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ABSTRACT

K

During the past decade, operating systems have come tq:play an
increasingly important role in computing, to the poin¢t where today, an
operating system is considered to be an integral part of a computing
system. This dissertation attempts to distill diverse efforts in
operating systems desiqgn, and to depict those fundemental algorithms
wvhich are peculiar to operating systems.

Our first task will be to make the notiomn 'operating system' as
precise[as possible. This will not be done with the conciseness and
precision of a definition occuring in a mathematical text, but by
setting forth the objectives to be satisfied by the programs to be
considered. Examination of these objectives will lead to a coarse
characterization of operating system algorithms.

Use of an appropriate programming language will be necessary if the
algorithmic content of operating systems is to be presented in a
satisfactory manner. To keep the algorithms at a sufficiently high
level (uncluttered by details imposed by the lanqguage), the algorithms
will be described in PSETL, a version of SETL which has been enlarged
to accomodate algorithms involving interrupts, parallelism, and to
some extent, machine dependent features.

Using PSETL, several operating systems will be presented in detail.
The first, a simple uniprogrammed batch system, illustrates basic
control mechanisms and scheduling. The second, a multiprogrammed
system, introduces additional complexities due to contention for
resources and conflicting objectives. Of course, the design of these
systems will involve several ad hoc decisions; the reasons for the
strateqgies adopted, as well as viable alternatives, will be discussed

in the final chapter.

A detailed discussion of the major components and problem areas of
operating systems includes the following topics: system nucleus,
scheduling, resource allocation, control of processes, data
management, virtual machines, measurements, and operating systenm
developement and maintenance. Key algorithms are identified and
presented for these areas. When alternative approaches exist, these
are presented with appraisals of their relative merits and weaknesses.
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Chapter I
Introduction to Operating Systems

Our first task is to define what an operating system is. It will not
be possible to do this with mathematical precision. Instead, a loose
characterization of what will be considered an operating system in
this work will be given, motivated by citing objectives which such

systems attempt to satisfy.

Kl

’

1.1 Objectives of Operating Systems N

1«.1.1 The Automatic Operator

In the early days of computing each job or run was an independent
entity. A user submitted his own copy of a language processor,
loader, or debugging aid, along with:instructions for the operator on
actions to take on the occurance of various machine halts. At the end
of a run, computer memory was generally cleared, tape reels associated
wit the concluded run dismounted, and tape reels for the next run
mounted. Transition time between runs was frequently on the order of
1 to 5 minutes. These inefficiencies were often compounded by the
inability of a computing installation to process a multi-step job.
Thus, a "compile and gqo" job was usually two runs, with the attendant

overheal paid twice. !

With a larger number of applications becoming economically feasible
and with increased computer speed, the length of typical computer rums
- especially runs for debuqgging -~ approached and fell below the run
transition time. Just as the human's ability to enter data and
commands became the limiting factor for desk calculators, the speed of
humans during run transition time threatened to become the limiting

factor in the use of computers.

As with conventional computing, the solution to the job transition
problem used the stored program concept. Information describing
characteristics of a job and the relations between job steps are
included in machine readable form along with the data and programs
which comprise the job. A computer program, given a sequence of jobs
which include job characteristics information could then determine an
efficient order in which to run Fobs. Such a program is commonly
called an operating system. (The additonal statements specifying job
characteristics and other operational information will be called job
control language.) Multiple job steps per run become more common as a
machine, instead of an operator, interprets and acts upon conditions
stating whether subsequent steps should be executed, and uses
relations between the output of one step and the input to the next.

In short, by requiring job or step transition information and resource
requirements to be stated precisely, a computer program could take
many of the actions previously associated with human operators,
reducing job transition time to a few seconds at most.

Success of the programmed or automatic operator depends on control
faithfully reaching the operating system at the conclusion of a job or
step. This is insured either through software conventions, hardware,
or both. Modern computers have hardware facilities which can be
employed to quarantee integrety of the operating system, and to
enforce its software conventions.
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The ability to make a computer progress smoothly from one job step to
the next is one of the most important characteristics of operating
systems. Historically, operating systems came into being as a result
of reducing job transition time by the use of computers.

