieval by similarity. 

1. Description of algorithm. 

December 7, 1972 

J. Schwartz 

This newsletter will outline a procedure which, given 

an arbitrary string of characters, will assign it one or more 

parse trees·. The procedure resembles that used in the' nodal 

span' type of parse. However, it uses no grammar, but instead 

is steered by the statistical properties of the string being 

parsed. It is presented as a contribution to the well known 

problem of learning the grammar of a language from samples 

of the language. An experiment to check whether the program 

to be described is capable of learning the tokens of English 

from samples of English text wculd be interesting. 

Overall, our scheme is as follows. A text consisting 

of a string of characters is given. It is first reduced by 

the elimination of all characters which follow three immedi-

ately preceding identical characters. (Principle of 'fatigue'). 

The process which now follows makes use of a 'maximum 

number of allowed divisions' parameter md, and of a 

'threshold' parameter th. 

Scan begins. During scan, a 'known words' dictionary is 

maintained, as is a 'word pairs encountered' collection. The 

dictionary is maintained as two differently arranged copies, 

for a reason which will be made plain below. Items in the 

dictionary bear unique numbers. They may be thought of as 

having the form 

(1) <wordnumber, string(representing word), 

divisions(of word into smaller words)> 

Since however some of the 'words' generated in the process 

to be described will actually be whole sentences, paragraphs, 

or even pages-long substrings of an initially given string, 

we will prefer to represent the 'string' component of (1) 

by two integers, the first a starting character position, 

the second the string's length. Thus instead of (1), our 

dictionary entries actually have the form 



SETL 91-2 

(2) <wordnumber, starting character, length, divisions> 

In (2), 'divisions' is a set (of not more than md elements); 

each of the elements of this set is a pair of words; 

each such pair indicates one way in which the word represented 

by 2 can be divided into a left and a right-hand part. The 

form of such a division-pair is specifically 

( 3) <wordno£ , wordnor> 

Here wordno£ and wordnor are the number of the left- and 

right-hand words into which the word (2) may be divided. 

The items in the 'word pairs encountered' collection have 

the following form. 

( 4) <wordno£ , wordno , count> 
r 

In (4), wordno£ and wordnor are wordnumbers representing 

a pair of overlapping words encountered in the input stream; 

count represents the number of times this word has been 

encountered. 

Whenever a pair d of successive characters is encountered 

in the input text, either an item like (4) but of the special 

form 

(5) <s,0,1> 

is built, or the count of an existing item <s,O,n> is 

incremented. At the point during scan at which the j-th 

symbol x of the 

input is being scanned, the following operation 

is carried out. The longest word w£ terminating at xj 

and the longest word w beginning at x. are formed. The 
r J 

count associated with the pair (wt,wr) is incremented (or 

initialized to 1, if (wt,wr) is a pair not previously 

encountered). If this count exceeds the threshold th, then 

the pair (wt,wr) is placed in the division set of the 

concatenated w£+wr; this word being issued a wordnumber 

and added to the known word dictionary if necessary. However, 



SETL 91-3 

we never add more than md elements to the division list of 

any word in the dictionary. 

The word dictionary is maintained in two copies arranged 

differently. The first is indexed by the two initial 

characters of words, individual words with these initial charac

ters then following in a list; the second is similarly indexed 

by the two final characters of words. 

As scan proceeds, longer and longer words will be formed. 

A given source text is scanned repeatedly until a word equal 

in length to the whole text develops. The recursive pattern 

of divisions of this word represents the parse.of the input string. 

The words relevant to this parse (i.e., occurring as such a 

division) are the words 'learned' by scanning the string. 

2. Text of algorithm 

We now use SETL to represent the procedure just described. 

(The following code is complicated somewhat by the desire to 

have a code which will transpose readily to an efficient 

BALM program.) 

/* eliminate repetitive characters*/ 

revinput = input(l:3) + 

[+: 3<n~#input] if #{input(n-k) ,O~k~3} ~ 1 

then nulc else input(n); 

/* plausible values for controlling parameters*/ 

md = 3; th = 4; 

/* initialize dictionaries, etc. */ 

twdict = nt; rwdict = nt; wordsenc = nt~ wnct = l; 

/* loop repetitively over input, forming longer and 

longer words*/ 

noparseyet = ~; (while noparseyet) 

n = l; (while n tt # revinput doing n = n+l;) 

nowc = revinput(n:2); 

if wordsenc(nowc,O) is count~~ then 

wordsenc(nowc,0) = l; 

else if count te th-1 then 

wordsenc(nowc,0) = count+l; end if; 



SETL 91-4 

if count~ th-1 then 

/* enter character pair into word dictionary*/ 

twdict(nowc) = twdict(nowc) orm nt 

with< wnct,n,2,nt> is newwd ; 

rwdict(nowc) = rwdict(nowc) orm ni with newwd; 

wnct = wnct + l; end if; 

/* find longest word terminating here 

and longest word starting here*/ 

mi= l; {while if mi 9!::_ n the~ f else 3 tic (iwdict(nowc)~ ni) 

Jrevinput(ti(2) :ti(3)) ~ revinput(n-mt; mt+l)) 

mi=mi+l; tlf = ti; end while if; 

mr = l; nowcr = if n+mr ~ #revinputthen ~ 

else revinput(n: 2); 

(while if n+mr .9'..! #revinput then f else 

]tr e (rwdiot(nowcr) orm nt) I (revinput(tr(2) :tr(3)) 

~ revinput(n: mr+l)) mr = mr+l; trf = tr; end while if; 

/* pair operation only if left and right words 

contain more than one character*/ 

if mite 1 or mr te 1 then continue while n;; 

