January 23.1973
G. Jennings

An Algorithm to Represent a Collection of Sets as Intervals

We consider a collection of finite sets $\mathbb{T}_{1}, T_{2}, \ldots, T_{n}$ and approach the problem of determining an ordering of the elements of $S=\bigcup_{j} T_{j}$ so that each set T_{j} is an interval, i.e. a set of the form $\left\{x, a_{j} \leq x \leq b_{j}\right\}$. Not every collection of sets admits to a simultaneous representation of ite members as intervals. An example is the collection who se members are $\{a, b\},\{b, c\}$, and $\{a, c\}$. If an ordering of the elements of S exists so that each set T_{j} is an interval, the algorithm we give will produce such an ordering. It will terminate when the discovery is made that such an ordering does not exist. We give an example to illustrate the strategy of the algorithm.

Let $T_{1}=\{a, b, d\} \quad, T_{?}=\{b, c, d\}$, and $T_{3}=\{b, c, e\}$ We seek to produce an ordering of the letters $\{a, b, c, d, e\}=S$ so that each of T_{1}, T_{2}, and T_{3} is an interval in that ordering. We start with the observation that if each of T_{1} and $T_{?}$ is to be an interval then $T_{1} \cap T_{?}$ is an interval and separates the elements of $T_{1}-T_{?}$ from the element of $T_{\rho}-T_{1}$.

We write these conditions symbolically as

$$
\begin{equation*}
\{a\}<\{b, d\}<\{c\} \tag{*}
\end{equation*}
$$

That is, in any ordering a precedes each of b and d and each of these precedes c. Conversely, each of T_{1} and $T_{?}$ is an interval in any ordering of $\{a, b, c, d\}$ which respects these conditions. If T_{3} is also to be an interval in an ordering in which each of T_{1} and $T_{?}$ is an interval, then as d is not a member of T_{3}, d cannot separate b and c which are in T_{3}. Fence, we have the conditions

$$
\{a\}<\{a\}<\{b\}<\{c\}<\{e\}
$$

We have tacked $\{e\}$ onto the right end because T_{3} covers the set $\{c\}$ on the right in the ordering (*). At this point the ordering of $S=\{a, b, c, d, e\}$ is completely determined by these relations. Reversal of the '<' sign produces another but equivalent ordering. An additional set which contains elements of S must contain a single interval in this ordering, if that set is to admit a simultaneous representation with $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and T_{3} as intervals.

This strategy can be extended to any number of sets $T_{1}, T_{?}, \ldots, T_{n}$. As in the above example, the algorithm maintains a list

$$
S_{1}<S_{2}<\cdots<S_{k}
$$

of subsets of $S=\bigcup_{j} T_{j}$ which contains implicitly all orderings in which a finite number of sets $\mathbb{T}_{1}, T_{7}, \ldots, T_{k}$ are intervals
in the following precjse sense. An arrangement of the elements of $\bigcup_{j} S_{j}$ is an ordering in which each of the sets $T_{1}, T, T_{p}, \ldots, T_{k}$ is an interval if and only if each element of S_{i-1} precedes every element of S_{i}. The list $S_{1}, S_{p}, \ldots, S_{k}$ is constructed in the following manner. First, it is initialized as T_{1}. Then each set T_{j} is considered ir turn. The conditions jmposed by the j+1st set are included in the list in the following manner. Note that if $T j+1$ contains $\bigcup_{i} S_{i}$ then it is not possible to make a choice of the location of the elements of $T_{j+1}-\bigcup_{i} S_{i}$ so that the relation of the list to the orderings of the elements of $\bigcup_{i=1}^{j+1} P_{i}$ in which each set is an interval is preserved. In ${ }^{i=1} \hat{h}^{\prime}$ s case T_{j+1} is declared to be exceptional and is put aside until the remaining sets have been considered.