1.1.2 Program Libraries

For any computer, there are a number of prograas uhibh are useful to a
large class of users. Examples of such prograas areflanguaqe
processors, loaders, debugging aids, as well as applications such as
sorting. Rather than require each user to supply his own copy of such
programs, a computer installation maintains a library of these
frequently used programs, and the operating system can invoke these
library programs on behalf of a user in response to job control
lanquaqe statements. Thus, instead of submitting a bulky program, a
few JCL statements are all that a user need submit to invoke a library

program. |

A centralized program library also insures that the most current
version of a utility program is available to all. Operating systens
usually include facilities for updating and maintaining program
libraries.

An obvious extension to the program library idea is to permit
subgroups of users to create and maintain private libraries of
programs. The same operating system facilities which are used to
create and maintain the central library are usually available for the
private libraries, and JCL generally invokes programs from any library
with equal ease. ’

One aspect of program library maintenance should be mentioned at this
point because of its utility in a wide class of situations: this is
the data management capability of operating systems. Data management
involves construction and maintenance of catalogues which can be used
to locate users' files, and structuring data files so that specified
classes of subsets can be easily extracted. 1In its most primitve
form, data management merely subsumes some of the complexities of
coding input-output instructions; in its advanced forms, data
management provides convenient and powvwerful linguistic devices for
characterizing and extracting subsets from data files.

1.1.3 gfesource Utilization

The discussion of automatic operation in section 1.1.1 indicated the
need for a program to manage the sequencing of jobs in order to
prevent excessive system idle time between runs. This function of
operating systems, while perhaps the function which historically
motivated their construction, is just one aspect of the more general
problem of maximizing utilization of the entire computing system.

Many of today's computing systems contain more equipment than any
single job in the installation can use. The motivation for such
configurations is to be able to offer a wide class of services. For
example, large accounting systems might require many tape or disc
drives but not much main memory, while even moderate linear
programming problems can profit from large main memory. Most jobs,
however, do not tax any one component of hardware to the utmost. For
such large computing systems, running only one job at a time can
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resylt in a substantial portion of the computing system's resources
standing idle.

To increase total system utilization, operating systems exploit the
fact that equipment other than CPU and main memory can operate
autonomously from the CPU for myriads of CPU instruction cycles.
Several jobs are placed into main memory concurrently and control of
the CPU given to one of them. When that job reaches a state where it
cannot utilize the CPU until the termination of an I/0 operation, the
CPU can be exploited by one of the other jobs in main memory. On the
other hand, it would be undesireable if each application were to be
written in such a manner to cooperate only with a specific set of
other applications, for then the economies of concurrent running of
proqgrams canh only be realized when all members of a set of cooperating
programs run together. 1Ideally, it should be possible to wWrite a
program as if it were the only program being run, and still realize
economies if it fits into main memory with another program which has a
differept pattern of I/0 usage.

Many operating systems permit precisely this type of programming.
Using the interrupt facilities of the CPU, the operating system can
gain control when a user program is about to become idle, and give
control of the CPU to another job. Similarly, when an awaited
condition is satisfied, the operating system camn regqgain control, and
return control to the task which had:just completed it's idle time.

The sharing of hardware resources by independent jobs in the manner
described is called multiprogramming. To successfully multiprogram a
computing system, the operating-system may require characterizations
of the jobs being submitted for execution. Such information can be
supplied through the job control language. Assuming a surplus of
vork, a possible objective of an operating system in scheduling jobs
and determinging which jobs are to run concurrently is to minimze the
rental paid for idle equipment.

In practice, however, the objective function to be minimized is
subject to various constraints, such as job deadlines. If we take a
broader view of a computing system and include as "components" the
people whose activities depend on the results of computation, then
their idle time must also be taken into account. A direct consequence
of such reasoning is interactive 'computing or time-sharing, which on
the surface appears to require excessive hardware, but, when including
the human factor, may be economically justifiable.