/* otherwise do pair-count operation*/ 

wt= ttf(l); wr = trf(l); /* wl and wr are word numbers*/ 

if wordsenc(wt,wr) is count~~ then 

wordsenc(wt,wr) = l; 

else if count ie th-1 then wordsenc(wi,wr) =count+ l; 

end if; 

if count~ th-1 then 

/* enter concatenated word into word dictionary*/ 

/* first determine its start and end*/ 

start=n-mt+l; wend=n+mr-1; length= mr + mi - l; 

star2c = revinput (start:2); end2c = revinput(wend-1:2); 

/* now put in both dictionaries */ 

£wdict(end2c) = putinw(twdict(end2c) orm nt, start,length,wi,wr); 

rwdict(star2c) =putinv(rwdict(star2c)orm ni, start,length,wi,wr); 

/* check to see if have complete parse*/ 

if length~ #revinput then/* parse is complete*/ 

noparseyet = f; quit while n; end if length; 

end while n; 



SETL 91-5 

end while noparseyet; 

/* now remove from the word dictionary all 'irrelevant' 

words, i.e., those which do not arise from the 

longest word by a process of division*/ 

relwords = ni; topword = <revinput(l:2), wnct-1>; 

divide (topword,!); 

stop; 

/* here follows the putinw procedure*/ 

definef putinv(dictlist, start, length, wi, wr); 

if not 3x e dictlistlrevinput(x(2) :x(3)) ~ revinput(start:length) 

then/* insert into dictionary*/ 

newelt = <wnct, start, length,{ <wi,wr>}>; 

wnct = wnct+l; 

return newelt; end if; 

/* otherwise item is present. make addition to division set*/ 

return <x(l) ,x(2) ,x(3), 

if (#x(4)) ~ md then x(4) else x(4) with <wi,wr>>; 

end putinw; 

/* here follows the recursive 'divide' procedure*/ 

define divide(word, havefirst); 

word in relwords; <chars,wno> = word; 

<start,len,diVset> = if havefirst then rwdict(chars) (wno) 

else lwdict(chars) (wno); 

if len ~ 2 then return;; 

/* otherwise must divide recursively*/ 

schars = revinput(start:2); 

£chars= revinput(start + len-2:2); 

(~pair e divset) divide(<schars,pair(l)>,!); 

divide(<lchars,pair(2}>,f); end Vpair; 

return; end; 



SETL 91-6 

3. A similarity primitive for an artificial intelligence 

oriented extension of SETL. 

A defect in the procedure presented above is that it 

insists on identity rather than similarity in the learning 

process. A wider net is cast if this restriction is relaxed: 

this will allow the program to learn even in the presence of 

input containing a degree of 'noise'. 

We will now describe a primitive of 'pattern similarity' 

type which a hunch and a small amount of experimentation 

indicate might be useful. In heuristic terms, the primitive 

compares each one of a prestored 'dictionary' of SETL objects 

x1 , ... ,xn to another such object y, and forms what is essentially 

the set of all x. similar to some subpart of y. Similarity 
J 

is here taken in the following heuristic sense: a set of 0-1 

valued 'features' is formed for each of the items x. and for 
J 

the item y. These features are formed by applying some 

collection f 1 ... fk of numerical-valued functions to the xj 

and toy, where all the functions f. have (i.e., are forced to 
J 

have) values in some prespecified range 1 ~ n < nmax. The 

set of features associated with each x is then {f. (x), 1 < i < k}. 
l 

Clearly this set may also be represented by the 'feature-bit' 

string obtained as follows: 

bstring = nmax * Ob; (1 < lti < k) bstring(f.(x)) = lb;; 
- - l 

We say that y selects x. as similar to a subpart if more than 
J 

half the features of x. are present in y. The primitive we 
J 

propose is that which, given x = {x1 , ... ,xn} and y, forms the 

set {x. , ... ,x. } of all elements of x which, in this sense, 
. ll lm . 

are similar to a subpart of y. 

This operation is of course easily expressed in SETL. 

We suggest it as a primitive since, if it is found useful 

and extensively used, its efficiency would be important. 



SETL 91-7 

An experiment testing the utility of this primitive will be 

reported on below. We shall see also that the proposed 

similarity primitive has interesting relationships with the 

grammarless parse described in the preceding section. 

A detailed SETL specification of the proposed similarity 

primitive is as follows. 

definef symbyfeats(a,b,setoffeats); 

/* a and bare objects, setoffeats is a set of integer

valued mappings used to form 'features' in the sense 

explained above*/ 

/* the boolean value returned by this function will have 

the value t if a is found to be similar to a substring 

of b */ 

afeats = {f(a), f e setoffeats}; 

bfeats = {f(b), f e setoffeats}; 

return (#(afeats * bfeats)) g_! (#afeats)/2; 

end symbyfeats; 

In situations in which the collection setoffeats of maps 

is understood, we may write this same primitive, with suppression 

of its third argument, as simtosub(a~bJ. Other closely related 

notions of similarity, easily defined in terms of the primitives, 

will also be found useful in what follows. 

If primitives of the type envisaged turn out to be widely 

useful, their optimization may be an important problem. Note 

that a trivial algorithm allows all those items in a collection 

of N items which are individually similar to the members of 

an input stream of K items to be found in NK operations. 

The question as to how much this trivial upper bound can be 

improved deserves to be studied. 

Note also that in dealing with serial input (input strings 

or tokens) it is reasonable to form features in the following way. 

Take all pairs of successive characters present in ,a string. 

Each such pair may be regarded as a pair of bytes determining 

a (12 or 16 bit) integer. Reduce this modulo some constant 

equal to a small multiple of machine word length. The resulting 

residue is a feature. 



SETL 91-8 

This procedure, tested experimentally against a collection 

of about 2000 tokens, seems to perform well, i.e., to retrieve 

a reasonable number of tokens similar in an intuitive sense 

to a given input, rather than an over-large number of tokens 

most of which have no intuitive similarity to the input. The 

following computer output will allow the reader to make his 

own judgement of this heuristic issue. 