Now suppose that T_{j+1} does not contain one of the elements of S_{j}. The elements in $T_{j+1}-{\underset{Z}{V}}^{S_{i}}$, if this set is nonempty, are attached as a single set to the left of S_{1}, if $\mathbb{T}_{j+1} \supset S_{i}$ or to the right of S_{k}, if $T_{j+1} \supset S_{i}$. If both of these conditions are satisfied, then the next step in the process will determine that no order of S exists and the algorithm will terminate no matter what choice is made. If neither condition is satisfied, the additional elements are attached to an end which T_{j+1} intersects nontrivially. If T_{j+1} intersects nontrivially both or
neither end, then an arbitrary choice is made and the next step detects that no order is possible. The next step depends on the observation that if T_{j+1} is to be an interval, then the indices of the sets S_{i} which T_{j+1} intersects nontrivially must form an interval and T_{j+1} must contain each of these sets S_{i} except possibly the sets on either extreme of the interval.

If this condition is satisfied, we consider first the case that T_{j+1} is a proper subset of some set S_{i}. In this case, there is no way to alter the list $S_{1}, S_{j}, \ldots, S_{k}$ so that the list maintains it relationship to all orderings of the sets T_{j} which have been considered prior to this step and were not exceptional. We declare T_{j+1} to be exceptional and put it aside until the remaining sets have been considered. It is possible that one of the succeeding sets will separate the elements of S_{i} in such a way that T_{j+1} is no longer a subset of any set S_{i}. On the other hand, if the minimum and maximum indices of the sets S_{i} which T_{j+1} intersects nontrivially are different, then changes are made in the list $S_{1}, S_{7}, \ldots, S_{k}$. Let min and max denotes these indices respectively. If $T_{j+1} \cap S_{\min }$ is a proper subset of $S_{m i n}$, then $S_{\min }-T_{j+1}$ and $T_{i+1} \cap S_{\min }$ replace $S_{\min }$ in the list in this order. Similarly, if $\mathrm{T}_{j+1} \cap S_{\max }$ is a proper sunset of $S_{\max }$, then $T{ }_{j+1} \cap S_{\max }$ and $S_{\max }-T{ }_{j+1}$ replace $S_{\max }$ in the list in this order. The relationship of the list to all orderings of the elements of the first
$j+1$ sets which are not exceptional is preserved. After all of the sets T_{j} are considered on the first pass, each of the exceptional sets is reconsidered. The process which we have described above is repeated. If any exceptional sets remain after this pass, another complete iteration of the procedure is performed. Iterations of the exceptional sets are made until either no exceptional sets remain, a complete pass results in no exceptional sets $T j$ being successfully processed, or until an error condition occurs. If the latter occurs, the algorithm terminates.

If the iterative process terminates without an error being detected and with exceptional sets remaining, then recursive invocations of the algorithm are made to order the elements contained in the exceptional sets. More precisely, the set union $=\bigcup_{i} S_{i}$ is ordered by ordering the the. is the elements of each of the sets S_{j}. If S_{j} contains any exceptional sets $T_{1}^{j}, T_{\gamma}^{j}, \ldots, T_{k}^{j}$ the algorithm we have described above is used recursively to sequence the elements of the union of these sets. The elements of the set $S_{j}-\bigcup_{i} T_{j}^{j}$ are sequenced arbitrarily. The sequences of the sets S_{j} are then concatenated in the order of their indices. The exceptional sets which contain union $T_{1}^{g}, T_{?}^{g}, \cdots, T^{g} g_{g}$ are used to produce an ordering of the remaining elements by applying the algorithm to the
sets T_{1}^{g} - union, T_{2}^{g}-union, \cdots, T_{k}^{g} - union. This order is concatenated to the order of union produced above. If any of these recursive invocations of the ordering algorithm discovers that an order does not exist, then an error flag is set which is propagated to the initial invocation of the algorithm and the process terminates. We do not explore the calculation of all partial orderings of S although a straightforward modification of the code we give below will produce all such orderings.