Lovwer cost is not sufficient for users to agree to run on a
multiprogrammed computer. They must also have guarantees that their
programs and data will not be disturbed by co-resident programs. This
problem has already been alluded to in the discussion of automatic
operation in section 1.1.1, and the same techniques which guarantee
inteqrity of the operating system in a uniprogrammed environment can
be extended to prevent physical interference among multiprogrammed
jobs.

1.1.4 Hardware Control

In the discussion of automatic operation and resource utilization, the
need was mentioned for the operating system to guarantee the integrity
of programs sharing a computing system. This is achieved by removing

from the users direct control of some hardware features, and making



. those features available only through simulation, dutlnq vhich misuse
can be detected and prevented.

The hardware features which the operating system reserves for itself
are precisely those features which are used to subdivide the computing
system's resources. The instruction set of today's computers usually
consists of two classes - privileged and non-privileged instructions.
The privileged instruction set includes facilities fpr input-outpuat,
setting of boundaries in main memory such that an attempt'to'reference:
beyond the boundary creates an exceptlonal condltxon,,an interrupt
system, and means to place the computer in either a problel state or
supervisor state. In the supervisor state, all instructions are
valid; in the problem state, privileged instructions are treated as
illegal and cause interrupts. The enabling and disabling of the
interrupt system requires privileged instructions.

Input/output instructions are classified as privileged to prevent one
user from accessing a device which contains data belonging to another]’
user. In many cases, a single physical device, such as a disc,
contains data of several users, and the operating system is required
to make the correct correspondences between the various users and
records on the physical device. Thus even if hardware were able to
restrict a program to access only certain I/0 devices, this would not
offer adequate protection. To replace the privileged I/0
instructions, the operating system provides routines which users may
invoke corresponding to each of the hardvare I/0 instructions. The
casual user may even derive a benefit if the operating system provides
additional facilities which automatically provide buffering and
synchronization between I/0 and -computing.

Control of physical I/0 addresses is often reserved to the operating
system. The rationale for removing this level of control from the
user follows from the desire to maximize the chance that arbitrary
programs can be multiprogrammed; for if two programs depended on using
the same physical I,/0 unit from a set of identical devices, these tvo
prgorams could never rum concurrently. Job control language provides .
mechanisms to make correspondences hetween user invented file names
and the devices on which the files are located. A compensation for
the loss of direct control of 1/0 devices is that the I/0 instructions
and I/0 error indications provided by the operating system tend to be
device independent, so that fregqdently a program can utilize a wide
variety of devices for a temporary file without any modification.

The interrupt system is also privileged, as it is the principal means
of communicating exceptional conditions to the operating systen,
including attempted violations of security. Generally, an interrupt
system is simulated for user programs, so that these programs can also
treat exceptional conditions without executing tests which usually
fail. On the other hand, many programs are relieved of any necessity
to concern themselves with interrupts.

To allow sharing of main memory, users state how much contiguous space
is required, but usually do not have the freedom to specify the actual
addresses in memory where the space will be. This limitation provides
minimal user discomfort, since the use of relocating loaders has
already preempted some control over memory allocation. However,
computing systems with "virtual memory capabilities"™ can often be
programmed so that each user in a multiprogrammed environment has the
illusion of having all the original resources of the computer,



. including arbitrary memory locations, at his disposal, and with even
more memory than is physically present.

_of software

Having stated some objectives for operating systems, one is ultimately
faced with producing a set of programs, which is the operating system
itself. Several questions present themselves: What shall be the
environment for initially designing, developing and debugglng the
operating system? What features shall be introduced. JDtO the
operating system for self maintenance: what instrumeatation, software
error detection, what ability to test the operating system under
itself? PFlexibility of the operating system to accomodate a wide
variety of hardware confiqurations is also an important design issue.

1.1.5 Preparation and Maintenance

Not every computing system is suitable for the construction of
operating systems or for their maintenance. However, a significant
fraction of an operating systen COnSlStS of library programs which
behave as user programs and which are thus maintained as ordinary user
programs. Language processors are examples of such components of
operating systems. Library facilities can also be used to maintain
and update the source programs comprising the operating system, and
the lanquage processors to compile these programs. Furthermore,
ordinary programs can be used to structure the compiled operating
System programs into a new operating :system. The portions of the
operating system which are difficult to debug in an operating system
environment are those routines involved with hardware and resource
allocation.