Test 1. Retrieval by similarity from a group of 2000 tokens 

used in a computer program. 

17 T n K r~ S S lt'1 l LA R TO Ml N H T SI Z r. SIM ILA R 
E 8 L K S I Z E 8 L K S I Z E M I N L, S S I G ~! H T S I Z E 
MJNHTSZLOG MSG SIZE OIMINIS 

2 TOKNS SIM!Ld~ -TO RCALL SIMILAf; 
CALL REAL 

20 TOKNS SIMILAR TO 00047 
0000000000 00004 00007 
00041 00042 00043 

24 TOKNS SIMILAR TO 00048 
oooooooono OG004 ooooe 
00038 000400000~ 00040 

19 TCJKt,S SIMILAR TO 00049 
oooooooono o □ oo4 00009 
00041 00042 00043 
. 3 TflKl·~S SIMILAR TO MA<.:;KN?. 
A2 N2 NASK 

SIHILAf; 
00017 
00044 

SIMILA~ 
00014 
00041 

SIMILAF 
OU019 
00044 

SIMILA~ 

5 TOKNS SIMILAR TO E~RlMPl SIMILA~ 
ERR IMP ;d:Rl~ I MPL C Errnv AL EHRtl IX 

15 TOKI-JS SIM l LAK TO E~ n l FLABl.:L SIM I LAR 
END IF 1 LAP L Et JD TI I E f\ 5 LA 8 EL E 1-J DJ F 
END I F 2 E i JP I F ~ E NO I F' :3 L A D L EI. St: L A R F L 

19 TUKl1S SIMILAn TO CASESCl·1/~lt SIMILAF 
CHAC MAXLSCHAR CHAR CS 
CHARSUB CASESLAPl:1. SCHAR C,4\SFREAL 

1 TOKNS SP1!LAR TO Al,XOF SIMILA~ 
OF 

TOKEt,S ARE 
tt 1 N 

1MJNUS 
TOKE:t:S ARE 

lOKE~'. S ARE 
000000000[) 
00045 

TOKEt.S ARE 
0 0 Oj 8 
00042 

TOKH, S ARE 
CiOOOOOOOO; 
00045 

TOt<H'S ARE 

TOt<U S ARE 
ERRCRI 

T OKE~IS ARE 
F:NDIF5LAB
f:f\DIF2LA8_ 

T CJ K r: ~- S ARE 
CASETVP 
CASFCdAR 

TOt<Ef,S ARE 

6 TOKNS SIMILA~ 
NH ITS 

TO tCNE~JTSSt SIMILAF TOKE~S ARE 
BITS E lJ W E I T S t N D T Y E:: T E N U ~• A I T S 

TO W~ILE1 SlMILAF TOKEtS ARE 

ESETSIZF-
U ~1 BITS I Z E 

0 0 0 fl O O O ~ 0 1 
0 o,o 46 

0 0 0 0 0 0 0 C O 1 
0(1043 

o r o ri o e t' ri o ~ 
0 Ll O 46 

I 
I ) :i 

' I ~ ·1 
I 
I 
I 
i 

'l i 
n ,, 
" I 

"[' 

r, (I 

"' 
n [I 

r: t 

9 TOK 1,1 S S IM ILA f~ 
W H I L E 1 LOOP r/ 1-d LE 2 

1 2 T O K N S S I ;1 I L M~ 
WHILE1 °fJHlLE~~ 

WHILE3 WH1l.E4 E:Nll\.JHILE1 
TO W~ILE2 SIMILA~ TOKEtS ARE 

WHILE4 W11ILE2:.-;Tf;T 1.::I\/D~:HIL!::2 

WHJLE3STRT II 

\.IHILE3STrH ~t 

W H 1 LE 2 L COP C CJ ~lT W Ii I LE;, 
1 0 T n K N S S I M I Lt, ~ T O l·H· I L f. 3 SIMILAF TOKEfS ARE 

3 WHILE 1. WHILE2 WHILE4 (NDWHILF3 

[continued] 



SETL 91-9 

14 TOKNS SIMtLAR TO I-H·ILE4 SIMILA~ HiKU·S A~E 
WHILE 1 L COP ~~HILE l w HILE 2 rl h I l. E 3 Hill IJ HI Lt 4 
WHILE WHILE3L00P WHILE2LOOP WHILElSTRT 

13 T OK N S S I M I L AR T O ii R E A L C O I J V S I M I L/1 ~ T OK Et-. S A R E 
'/.A'f. Hl:ALVt.L ;tTUFL CONV ;t80llL cut--V t.TOTAL CP 
ii!REAL1 • 0$?! tl..ABL co:,1v REAL 

9 TOKNS SIMILAR TO ARGOK SIMILA~ 
ARG1 A~G2 ARG3 AOK 

8 TOKNS SIMILAR TO ERRIHP SIMILAR 
ERR I MPL ERRTYP TEMP !HEMP 

4 TOKNS SIMILAR TO AROTUP SIMILA~ 
ARG1P AHB ARG2P TUP 

TOKEf S Ar-!E 
ARG1P 

TOKH.S ARE 
DIMS IMP 

TPKEfS ARE 

10 TOKNS SIHIUAR TO SETSETS S[MlLA~ TOKE~S ARE 
s S5ET SET TEST SFTA 

17 TOKNS SIMILAF{ TO 00050 SIMILA~ TOKEt:S AF!E 
0000000000 o oooos ooonooooco 0000000001 
00055- 00056 00057 00058 ~000 

13 T OK N S S I ;1 I L A R T O W I- I L E 2 S T H T S I H I L A ~ T OK E t S A R E 
W H I L E 1 W H I L E 2 W H I L E 3 W H I L E 4 1-J H H. E 3 S T R T 
WHJLE2E~DL ~HILE~L00P WHIL~1STRT 

4 TOKNS SIMILAH TO CI-AR~LK 
CHAC CHAR BACK 

19 TOKNS SIMILAR TO 00051 
0010000000 oooooooocn 00001 
00041 00050 00052 

SIMILAR 
CHAi~8ST 

SIMILA~ 
00005 
00053 

TOKH.S A~E 

TclKELS AP.E 
0 0 0:11 
00054 

-,.TOTAL CP 

00Q35 
500 

QU I TWH l Lf.'.1 

00015 
00055 

Test 2. Retrieval by similarity from a group of 1000 words 

in Enqlish (Pharmacological text). 

