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This newsletter summarizes some experiments performed with 
a simple SETLB program and a comparison which was made between 
this program and an equivalent FORTRAN program. 

I. Nature of Program 

The program studied calculated the sequence of numbers 
generated by the following rules: 

Given a starting integer N; 
1. If N even then ;- = N/2 
2. If N odd then Nl = (3 N + 1 ) /2 

3. Iterate on the generated integers until the 

sequence goes to 1. 
The program generated the sequences of odd integers derived 

from initial odd integers in the range FIRST~ N ~ LAST with the 
provision that redundant calculations would not be performed 
but linkages to previously computed sequences would be indicated. 
In these experiments., the 17 bit integer arithmetic of SETLB 

constrained the range to 1 < N ~ 701. 

To eliminate redundant calculations,a set was used to 
accumulate the computed integers and each sequence was followed 
until it generated a member of that set. In FORTRAN., the set 
was represented by a linear array. 

A variety of modifications of this program provided the 
comparisons reported herewith. 



II. SETLB-FORTRAN Comparison. 

No particular attempt was made to design efficient 
data representations in either the SETLB or FORTRAN versions 
(integers and integer arithmatic were used throughout) but some 

c. 

care was ex:ercised ( especially in the FORTRAN versions) to eliminate 
superfluous tests and comparisons from the logic. As a result, 
this comparison is believed to be fair for rather casually created 
experimental programs. 

It should be noted that this problem is really on FORTRAN's 
home ground of numerical calculations where one might expect 
SETLB to compare especially unfavorably to FORTRAN.* Since, based 
on comparison of elementary operations, execut~on time ratios in 
excess of 30:l have been predicted between the present SEI'LB 
system and FORTRAN, the results are a bit surprising. They must 
be taken as indicative of the potential of the SETL dictions to 
be competitive in program execution as well as in providing 
advantage for program construction on problems which can use 
those dictions to advantage. 

The results are shown in the following tables: 

Sfil'LB-FORTRAN Comparison 
(Program Version 1, requiring 2 set membership tests in the 

inner loop) 

Item SETLB FORTRAN Ratio(SETLB 
PORTRAN) 

No. Program Statements 25 60 o.4 
Compile Field Length 66 K (octal) 40 K(octal) 1.6 
Execution Field Length 160 K(octal) 17 K( octal) 9.4 
Compile Time (CPU) 3.8 sec. 0.3 sec. 12.6 
Execution Time (CPU) 24.6 sec. 3.1 sec. 8.0 
Total PPU Time 28.6 sec. 5.5 sec. 5.2 

* The SETLB program reflected this problem characteristic since 
it looked much like a FORTRAN program, consisting primarily of 
many short statements. 
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SETLB-FORTRAN ComEarison 
(Changes from above table) 

(Program Version 2, requiring 1 set membership test in inner loop) 

Item SETLB FORTRAN Ratio 

No. Program Statements 26 62 o.4 
Execution Time (CPU) 24.2 sec. 2.0 sec. 12.1 

Total PPU Time * 21.3 sec. a.5 sec 2.5 

It is interesting to note that the execution times of the 
SETLB programs were nearly independent of the number of set 
membership tests performed in the inner loop whereas the 
FORTRAN program was highly sensitive to this, as expected. 
This reflects the high efficiency of the set membership test in 
SETLB (a source of substantial power in SETL since it is a basic 
constituent of many SETL expressions and operators and contributes 
to both programming and execution time efficiency) but its true 
significance is obscured by other side effects of the program 
changes involved (e.g. in the definition and handling of tuples). 
Some further study of these effects follows. 

Comparison of SETLB Programs 

(In all of the following comparisons, the compile field 
length was taken to be 66K (octal). This may or may not be a 
minimum for the present SETLB system.) 

* The total PPU time recorded by the CDC SCOPE system seems 
to have large uncertianties which depend upon the momentary 
multi-programming job environment, not on the individual user job. 



As a starting point, the next table shows data on compiling 
and executing the SETLB program consisting of a single NOOP as 
the only executable statement. 

SETLB NOOP Program 

Item 

No. Program Statements 

Execution Field Length 

Compile Time (CPU) 

Execution Time (CPU) 

Total PPU Time 

Data 

4 

150 K ( octal) 

1.7 sec. 

1.6 sec. 

25.2 sec. 

1156 

0 

Comments 

4 

No. Symbol Table Entries 

No. Garbage Collections 
Max. Height of Heap 103773 (octal) a Function of the 

Execution Field Length 
Actual Height of Heap 77377 (octal) 

This table reflects the minimum time and space overhead of 
the SETLB system as of this date (Dec.21, 1972). As noted above, 
the PPU time is not very significant but is reported for its 
indication of order of magnitude. Memory space data in this table 
reflects the requirements of the SETLB run time library that 
provides the SETLB operations. 



The first comparison simply replaced a statement in the 
previously described program of the form 

Tuple = Tuple + ( a, b ) ( Program A) 
with two statements of the form 

Tuple 

Tuple 

(! Tuple + 1) = 

( i Tuple + 1) 
(Program B) 

The data is as follows: 

Item Program A Program B 

26 27 
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No. Program Statements 

Execution Field Length 
Compile Time (CPU) 
Execution Time 

16ok( octal) 160k ( octal) 

Total PPU time 
No. Symbol Table entries 
No. Garbage Collections 
Max. Height of Heap 
Final Height of Heap 

3.8 sec. 
24.2 sec. 
21.3 sec. 