1.2 OQverview of Operating_ System Internals

From the operating system objectives, some of the structure and unique
characteristics of these programs can be deduced. Simulation of human
operations, achieving hardware control and optimizing hardware
utilization imply characteristics not often found in ordinary
application progranms.

A human operator at the console of a computer exercises direct control
only sporadically, while he observes the system continuously for
unusual occurances. An operating system, which among other things
simulates a human computer operator must be able to exhibit similar
behavior, that is, the operating system must give up control of the
CPU for a majority of the time so that user programs can run, and at
these times it must place the CPU in such a state such that if any of
a number of special situations arise, control returns immediately to
the operating system. Such behavior can be achieved by simulating
successive user program instructions and testing for the unusual
conditions as part of the simulator's basic cycle, but this is very
inefficient. Computers which are designed to run with operating
sSystems contaln an interrupt system which makes it possible for these
changes of CPU control to take place efficiently. Leaving the
computers in a state enabled for all interrupt conditions is
equivalent to constantly monitoring for unusual conditions but taking
overt action only when such conditions occur. Control and management
of the interrupt system is fundamental to an operating systen.

Even 1n its simplest designs, an operating system creates a
multiprograsming environment in the sense that the operating systenm
consists of several relatively autonomous subprograms which run



. "concurrently" and which have the property of requiring only short
burst of CPU usage between which only monitoring of unusual events is
required. Examples of functions having this property include:
scheduling and dispatching jobs, controlling input output devices,
requesting and confirming the mounting of tape reels or disc packs,
and avoiding user program time overruns. Functions such as these are
then multiprogrammed with one or more user progranms.

1.2.1 The State of a Computation

A computer running under an operating system is actually involved with
several programs at the same time. One of these programs may be in
control of the CPU; the state of the other computations must be stored
in such a form that any of the dormant programs may be restarted.

The detailed description of the state of a computation is machine
dependent; however, it can be characterized well enough without such
details. The state of an interrupted computation consists of all the
information necessary to resume the computation. This information
falls into three broad categories: data resident in the registers of
the CPU, data resident in the address space of the computation, and
data resident in files.

For each program sharing the CPU, the operating system reserves a
portion of memory addressable only by the operating system for storing
the CPU resident data while the program does not control the CPU.
Generally computers can store or restore CPU resident data with only a
fev instructions. One such datum is the location at which to resunme
execution, and this is the last-datum which the operating systen
restores when returning control to a progran.

In many batch system, address space resident data are memory resident
for the program's entire run, including times when the program does
not control the CPU. An alternative is to copy memory resident data
onto a file accessible only by the operating system when a program
loses control of the CPU, and to restore it to memory before returning
CPU control to the program. Other schemes involve maintaining only a
fraction of address space resident data in random access memory; this
approach will be discussed in greater detail under Virtual Memory.

Since physical devices may contain several files associated with
independent programs, the operating system must keep track of the
assumptions which each program makes about the physical positioning of
such devices, so that any implicit positioning of devices by problen
programs will remain valid even if the device is shared in a
multiprogramming environment.

1.2.2 Mappings

It has already been observed that programs in an operating system
environment cannot directly access many of the computer's resources
for reasons of security, and uncertainties over which of several
identical resources will be assigned. Consequently, such resources
are referenced by programmer invented symbols, rather than physical
adresses. The operating system, during the scheduling process assigns
real resources to the symbolically named resources, and creates a map
from symbolic name space to the real resources. Operations on
;ymbolically named devices are interpreted, and during the
lnterpretation process the symbolic names are mapped into resource



. addresses. Explicit inverse maps or the ability to compute the
inverse must also be available in order to correlate signals froam real

devices with the symbolically named devices.