6 TOKt-.S SIMILAR TO r I8RES S I ~I I L A R T OK Er S APE 
RES f I F'IGURE MESS r1u·s FIBRE 

17 TOK~S SIMILAR TO IN~IBITING SIMILAR TOKEf S ARE 
INHIBITOR INHIBINOT THINGS iNHIBITORY IN IT 
INITIA PJHl8ITS ACTl\G INHIBITEt'I INH!RITED rrrnJBITION 

1 TOKt-.S SIMILAR T_O IMFL,Y SIMll..l'IR TOKEI S ARE 
SIMPLY 

9 TOKt-.S SIMILAR TO Sl~PLE SIMILAR TOKEf·:S ARE 
SICE SIDE TIME LE SJTf" SE 

16 TOKt-. S SIM I LAR TO SUGMAXILLA SIMILAR TOKEf 'S ARE 
SAS SALIVARY WILL HALL SAMr GLA 
SU4 GRAUS SUPRAMAXIM USUALLY CAU~f: SUBR 

11 TOK~S SIMILAR T O ~J I urn /1 i~ D T SIMILl'IR TCKEr S ARE 
HAD AD WHAT WI LHlrnELA T HAN~ THEAl~D 
TOAD 

?1 TOKf\S SP!TLAR T0 rO1TJS0t_ ST MI L ,\ P TOKEf'S i\PF 
C ' C I (l. ~G C,JNTi';C1 LLEO 
C O R T I S O ~, F. CLYCOSIDES CAf<CCSIDES (01'POSITIO ISO!'ETRJC CRITICAL 

18 TOKf\S SIMILAR TO OCCURRING SIMILAR TOK Er ·s ARE 
ACCOHDINr. GIVING RISI~G sun NG RINC oc 
OCCURf~ED t-'EASURING COOLING MOrcING R I r~ r s OCCURS 

[continued] 

.. , ,, 

r:; 

l 



SETL 91-10 

16 TOKI\S SIMILAR TO POTASt-'.S SIMILAR TOK~rs ARE 
WAS AS SAS POTASSI POT.:.SSIUM MA 
GAMMA POTASS PLAS~A POTASSIUMM ror·ssru:IT POTASSlUOR 

3 TOKf\S SIMILAR TO KNCWU SIMILAR TOKEl:S Af;E 
ON I\ON WN 

11 TOKt,S SIMILAR TO BEING SIMll.AR TOKEl'S ARE 
BE GIVING SINl~G EE/\.TING £3IG RING 
E3El.,IEVING 

19 TOKI\S SIMILAR TO sEcorrns SIMILAR TOKEr·s ARE 
s SECR ENDS SECTION MESS SE 
SECONDARY SLICES SECO:\D Klr'DS sourcrs sr:cTIONS 

26 TOKt--.S SIMILAR TO ESTAOLISHE SJMJL,.,R TOl<El'S ARE 
THES EHRLI~S I S ClS ANALYSE LIST 
OESTRADIOL CIMINISHEO SLICES SITES srnrs DIGITALIS 

2 T OK f\ S S It1 I L A R TO BLOOD SIMll..AR TOKEIS ARE 
DO GOOD 

33 TOKI\S SIMILAR TO I N ..; E C T I O l·J SIMIU1R TOKEr S ARE 
WITHIN l t~ ACT I V A TE JNACTIVATl ATION SE C7 I or~ ADDITION 
JONS I 8 I T I Or~ ILA TIO rJ DI 01'l ION Of.I 

14 TOKI\S SIMILAR TO AREE:H SIHILAR TOKEl'S ARE 
AT ARED AHER APJ.FH GEN: AHE 
0 I FFEREl\l PREVE~T PRESENT ABSENT 

4 TOKI\S SIMILAR TO ,RlMENTS SIMILAR TOKEr:s ARE 
MESS SS INTRIGUINE SYSTE:M 

8 TOKf\S SIMILAR TO SHOWE SIMILAR TOKE!'S ARE 
SHO~JED SHQI~ WERE SE HE SHOWEDABAI 

21 TOKI\S SIMILAR TO CHARLES S 11'11 l.,,R TOKEI SARE 
CAR THES CA CH,~ RGE: CHAr GE CHE 
CARE CASE GRAUS REliOSTS CLE :.riL Y CLEAR 

8 TOKf\S SIMILAR TO ~Jl'TGHT SIM I L.:.R TOKEf·'S ARE 
THT HT IT WITHOUT HITF WITH 

6 TOKf\S SIMILAR TO SHCWN SIMILAR TOKEI S ARE 
SHOHEP SH JtJ SHOW ~IN SHO'.'E SHOWS 

38 TOKf\S SIMILAR TO OBTAINED SIMILAR TOKEr S ARE 
AD CETAILED TAENIA DETFRM Irff D w~n- NEED 
ARED TED ED INITIATED SAE' SATURATED 

10 TOKf\S SIMILAR TO SHCWS SIMll-.AR TOKEf S ARE 
s SHAW WAS SHOWfD SHO'.,. GHOSTS 

1 TOKt\S SIMILAR TO LURE OF TH SllilL!,R OKEi S Ah E 

Note in connection with Test 2 that the test program 

used happens to break words occurring at line end into parts, 

leading to the presence in our listing of various word fragments. 

