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We consider a collection of finite sets T1 , T?, • • • , Tn 

and approach the problem of determining an ordering of 

the elements of S =VT. ~o that each set TJ, is an 5nterval, • J 
,J 

i.~. ~ sta.t of the form { x, aj ~ x ~ bj! • Not every 

collection of sets admits to a simultant'"ous reprt"sentation 

of its members ae intervals. An example ie the collection 

who ee mf!'mbers are \,a, b} , { b, c} , and { a, c} . If an 

ordering of the elements of S exists so that each set Tj is 

an interval, the algorithm we givl"' will produce such an 

ordering.It will tf!'rminate when the diecovery is mr1.de that 

such an orderine; dot"s not exist. Wt!' give an example to 5llustrnt"." 

the stra t~gy of the alga ri thm. 

,T,, = 

Wt!.' seek to produc~ an ordt'"ring of tht"! lt!'tters \a,b,c,a,~} = s 

so that each of T1 , T?, and TJ is an intt!'rval in that ordering. 

Wt'" start with the obeervation that if each of T
1 

and T? js 

to be an jnterval then T1 ~ T? js an interval and ~eparates 

the elements of T1 - T? from the elements of T::,-1\ . 



We write these conditions symbolically as 

( *) 

That is, in any ordering a precedee each of band d and 

each of these precedes c. Conver!Sely, each of T1 and T? 

? 

is an interval in any ordering of~ a,b,c,a} which respects 

these conditions. If T
3 

is also to be an interval in an 

orderjng in which each of T1 and T;:, ie an interval, then 

as d is not a member of T3' d cannot separate band c whjch 

are in T3. HPnce, we have the conditione 

{ at < l df < ~ b} < tc f < \ e J 
We have tacked ~ e J onto the right end becauge T 

3 
covers 

the set ~cf on the right in the ordering (*) . At this 

p::>int the ordering of S =~a,b,c,d,e}is completely determined 

\ ' by these relatione. Rever~al of the ( sign produces another 

but equivalent ordering. An add,tional set which contains 

elements of S must contain a single interval in thi~ ordering, 

if that s~t is to admit a simultaneous representation with 

T1 ,T?, and T3 as intervals. 

This strategy can be extended to any number of sets 

T1 , '1'?, ••• ,Tn· As in the above example, the algorithm 

maint~ins a list 

of subsets of S =VT. which contains implicitly all orderings 
J J 

in which a f3njte number of sets T1 ,T?, •. , ,Tk are intervals 



J 

in the following precise sense. An arrangement of the elemt'!nts 

of l) S. is an ordering in which each of the sete T1 ,T?, ••• ,Tk 
J J 

is an interval if and only if each element of S1_1 precedes 

every element of Si. The list s 1 ,s?, ••. ,skis constructed 

in the following manner. Firet, it is initialized as T 
1

• 

Then each set T. is considered iP turn. The condition~ 
J 

imposed by the, j+1st eet are included in the list in the 

following manner. Note that if T.+1 contajns {) Si then it 
J ~ 

is not possible to make a choice of the location 

of the elements of Tj+1 -vsi 
'L 

50 that the relation of the 

list to the orderings of the elements 

each set is an interval is preserved. 

is declared to be exceptional and is 

remaining sete have been considered. 

'f j+lT 
0 u . in which 

' ' 1 
1=·1. 

In tnis case T.+1 J 

put aside until the 

Now suppose that Tj+l does not contain one of the 

elements of s1 • The elements in Tj+l- V Si, if this set 
t 

is nonempty, are attached as a single set to the left of 

s1, if T j+l::, Si or to the right of sk, if T j+l':) Si. If 

both of these conditions are satisfied, then the next step 

in the process will determine that no order of Sexists 

and the algorithm will terminate no matter what choice is 

made. If neither condition is satisfied, the additional 

ell'"ments are attached to an t"!nd which T. intersects 
J+l 

nontrivially. If Tj+l intersect~ nontrivially oo·th or 



4 

neither end , then an arbitrary choice is made and the 

next etep detects that no order ie po33ible, The next 

etep depends on th~ observation that if Tj+l ie to be an 

interval, then the indice~ of the ~ete Si which Tj+l inter

sects nontrivially must form an jnterval and Tj+l muet 

contain each of these eets S. except possibly the sets 
) 

on either extreme of the interval. 

If this condition is satisfied, we consider fir~t 

the case that Tj+l is a proper subset of some set Si. 

In this case, there is no way to alter the liet s 1 ,s?, ••• ,sk 

so that the list maintains it relatio nehip to all orderings 

of the eeu T. which have been considered prior to this 
J 

step and were not exceptional. We declare T. 1 to be 
J+ 

exceptional and put it aside until the remaining sets 

have been considered. It is po~sible that one of the 

succeeding sets will separate the elements of s. in such 
1 

a way that Tj+l is no longer a subset of any set Si. On the 

other hand, if the minimum and maximum indices of the sets 

S. which T intersects nontdvially are different, then 
1 j+1 

changes are made 5n the list s 1 ,s?, ..• , Sk. Let min and 

max denotes these indices respectively. If T j+l () Smin is 

a proper subset of Smin' then Smin - Tj+1 and Ti+ln Smjn 
<, 

replace Smin in the list in this order. Similarly, if TJ.-ti'l ns , max 

is a proper sunset of Smax,then Tj+lO Smax and Smax- Tj+l 

replace Smax in the list in this order, The relationship 

of the list to all orderings of the elemente of the first 
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j+1 eete which are not exceptional is preserved. After all 

of tne sete Tj are considered on the first pass, each of the 

exceptional eets is reconsidered. The process which we 

have described above is repeated. If any exceptional sets 

remain after this pass, another complete iteration of the 

procedure is performed. Iterations of the exceptional 

sets are made until either no exceptional sets remain, 

a complete pass results in no exceptional sets T. being .) . 

successfully processe~, or until an error condjtion occurs. 