Maps between various symbolic name spaces and device address spaces
can consume a larqge fraction of the space occupied by operating
systems, and many system actions employ these maps or their inverses.
Often composite mappings are computed. For example, in file
manipulation, the follovwing spaces are involved: external file name
space, external volume name space, symbolic file name:space, and

physical device address space. '
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Chapter II
Parallel SETL

2.0 Language Requirements

In presenting operating system algorithms, it will be desirable to
focus on algorithmic content rather than machine dependent details.
The natural approach will be to present programs emboaying the
algorithms in a higher level language. .

3

The higher level lanquage to be used should have the property of not
forcing artificial structure on the data which the operating systenm
manipulates. Indeed, in practice, the structure chosen may have a
great bearing on performance, but this choice of data structure may be
hardware dependent and should not be dictated by the lanquage chosen.
In the programs to be given here, the: focus will be on algorithmic
content. The desire for a structure free notation will become
apparent when the many maps which an operating system requires are
considered. In using these maps, a crisp, mathematical notation
preserves the spirit of the algorithm, which would otherwise be
obscured by structural manipulation.

SETL satisfies the requirement for structure independence and all
algorithms, after appropriate discussion, will be presented as SETL
programs. It will be particularly advantageous to have arbitrary
index sets without explicit attention to how an index set maps into
the integers or other preferred entities.

2.1 SETL Deficiencies

There are several notions which distinguish operating systems which
cannot be expressed in SETL (or other commonly available higher level
languages). Operating systems utilize multiprogramming, and
mechanisms are required to identify the several processes comprising
the operating system, and to specify the passing of control between
processes. An interrupt mechanism is necessary as a means of
communicating between operating system and user programs, and it must
be possible to specify protection mechanisms in order to have
concurrent programs with safety. Other features which must be
described in algorithms, but which are inaccessible in standard SETL,
include clocks and timers, external device communication, resource
allocation, and resource sharing.

Idealized versions of these features will be added to SETL to make it
possible to describe operating systea algorithms. As with other
features of higher level langquages, the operating system extensions
will not necessarily correspond directly to the hardware of a specific
machine, but these extensions can all be realized on third generation
or later computing systems. SETL with operating system extensions
will be called PSETL, short for parallel SETL.

Enhancements to SETL will take several forms. Special sets will be
defined within SETL to indicate the state of components of the
computing system, such as the process in control of the CPU. These
sets will be accessible to select operating system routines but not to
user proqramss. As a matter of notation, names of special sets, which
are only accessible by the operating system, will be underlined, both



.in this text and in programs.

New operations will be defined, although only a few are truly
fundamental. The remainder can be defined in terms of the fundamental
ones and ordinary SETL, but most of the time it will be convenient to
think of these "macros" as fundamental operations. * Of course, the
representation of these macros in terms of a stripped down PSETL
embodies some of the most fundamental operating system algorithms, and
these will be described in great detail in Chapter Ivt*

2.2.1 Jobs and Processes

The coarsest identification of independent programs and data within
the computer will be by job. To unify the control structures of the
operating system, the operating systewm itself will also be considered
to be a job, although none of the user jobs jare independent of the
operating system. With each job, a 'mover' is associated as a means
of identification, and a special set, movers, within the operating
system will hold the names of all currently active jobs.

In discussing the operating system's handling of a job, it is not
sufficient to take into accoupt only the code (i.e. program) and data
which comprise the job; the execution:of the program must also be
considered. The words ‘'program' and 'procedure' will be reserved to
mean the (static) pattern of bits which the hardware is given to
execute., A program in execution, i.e. a program already coupled to
data and thus at least potentially 'in motion' will be called a
'process'. The notion of process can be sharpened by mimicking the
definition of a computation-used in discussing Turing machines. A
process is the sequence of states which a CPU takes on in executing a
program. Since we wish to allow programs to initiate independent
paths of execution (i.e. parallel processing), we will allow for more
than one process to be associated with a job. Each process
corresponds to a complete path taken by a CPU throuqgh the program.