~ 
fl 

~ 

F 
I 

I 
I 

t 
C: 

' 
c' 
r 
L, 

' I 
I 

~ 
! 
I 

' 

F 
C 

C 



SETL 91-11 

4. Generalizations. Parsing against an initial dictionary 

of words. Parsing indefinite input. Combinability of 

parse processes. 

A crucial point concerning the procedure presented in Sec.2 is 

that it will tend to accumulate composites of composites just as 

rapidly as composites of single elements. Thus the parse 

tree which it grows tends toward balance rather than toward 

a highly unbalanced structure. The relevant words which 

survive at the end of the parse will be simple and composite 

patterns of common occurrence in the input. 

This procedure is of course presented as a model for 

learning, applicable in case of serial input. Thus it might 

be applicable to the learning of phonemes, syllables, words, 

and phrases. However, the manner in which generalizations 

and abstractions are formed still remains unclear, as does 

the analysis of visual inputs, which must depend on 

principles of proximity other than the principle of temporal 

proximity which may be sufficient for the discussion of 

serial inputs. On this last point, however, the 1965 experi

ments of Hubel and Wiesel are suggestive. 

Note that the collection of items learned by the program 

will depend not only on the mass of text presented to it, 

but also on the order of items in this text. For items to be 

learned easily, they should occur frequently in highly 

repetitive text, or, more generally, occur with fair frequency 

in text in which they are separated by items already known. 

This suggests a series of 'graded readers' as being ideal 

for the training of programs of the type presented above. 

Alternatively (for computers) the word dictionaries used 

in the preceding algorithm can be initialized. In dealing with 

a purely associative, slowly reacting organic memory this 

last is unfortunately not possible, but suitably concentrated 

repetition (with enough variation to prevent repeated-single

symbol fatigue from cancelling the input stream) might have 

similar effects. Note however that the desirability of 



SETL 91-12 

We shall now indicate how the algorithm of section 2 can be 

modified to allow the principle of similarity described in section 3 

to replace that of identity. The necessary similarity primitive will 

be represented by a boolean-valued function simtosub(a,b) which 

has the value t if a is similar to a substring of b. The 

data-structures used in the modified algorithm are exactly 

like those used in the unmodified algorithm. Most of the 

code remains the same in both cases. However, the section of 

code from the comment 

/* find longest word terminating here and longest 

word s_arting here*/ 

to the comment 

/* pair operation only if left and right words 

contain more than one character*/ 

is replaced by code which reads as follows; 

mi=l; (while if m ~ n then f else 

3t£ c iwdict(nowc) orm n£ I 
<t£(2) ,t£(3)> islike <n-m£,m£+1>) 

mi= m£+1; tlf = t£; end while; 

mr = l; nowcr = if(n+rnr) .9:! #revinput then~ 

else revinput(n: ~); 

(while if (n+mr) g.! #revinput then f else 

3tr c rwdict(nowc) orm n£ I 
<tr(2) ,tr(3)> islike <n,mr+l>) 

mr = mr+l; trf=tr; end while; 

The binary boolean operator islike will be defined in terms 

of the simtosub primitive immediately below. Essentially, 

a islike S will be true if each sp-symbol-long subsection of 

the string Sis similar to a subpart of a similarly placed but 

slightly longer subsection of a. Here, sp is some measure 

of 'attention span', which in our intended application may be 

taken to be approximately 5 characters. 



SETL 91-13 

definef pairl islike pair2; 

/* the input string revinput is assumed to be transmitted 

globally; sp is a constant having the significance just 

explained*/ 

<startl,lenl> = pairl; <start2,len2> = pair2; 

/* strings of radically different length are rejected*/ 

if(abs(lenl-len2)) s_"!::_ sp then return f;; 

return 1 ~ Vn ~ lenl I 
simtosub(partof(revinput,startl+n,sp), 

partof(revinput, start2-sp+n, 3*sp)); 

end islike; 

The substring-extraction function partof used in this routine 

has the following definition. 

definef partof(string,start,len); 

realstart = start max 0; 

reallen = #string - start+ 1 min len; 

return string(realstart: reallen); 

end partof; 

The principle of retrieval by feature similarity embodied 

in the modified algorithm just presented has important properties 

of stability which allow the parsing procedures we have 

considered to be generalizedd in quite significant ways. 

As already noted, a reasonable collection of features to 

use in handling 'serial' inputs may generally be derived by 

dividing the input into local 'elements' or 'characters' in 

some suitable way and then collecting pairs of adjacent characters. 

These pairs, hashed, may be taken as features. We establish 

an important property of this method of feature formation by 

considering the case in which the successive characters of an 

input text are not known with perfect precision, i.e. in which 

it can only be asserted that the character in the j-th position 

is one of some sets. of possible characters. If in such a 
J 

situation all possible pairs of adjacent characters are collected 

and used to form features, the number of features present will 



SETL 91-14 

be multiplied by the square of the average number of elements 

in the sets. , rather than by any higher power of this number. 
J 

Thus the 'blurring' occasioned by the indefiniteness of the 

characters in the input stream has relatively limited effects, 

and, provided that the collection of features formed was 

scattered into a reasonably large range, will not necessarily 

lead parse processes of the above type to catastrophically 

indefinite results. 

An algorithm for parsing indefinite input can in fact be 

formally identical to the above-presented second version of our 

'grammarless parse' algorithm. It is only necessary to note that 

the simtosub primitive invoked in this algorithm can apply with 

little change to a pair of sequences, each component of which 

is a set of characters rather than a single character. 