If the:, latter occurs,· the a.lgori thm terminates. 

If the iterative procees terminates without an 

error being detected and with exceptional sets remaining, 

then recursive invocations of the algorithm are made to 

order the elements contained in the exceptional sets. 

Mor~ precisely, the set union = l) Si is ordered by ordering rl , C.,· C ·( 

the elements of each of the sets s .. If s containe 
.) 

Tj 
j 

Tf, 
j 

any exceptional sets T?, ••• , the- algorithm 
k-

J 
w~ have descri.bed above j 8 u~ed recursively to 

sf'"quence the elements of the union of these sets. 

The elements of the set s. - u Tj are sequenced arbitrarily. 
J i 

1 

The sequences of the sets s. 
J 

are then concatenated j n the 

ord~r of their indjces. The ~xception81 sets which contain 

union Tf ,T~, ••• , Tf are used to produce an ordering of 
g 

the remaining elements by applying the algorithm to the 
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sete Tf- union, ~-union, ••• , T~g- ~- This order 

; s concatenated to the order of union produced above. 

lf' any of theee recursive invocations of the ordering 

algorithm discovere that an order doee not exist, then 

an error flag ie set which is propagated to the initial 

invocation of the algorithm and the process terminate3. 

We do not explore the calculation of all partial orderings 

of S although a straightforward modification of the code 

we give below will produce all euch orderings. 

We now give code in SETL for this process. The 

decisions which may be vaguely deecribed above are precisely 

specified in this code. For the convenience of the reader, 

we detail th~ function of th~ princ:ipa1 ·routin~ ·~nrl it!" 

prom:inent data structures 

arrangelts(.. )--argument is a collection of sets . 
result is a tuple which contains an o rder1nP. 
of T ., if one exists, the null tuple otherwise 

J 

failflag - global failure flag which is set upon 
discovering that no order exists 

listsets - tuple of sets which contains the sequence 
s1 , s?, . • • , sk 

/-r.- set failflag to f. prior to first invocation */ 

definef arrangelts(tset); 

/* failflag is global; tset contains the sets to be 
made into intervals */ 

s1 from tset; lietset=(el);; union = nl; 

exceptsets=nl; insert= 1; 

I* exc~!ptsete contains eix:ceptional sets found on 
current paes */ 



(while in5ert doing tset = exceptsets; exceptsets = nl; 

(~x E taet) 

~ 
exceptg? 

inexcept extraelts? 
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onemallend? calcints+ 

onsmall+ 

calcints 

onbig+ 

calcints 

nexcepts? 

conflict? inexcept 

(failflag=t; makinsert 
return nult;) 

exceptg:= x g!_ union Q.!: x*union !9. !21 ; 

inexcept: x in exceptsets; co ntj nue \/ x; 

extraelts:= x - union u xtraelts !.}!_ nl; 

onsmallend:= x*listsets(l) ne nl and 
~ x*listseteTiilistsets) .£9.. ljstsets(#listsets); 

o nsmall: 

o nbig: 

calcint: 

listsets =(xtrai!-lts> + lists~ts; union= unjon~traelts; ✓-

ljstsets = listsets +~traelts> ;unjon =union+ xtraelts; 

indicescov = l lset,lset f listsets l lset*x ~ lset j ; 
indicessub = f lset,lset i listsets f lset*x ~ nl} ; 

minml =(Lminsy £ indicesco{Jy])-1; 

maxp1 = ( [ ~: Yt indice ssu~ ~-) +1; 

nexcepts:= indicescov ~ g ~ #indice3sub ~ 1; 

I* x is a subeet of some member of listsete 
and is therefore exceptional if above is!*/ 

conflict:= n ( interval (indice,cov) and 
indices sub 1 t \ indicescov + { m1.nm1, maxp1J)); 

/ * 1·r t th . rue en raH1~ the error flag ae ro 
order exists */ 

-



makineerts 
if (minm1 E, indiceseub) 

then listsete = listeete(1:minm1-1) + 

end if; 

<.li et sets (minm1 )-x, lieteets (rninm1 )*x) + 
listsets(minm1+1:); 

if (maxp1f indicessub) 
then listeets = listsets(1:maxp1-1) + 

<._llsteets(ma.xp1)*x, listsets(maxp1)-x) + 
listsets(maxp1+1s); 

end if; 

end flow; 

end Vx; 

end while; 
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/* factor the exceptional sets which are larger than union*/ 

gro seets = t x-unio n, x c. except sets' x ~ union] ; 

order= arrangelte(groeselte); 

if ( failflag) then return nult ;; 

( V x £ listeete) 

exceptx = \ y, y t, exceptsets I y 1 t x f ; 
order = order + maktup( x-exceptx ) + arrangelts(exceptx); 

jf ( failflag) then return !lli11_ ;; 

end\:/x; 

/* if fall out, have successfully ordered the sets */ 

return order; 

end arra.np:elts; 

' ' 



definef maktup(set); 

/* makes tuplee out of elements of set */ 

if ( eet !S nl) then return nult ;; 

return (_ +: x E. eet] <x > ; 
end maktup; 

definef interval(eetofintegere); 

/* determines if input set is an interval */ 

if ( #eeto flnteger~ k 1 ) then return t ; ; 

mineet = [ min, i £ setofinteger~ i ; 

maxset = [ ~' i E. eeto fintegerri.J i ; 

return ~eto fintegere !9., \ i, mineet ~ i ~ maxeet r} 
end interval; 

9 