We now give code in SETL for this process. The decisions which may be vaguely described above are precisely specified in this code. For the convenience of the reader, we detail the function of the principal routine and its prominent data structures
arrangelts (.)--argument is a collection of sets result is a tuple which contains an orderine of Tj, if one exists, the null tuple otherwise
failflag - global failure flag which is set upon discovering that no order exists

Iistsets - tuple of sets which contains the sequence $S_{1}, S_{7}, \ldots, S_{k}$
$/$ * set failflag to f prior to first invocation */ definef arrangelts(tset);
$/ *$ failflag is global; tset contains the sets to be \quad made into intervals
$s 1$ from tset; listset=〈s1〉; union $=$ nI;
exceptsets=nl; insert= \underline{t};
/* exceptsets contains exceptional sets found on current pass
(while insert doing tset $=$ exceptsets; exceptsets $=\underline{n l}$; ($\forall \times \varepsilon$ tset)
flow
exceptg?
inexcept extraclts?
onsmallend? calcintst

onsmallt	onbig+
calcints	calcints

nexcepts?
conflict?
inexcept
(failflag=t; makinsert
return nult;
exceptg: $=x$ ge union or x *union eq nl ;
inexcept: x in exceptsets; continue $\forall x$;
extraelts: $=x$ - union is xtraelts ne nl;
onsmallend: $=x^{*}$ listsets (1) ne nl and
$\underline{n} x^{*}$ listsets (\#listsets) eq listsets(\#listsets);
onsmall: listsets $=\langle x t r a e l t s\rangle+\operatorname{listsets} ;$ union = unjontutraelts;
onbig: listsets = listsets $+\langle x t r a c l t s\rangle ;$ union $=$ union $+x t r a e l t s ;$
calcint: indicescov $=\{$ lset,lset ε listsets \mid lset*x eq lset $\}$;
indicessub $=\{$ lset,lset ε listsets \mid lset*x ne rl $\}$;
4 $\operatorname{minm} 1=([\underline{\min }: y \varepsilon$ indicescov $]])-1$;
$\operatorname{maxp} 1=([$ max: ycindicessub]y) +1 ;
nexcepts: $=$ indicescov eq nl and \#indicessub eq 1;
/* x is a subset of some member of listsets and is therefore exceptional if above is t */
conflict: $=\underline{n}$ (interval (indicescov) and
indicessub $1 t\left(\right.$ indice $\left.\frac{\text { and }}{s \operatorname{co} v}+\{\operatorname{minm1}, \operatorname{maxp} 1\}\right)$);
/* if true then rajse the error flag as no order exists

```
makinsert:
    if (minm1\varepsilon indicessub)
        then listsets = listsets(1:minm1-1) +
            <listsets(minm1)-x, listsets(minm1)*x> +
                                    listsets(minm1+1:);
    end if;
    if (maxp1\varepsilon indicessub)
        then listsets = listsets(1:maxp1-1) +
                        <ljstsets(maxp1)*x, listsets(maxp1)-x\rangle +
                        listsets(maxp1+1:);
    end if;
end flow;
end }\forallx
end while;
/* factor the exceptional sets which are larger than union */
grossets ={x-union, x exceptsets|xggunion};
order = arrangelts(grosselts);
if (failflag ) then return nult ; ;
(}\forall\textrm{x}\varepsilonlistsets
    exceptx ={y,y y exceptsets |y lt x};
    order = order + maktup( x-exceptx ) + arrangelts(exceptx);
    if (failflag ) then return nult ; ;
end }\forall\textrm{x}\mathrm{ ;
/* if fall out, have successfully ordered the sets */
return order;
end arrangelts;
```

definef maktup(set);
/* makes tuples out of elements of set */
if (set eq nl) then return nult ;
return $[+: x \varepsilon \operatorname{set}]\langle x\rangle$;
end maktup;
definef interval(setofintegers);
/* determines if input set is an interval */
if (\#setofintegers le 1) then return t;
minset $=[\underline{m i n}, i \varepsilon$ setofintegers $]$ i ;
maxset $=$ [max, i ε setofintegers $]$ i ;
return (setofintegers eq $\{i$, minset $\leq i \leq \operatorname{maxset}\}$);
end interval;