Note that the retrieval/parsing primitives described above 

can be used to convert a partially indefinite input stream to 

a partially indefinite output stream. This can be accomplished 

as follows: the input stream is viewed on each successive 

input cycle through an sp-character wide 'window' (where sp 

is an 'attention span' parameter). On each cycle of input, 

pairs of adjacent characters are hashed to generate features 

and the set of features thus generated are applied to a 

dictionary of
1
known symbol combinations', leading to the 

retrieval of all items judged to be similar to a subpart of 

the input stream. The successive states of this varying collection 

of dictionary items defines the output stream corresponding to 

the received input stream. A general rule something like the 

following could be used to define the features present in this 

output stream. the output stream is viewed cycle by cycle, 

through an sp-cycle wide window. Each pair of dictionary items 

a,b present in this span of input is used to form a feature, 

provided that a is not similar to a subpart of b, or vice-versa. 

Features are formed as follows: the word dictionary index of a 

and the word dictionary index of b are hashed together to 

produce an integer in some appropriately restricted range; 

this integer defines the required feature. 



SETL 91-15 

Since transformations like that just described produce 

an output stream of features from an input stream, such trans

formations can be compounded. This observation will be elaborated 

upon below. 

The procedures for parsing indefinite input outlined above 

also apply to situations in which it is the order rather than 

the identity of successive input symbols that is in question. 

Pushed to the limit in which order becomes totally indefinite, 

they become procedures for the formation of associations 

between unordered but simultaneously occurring items. 

In the presence of a substantial collection of pre-learned 

words and phrases, and taken in connection with the immediately 

preceding remarks on the storage of sequences, these procedures 

suggest a system for the imposition of an order on an initially 

unordered collection S. A mechanism like the following would have 

the desired effecb form all sets of pairs of items from S, and 

use this for the formation of a collection F of features. 

From a dictionary containing not only the items in S but also 

storing element pairs and triples, perform a retrieval based 

upon F. If an initial element is designated, a sequential 

'cueing' process, which we shall now explain, defines a sequence. 

We call this the sequence defined by or retrieved by the initially 

given set S of items. 

If one considers a purely associative memory, i.e., a memory 

in which cells can be addressed only by their content and not by 

any 'serial' address of conventional form, the problem of how to 

store tuples or sequences raises easy but suggestive problems. 

(Note that in conventional techniques one often stores sequence 

components in the order of memory cells; even 

cells are generally chained by their physical 

plausible technique would involve storing the 

tion in a collection of free cells: 

(a} an identifier for the entire sequence 

(b) an item of the sequence 

(c) the next item 

in a list technique 

address.) A 

following informa-

(d) in the first item, a flag indicating that it is evoked by 

the sequence identifier alone, without requiring any additional 

prior item. 



SETL 91-16 

Then the sequence identifiers would evoke the first sequence 

item i
1

; sand i
1 

together would evoke i 2 , and so forth, each 

item 'cueing' the next. This scheme will only work if the map 

from (s,ij) to ij+l is single valued. To handle cases in which 

this condition fails, information additional to the association 

(s,ij,ij+l) would have to be stored in certain cells. This 

additional information may be thought of as designating 'phase' 

or 'context' within the total sequence. 

Considerations of this sort may explain why words like 

'Mississippi' are relatively hard to spell correctly. 

The pattern of pairs in this word is 

mi 

is, ip 

ss, si, 

pp, pi 

which could lead after sequence reconstruction to the following 

spellings ('p' being taken as an end signal) 

mipi, misipi, missipi, misisipi, etc. 

Even if two symbols of left context are used, one faces the 

following dictionary of triples 

mis 

iss 

ssi 

sis, sip 

ipp 

ppi . 

These could lead after sequence reconstruction to the spellings 

missippi, mississippi, missississipi, etc. 

The notorious elusiveness of even medium-sized binary patterns 

may have a similar origin. 

These reflections suggest a hypothesis which I stae in an 

esaggerated form in order to make it memorable: that the brain, 

as an associative computer, stores only sets (including sets of 

ordered pairs). 



SETL 91-17 

5. Retrieval/parse procedures as a model for the mental 

processing of sensory input. 

The retrieval/parse procedures described in the preceding pages 

seem to define reasonable though undoubtedly very crude models of 

the manner in which the organic brain might process sensory input. 

In such a model, a continuing input stream of sensory data would 

cause the retrieval of similar items from one or more stored 

'dictionaries', and at the same time the contents of these 

dictionaries would be modified by the parse-like process described 

above. In the following pages we shall pursue the line of thought, 

attempting to point out places in which processes like those 

which we have described can be used to model aspects of mental 

function. 

The remarks made at the end of the last section are offered as 

a model of the internal process by which thoughts are converted into 

sentences. The thoughts producing a sentence are assumed to arise 

as an unordered collection of internal stimuli excited at some 

level of an overall process of associative retrieval set in train 

by ultimate external or internal cause. The ordering mechanism 

sketched at the end of section 4 then acts to arrange these 

initially unlinked elements. During such a process, elements of 

a syntactic character could also be retrieved and be integrated 

into the sequential structure being composed. Thought elements 

integrated into such a sentence might be 'cancelled' once the 

sentence was enunciated or written; remaining unintegrated 

elements could serve as nuclei for the formation of additional 

sentences. It may also be noted that, once enumerated or written 

down, the sentences produced by a speaker or writer themselves 

become external stimuli. Elements not perceived during the formation 

of a sentence will become visible in its external form, making 

possible repeated attempts at correction which lead eventually 

to a connected external sentence,, and to the growth of a mass 

of sentences from an initial nucleus. 