Formally, a process is identical with the history of a CPU's running
of a program. In order to represent such a history, (which nmay
actually be executed in bits and Pieces) as an identifiable *thing?',
we will associate a unique blank-atom p with each process at the tine
of its inception; p will serve as, and occasionally be referred to as
the process identifier, though sometimes in the interests of brevity,
we will refer to this identifier simply as 'a process'. That is, we
will sometimes use the term t'process' informally, in the sense
explained in the previous paraqraph. Thus we will use expressions
such as 'interrupting a process' to mean that a CPU is diverted to
other activities between the execution of successive steps associated
with a process, 'starting a process' to mean forcing the CPU to take
on the state indicated by a state vector supplied with the process
identifier, and 'resuming a process' (presumably after an interrupt)
to mean that some CPU which was interrupted after the nth step of a
process is now resuming at the n+1st step associated with that
process. An operating system is an example of a job using multiple
processes, whereas the maijority of (today's) applications consist of a

single process.

In the discussion which follows, the special set of pairs, process,
cantains elements of the form <m,p>, where m is a mover and p a



. process belonging to m. The set process (m} consists of all active

praocesses belonging to the mover =. ,
Let us first consider the case in which only a single CPU is present.
The special set state defines the process controlling the CPU. We
shall make use of three positional macros which isolate the components
of state: processpart, environment, and privilege.
processpart (state) is a member of process and identifies the mover and
prccess currently controlling the CPU. environment(state) gives all
the information necessary to define the path which execution of a
prccess will take when the process comes into control of the CPU.
This includes information concerning the code block to be executed,
the next instruction within it to be executed, and the values of all
variables accessible to the process, together with the pattern of
calls effective at a given moment, etc. privilege(state) identifies
vhether or not the process controlling the CPU may issue privileged
operations, For example, only a privileged process may change state.

|

Process switching is achieved by changing state. (See examples
2.2.6.3 and the simple dispatcher in 2.4.3.1 for examples of this,
i.e. for process switching by assignment to state.) Ordinary 'go-tos'
are a particular case of modifications of state; more specifically,
for a privileged process, the two statements:

go to L; and loctr(state)=L; ,
vhere we assume that loctr extracts the component of
environment (state) which defines the next instruction to be executed
vithin the current subroutine, have the same effect. The first is
o still the prefered form; the second is shown by way of explanation.

2.2.2 Control of Interrupts.

Interruption is a major communication mechanism between parts of an
operating system and problem programs. Generally this mechanism has
no counterpart in higher level lanquages, since these languages are
intended to describe simple, non-parallel, deterministic algorithams.

Two features are required to describe an interrupt system. It must be
possible to describe which portion of code is invoked on the

B occurrence of particular interrupts, and it must be possible to

g inactivate the interrupt system.

We define a set, interrupt, which consists of a collection of pairs of
the form <int,place>, where int specifies an interrupt class, and
'place' identifies the portion of code invoked when an interrupt of
class int is encountered. 'place!' must be of an appropriate form to
specify a process state, as described in 2.2.1. A set resume takes on

interruption, and can be used to resume the interrupted process, via
the simple statement:
state = resume;

Further details concerning an interrupt are contained in the variable
cause; the value of this variable is modified to show all relevant

in?errupt-related information whenever an interrupt occurs. Only .
privileged operating system code has access to the sets interrupt,
cause, and resume, which correspond to the programmable hardware

mechanism which determines to where control flows after an interrupt.

In PSETL, the interrupt system is generally active or enabled, so that



. interruption is generally possible. 1In certain routines, however,
interruption is intolerable, and computing systems therefore contain
instructions for disabling and enabling the interrupt system under
program control. A similar mechanism is required for PSETL. Hovever,
the PSETL interrupt disabling feature will be less general than that
found on most computing systems, in that it will not be possible to
keep the computing system permanently disabled. This may cause minor
inconveniences in some cases, but it will have the beneficial property
of making it linquistically impossible toc introduce a "bug" which
prevents the syster from re-enabling the interrupt system.
To this end we add to SETL the disabled block which has the form:

(disable) block; end disable;
The block of code in a disabled block is restricted in the following
ways:

1. There may be no while iteration headers within the block.

2. Only foward branches within the block are allowed.

3. Branches out of the block end the disabled condition.

4., cCalls to user defined subroutines, or subroutine returns, end

the disabled condition.
while in the disabled state, the process in control of the CPU is
quaranteed uninterrupted control. The restrictions on the disabled
block quarantee that a disabled process cannot permanently hold the

cpu.