1157 
4 

113412 (octal) 

105047 ( octal) 

3.8 sec. 
23.8 sec. 
36.4 sec. 
1157 

3 
113412{octal) 

110271(octal) 

These results suggest some sensitivity to the particular 
choice of SETLB dictions used. Since Program A results in the 
formation of Tuples which are not required in Program B, one 
might expect it to be more demanding in time and space. This 
shows up in the need for an additional garbage collection. 
The PPU time figures do not correlate with any known differences 
in the programs and seem spurious. 

Further comparisons were made with an expanded program which 
provided two additional features: 

a) a binary representation of each generated integer 

b) a set of ordered pairs which could be used to derive a 
tree representation of the generated sequences. 



This program used 40 statements and required 5.1 seconds 
to compile. It generated 1161 symbol table entries and used 
20 seconds+ 30 ·% of PPU time in several runs. 

This program was run at several execution field lengths 
to compare time and memory utilization. It is interesting to 
note that this program executed at each of the field lengths 
but terminated before completing the construction of its sets 
in some cases. For the range 1< N ~ 701, the two principal 
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sets formed had approx. 550 members each. The percentage 
completion reported below is the percentage of these set members 
computed before the program terminated due to lack of memory space. 

Field length Number garbage Maximum Heap Execution Comments 
(octal) collections size Time 

150000 5 103773 9.66sec. 3% complete 
155000 18 110544 41.22 43% complete 
160000 20 113412 52.89 58% complete 
165000 24 120163 74.39 92% complete 
170000 22 123031 79.61 100% 
200000 12 132450 67.93 100% 
240000 4 170544 59.14 100% 
300000 3 226640 58.08 100% 

It appears from this data that each garbage collection cost 
approximately 1.1 seconds of execution time on this program with 

a memory space-execution time trade-off of the expected form. 
Most efficient operation would appear to be at a field length 
approximately 10% above the minimum for completing the problem. 
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As an additional comparison, I recoded the problem 
(without changing the final results or output) to eliminate one 
auxiliary tuple of the form ( integer, string) used in the inner loop. 

The statisties on three runs were: 

Field length 

155000 

165000 

170000 

Number garbage 
collections 

16 

23 

20 

Maximum 
size 

110544 

120163 

123031 

Heap Execution Comments 
time 

37.74 46% complete 

70o79 94% complete 

73.75 100% 

Comparing these results with the previous results shQws a 
significant time saving (7%) by eliminating one auxiliary variable. 
Some saving of memory space is also apparent since the programs 
ran further than previously at 155K and 165K field lengths with 
fewer garbage collections. 

Finally, the 550 member set of ordered pairs was removed 
from the program without otherwise altering results or output. 
Statistics on that were: 

Field length 

150 000 

160 000 

170 000 

Number garbage 
collections 

36 

14 

8 

Maximum heap Execution Comments 
size time 

103773 68.77 97% complete 

113412 54.32 100% 

123031 49.56 100% 



These results are suggestive because that set of ordered 
pairs was not used in the inner loop of the program in any way. 
It was constructed in the inner loop and used once each time 

around the outer loop. If facilities were available in SETL 
for the purpose, I might have elected to form and keep that set 
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in secondary storage, thereby freeing memory space, reducing the 
number of garbage collections needed, and improving turn-around 
time without serious degredation in program performance The 
cited data suggests approximately a 10% reduction in field length 
required to complete this problem and a 50% reduction in garbage 
collections needed by removing one of the two large sets from 
central memory. 

Conclusions 

These crude experiments permit one strong conclusion and 
suggest two others. 

1. SETL programs compete well in execution speed 
problems which use the SETL dictions in essential ways. 
experiments demonstrated that phenomenon for a maximally 
program which involved only one statement that is unique 

for 
These 
simple 
to SETL. 

More complete programs which lead to more complicated relationships 
and dictions can be expected to show even more compelling advantage 
for SETL if similar comparisons were to be programmed and carried 
out. Writing such programs in a language other than SETL is 
difficult, however, and such comparisons are unlikely to be 
performed. 

2. SETL programs tend to rise in memory space utilization 
like leavened dough. The garbage collector kneads the program 
down at some cost in time but it rises again, each time with a 
gradually growing irreducible volume that is inaccessible to the 
garbage collector. 



9 

Providing the programmer or the system with options for 
allocating portions of the program generated data to secondary 
storage and for performing SETL operations on data in secondary 
storage is one possible mechanism for reducing the rate of growth 
and thus increasing the range of useful application of SETL 
using existing machines. 

Two possible implementation strategies are: 

a) Add to SRTL a routine to translate SE'TL objects from internal 
CM representation to a linear representation appropriate to 
secondary sequential access storage and add a set of routines 
to apply SETL primitives to objects flowing through a buffer. 
This approach would seem to favor the movement of entire SETL 
objects and variables to secondary either at the programmer's 
option or as determined by an optimizer. 

b) Introduce a virtual memory concept into the SETL system. 
This would seem to favor storage of fragments of SETL objects 
in CM and fragments in secondary. 

Some review of SETL algorithms developed to date may 
suggest which is preferable. 

3) SETL programming brings to the fore another type of program 
optimization which is worthy of consideration both as an automatic 
optimization facility and as a matter of programming style. The 
yeasty growth of SETL programs during execution favors elimination 
of auxiliary variables whereever possible and the reduction of 
program span during which variables are live. Some thoughts on 
this will be summarized in Newsletter 930 