From this point of view lingustic behavior is seen to be merely 

a special variant of a much more general type of mental process, 

namely processes of error-correction and arrangement by means of 



SETL 91-18 

which impromptu and highly variable sequential behavior (or plan) 

chains can be produced. Linguistic processes thus lie close to 

more fundamental processes of thought, of which they give an 

explicit, slightly specialized, representation. It may be 

conjectured that the process of serialization which we imagine 

to lie at the root of linguistic behavior is substantially the 

only process at the unconscious level supporting higher mental 

function, i.e., function which goes beyond a more elementary 

process of retrieval based on feature commonality. If this is 

the case, then beyond its innate lingustic ability the mind's 

only resource in dealing with logically complex situations is 

its ability to reason consciously and serially. This makes 

available the full power of a Turing machine, but of an inaccurate 

and very slow one. The preceding conjectures suggest that all 

complex learning at the unconscious level is the learning of one 

or another type of language, each such language making available 

a structure capable of converting unordered assortments of thought 

fragments into a serial pattern conforming to some 'syntax'. 

In this view, intuited passages of plans, mathematical proofs, 

computer programs, all arise in much the same way as sentence 

portions, i.e., as serializations of an unordered collection 

of elements, and especially as serializations found at an 

unconscious level to be syntactically well-structured. A partial 

plan of this kind, once become explicitly conscious, can then be 

elaborated in much additional detail, sometimes with success, 

while in other cases it may prove impossible to bring a partial 

plan to a state of completeness. 

These same reflections suggest a model for 'light conversation', 

namely the bilateral digestion of sentences, each of which excites 

a set of associations whose ordering results in one or more 

additional sentences, and so forth iteratively. 

It is well worth emphasizing that the processes we have 

described have a 'combinable' or 'algebraic' character. That is, 

they lead from blurred sequential input to blurred sequential 

output; from a string of symbols largely or slightly indefinite as to 

identity or position the conjectured principle of retrieval 



SETL 91-19 

produces another such stream. In this process, an initial dictionary 

is incrementally modified by the action of the 'grarnrnarless parser' 

which has been sketched. We can represent the overall process 

by writing 

(1) output= input retrieve diet; 

Note again that the evaluation of this function modifies the second 

argument 'diet'. The output of one such process can be used as 

input to another, a possibility which we could indicate by writing 

(2) output= input retrieve dict1 retrieve dict2 ... retrieve dictn; 

For emphasis and brevity however we shall in what follows 

prefer to write 

( 2 I ) output= input* dict1 * ... * dictn 

as an abbreviation for (2). 

Of course, the evaluation of (2) (or, equivalently, (2')) will 

modify all the arguments dict
1

, ... ,dictn. Note that, in addition 

to these arguments, the effect of evaluating the expression (2) 

will also depend upon the feature extraction functions which convert 

the output of one retrieval into input for the next. However, 

we expect this dependence to be quite noncritical, i.e., expect 

that relatively wide changes in these hashing functions will not 

substantially affect either the output of (2) or the dictionary 

modifications ('learning processes') occasioned by its evaluation. 

However, if the input stream falls clearly into two streams 

of separate modality, i.e., if each input character x. may 
J 

~ppropriately be regarded as a pair xj = (yj,zj) of independent 

inputs from which features are separately formed, then the propor

tion of features formed from y to features formed from z will give 

an overall 'emphasis' or 'slant' both to the output of (2) and to 

the dictionary changes which it occasions. The extreme cases are 

those in which either no features are formed from y or none from z, 

i.e., in which an input stream (which may possibly be the output 

stream produced by some other retrieval parse process) is seen in 

a particular 'projection'. To indicate the relative proportion 

in which features formed spearately from several input streams 

enter into the input to a particular retrieval, we might write 



SETL 91-20 

( 3) 

where input
1

, ... ,inputk are input streams and a 1 , ... ,ak are 

coefficients of proportionality satisfying a 1 + •.. + ak = 1. 

In the degenerate case k = 1 the 'combine' function reduces 

to the identity; it is this special case that is shown in (2). 

For the function call that could conventionally be written 

as (3), I shall prefer the specialized, somewhat more condensed 

notation 

( 3 I ) input1 + input 2 ... + inputk[a1 , ... ,ak] 

It will also be convenient in writing the class of expressions 

which I wish to define to make use of an operator identical with 

the SETL is operator whose value is the value of its left-hand 

argument, and which assigns this value to the variable standing 

immediately to its right. We choose to designate this operator 

by the symbol '+'. Using this operator, together with the 

'retrieval' and 'conbination' operators introduced above, we may 

write a class of formulae of the form illustrated by 

(4) output= input1 *dict1 + input 2*dict2 [a1 ,a2 ]*dict3 , 

input 3*dict4 [a 4 ,a4 ] 

* dict5 + outtemp + input4*dict6 [a 5 ,a6 ]*dict7 

+ outtemp[a7 ,a 8]*dict 8 ... 

Such a formula indicates the manner in which several successive retrievals 

are occasioned by one or more input streams and the manner in 

which the outputs of these retrievals are in turn used as inputs 

to later retrievals. The final outcome of a process like that 

described by (4), and also the dictionary changes occasioned by 

this process, depends on the initial statEof each of the 

dictionaries appearing in the formula. Of course, more general 

retrieval/parsing processes like those which we have described 

may involve still further parameters. In particular the rate 

at which items are added to dictionaries ought to depend not only 

on a crude threshold parameter of the sort we have envisaged, 

but on parameters describing maximum dictionary size and related 

"dictionary almost full" effects, as well as other parameters which 

may be imagined. 



SETL 91-21 

To the extent that processes like that described by (4) give 

an adequate representation of the numerous fragments of associa

tion and conditioning whose processing constitutesan aspect of 

mental activity, formulae like (4) may be taken as gross structural 

or anatomical descriptions of minds, at least in part. (In much 

the same way, a description of the manner in which a system of limbs 

and muscles are interconnected, written in a suitable algebraic 

notation embodying particular elementary mechanical relationships, 

would define the general structure of a particular 'body'.) 

Formulae of this type might, to the extent that their details 

could be filled in, serve several purposes. In the first place, 

they define a 'space' within which parametrized families of 'minds' 

can develop by evolutionary increments. 

The view of mind suggested by this remark embodies certain 

elements which deserve to be made explicit. In particular 

mind is regarded as being rather homogeneous (as much so as 

organic tissue of any other sort). In particular, special 

algorithms and elaborated internal procedures resembling special 

purpose program subroutines are assumed to be absent. In favor 

of such an assumption, it may be argued that any non-trivial 

algorithm is a highly discrete entity, and therefore not the sort 

of thing which could evolve through a series of small changes in 

the manner typical for organ adaptation in the physical sphere. 

Second, a description such as (4) suggests that mind is relatively 

universal, i.e., that minds will differ among themselves in virtue 

of the size and modifiability of their dictionaries; the number of logical 

processing layers they incorporate; and in virtue of the 'dictionary 
initializations', particularly significant for dictionaries 

which communicate directly with an input stream originating 

externally, which determine the most immediately recognized 

elementary and compound features of external input; etc. 

The description (4) suggests that minds are similar to within 

some such degree of variation; the specific content which they may 

come to develop is of course a function both of such 'genetic' 

factors and of the sequence of external stimuli to which they are 

exposed. 



SETL 91-22 

It may also be noted that the learning processes described by 

the algorithms presented above faintly resemble some of the notions 

formerly embodied in F. Rosenblatt's much earlier 'perceptron' 

proposal. However, quite in contrast to this earlier work, our 

algorithms embody a principle of locality; which is to say that 

they allow the elementary details of a situation to be learned 

before any attempt is made to deal with the situation as a whole. 

This will hopefully allow algorithms of the type suggested here 

to learn much more rapidly than the older type perceptron 

algorithm. Note also that our algorithms learn structural 

properties of input strings merely from contact with these strings; 

the learning processes that have been described above do not 

require any system of 'rewards' or 'punishments' for their operation. 

6. Some additional remarks. Anatomical structure of tissues which 

could support the retrieval/parse processes described above. 

Some comments on present efforts in artificial intelligence. 

An important problem ignored in the preceding discussion. 

The parse-like processes which we have described can be supported 

very efficiently by logically active tissue consisting of neurons 

with the following properties. 

(a) Neurons are initially 'blank'; they are wired in a pattern 

of layers, with each neuron of layer n stimulating a large, relatively 

random collection of neurons of layer n+l. Each neuron of layer 1 is 

stimulated by some relatively random subset of a collection of 

'feature' extractors which signal the presence (or absence) of some 

basic sensed feature in an external input. 

(b) Each neuron of layer n+l is stimulated by a fairly large number 

of inputs from layer n. If the neuron is blank, each of these inputs 

is potentially significant. 

(c) The first stimulation of a neuron by more than some minimum 

number of its inputs 'imprints' it with this pattern of inputs. 

Thereafter, it will fire whenever at least half these inputs are 

activated. 



SETL 91-23 

The suggestion made as (c) represents only one of a number 

of related possibilities, many of which might lead to similar 

results. 

It is an attractive feature of (a), (b) and (c) that they 

describe a logical mechanism which can learn but which is very 

stable and primitive. In particular, the projected mechanism 

incorporates no sophisticated algorithm. As already remarked, 

this seems desirable from an evolutionary point of view. 

Itdeserves to be noted that the similarity-finding operation 

which plays a central role in the foregoing algorithms is quite 

close to the operation known to be performed by single neurons 

in the brain. Neurons summate incoming stimuli and will fire 

if the sum of their excitations (minus some term describing the 

inhibitory inputs which play a role) exceeds a firing threshold. 

This observation suggests the following calculations (which are 

plausible, but may of course be quite misleading). A neuron 

testing its inputs for similarity with a stored pattern could 

accomplish 200 tests/sec., or 1 test in 5,000 µs. The same test 

requires approximately 1 µson the CDC 6600. If this oepration is 

of central importance, it follows that large present-day computers 

have a power equivalent to not more than 5,000 neurons, as compared 

to the 1010 neurons present in the brain. Thus an obstacle facing 

efforts in artificial intelligence may be that the computers being 

used fall short of what is required by 6 orders of magnitude. 

Of course, such an enormous gap (if it exists) can in known cases 

be covered up by the use of clever, specially tailored algorithms. 

It may however be that in certain of the situations with which 

researchers in artificial intelligence are attempting to grapple, 

such algorithms simply do not exist. In such situations parallel 

feature-similarity steered association may be the method of choice. 

This, if t~ue, would lead one to regard present artificial 

intelligence efforts as attempts to substitute very artificial 

trick algorithms for the use of parallelism on an enormous scale, 

an attempt in which difficulties of the kind presently experienced 

may be inherent. 



SETL 91-24 

It is obvious from the above reflections that an optimal method 

for implementing the similarity primitive introduced in section 3 

ought to be sought. In the absence of any non-obvious method 

for retrieving items similar to a given input from a large dictionary 

of items, the duplication of brain function might require a computing 

device capable of performing sx10
13 

comparisons/second, and possibly 

storing as many as 10
13 

bits. Assuming that in 15 years 1 megacycle, 

million bit computers are available for approximately $1, this 

could require :a $50 million computer even in so very advanced 

a technology. 

The models of learning proposed in this newsletter ignore a very 

important problem, which deserves to be mentioned explicitly. This 

problem may be formulated in various ways. How can a learning device 

of the type envisaged, which forms a randomly hashed internal repre

sentation of an input stream, be linked to an output device (or 

algorithm)? In particular, how could a learning device to which 

an output device was attached learn which of its own internal 

processes led to the production of a given output pattern (problem 

of imitation)? More generally, what mechanisms, in addition to 

those which have been proposed, can account for the formation of 

'conditfuned reflexes', i.e., of internally stored associations y 

between pair a,S of items, associations of a form which allow y, 

when excited, to have the effect of its component a? The models 

which have been described do not answer these questions and thus 

remain incomplete in a fundamental way. 