+

In the case of a multi-CPU confiquration, only one CPU may be ian the
disabled state at a given time. Attempted entry into a disabled block
vhile another CPU is already disabled implies a wait, which is known
to be finite because of linquistic limitations on the contents of a
disabled block. Thus, in PSETL, disabled blocks may be used to
gquarantee integrity of special sets during their use.

2.2.3 Private _and_Shared Data

Conventional SETL distinguishes between two types of variables,
locally owned and external. Locally owned variables are those which
occur within a subprogram and are not otherwise declared. Locally
owned variables can be referenced by name only within the subprogranm
in which they are defined, although their values may be transmitted
bet.ween subprograms using the standard SETL 'call' mechanisnms.
External variables are explicitly declared by use of the SETL include
and global statements. External variables may often be thought of as
implicit arquments.

PSETL requires a third class of variable. Recall that the notion of a
process involves the further notion of 'path of control of a CPU'. It
is possible that several paths of control should execute the same body
of code (though of course at least some parts of their environments
would be different). Allowing interruption and multiprocessing raises
the possibility that several processes may be executing a common
subprogram concurrently. Of the variables referenced within the
subprogram, some, for example may have ‘'overall' significance to the
subproqram itself, whereas others may have 'seperate' significance for
several processes, more than one of which may be executing the
subprogram.

In the first case, we wish only one instance of the variable to exist,
regqardless of the number of processes concurrently executing the
subprogram. An example of such a variable is one which represents the



numher of processes currently executing the subprogram. Another
example is a variable representing a table read by all processes
currently executing a subprogram. Such variables will be called

=423 _Juurv—4

In the second case, there exist as many instances of a variable as
there are processes using the subroutine. Such a variable, for
example, can represent the time at which the process entered the
subprogram. These variables are in effect private. A process using
such a variable need not be concerned about possible, interaction
through that variable with another process. The local variables of
SETL will be taken to be ipso facto private variables of PSETL; we

will also allow certain SETL global variables to be private.

We adopt the convention that shared variables are to be declared at
the beginning of a subprogram by means of the shared statement, as
follows: '

shared vi1,v2,...,vn;

Recognizing that a single subprogram can be executed on behalf of
several processes, SETL initially blocks will be understood to be
entered on the first execution of a subprogram on behalf of each
process. Put another way, the mechanism which controls entry into the
initial block is private.

2.2.4 standard Queues_and_Facilities

In operating systems, it is common to regard vork as being queued on
an object such as a process, a -data structure or an I/0 device. PSETL
provides standardized queues through a special set, workset, and
mechanisms for adding and deleting elements of queues. For an object
x, workset{x} is the gqueue of work stacked on x. The structure of the
queues is immaterial to most of our discussion; suffice it to say that
either linked lists or tuples can serve as ah appropriate structure.

Two subprograms, which define the structure of workset as a queue, are
provided with workset. The function getfirst(x) returns the first
item in the workset for x and removes it from the workset. The
routine putlast(x,y) adds y to the end of the workset for x. Both
getfirst and putlast operate disabled.

Various central notions connected with the overall concept of
dedicated computing system portions will be represented in PSETL using
a special set called facilities. An object x is a facility if the
test x€faciljties is true. The special set busy identifies those
facilities which are momentarily in use or reserved. The special set
holds identifies the facilities which are busy on behalf of each
process. If p€process, then holds{p} is that subset of busy which is
dedicated to p.

We also regard the pool of a available CPUs as an object with a
wvorkset. The workset associated with the pool of CPUs contains the
states for all processes which are ready to start or to continue to
execute, but which are not running because every CPU is engaged in
other activity. The following line of code may well serve as the
final line of a dispatcher (a routine which selects the next process
to be executed and starts the CPU on that process):

State = getfirst (CPU) ;
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To ease the coding of the common operating system operation of
delaying execution of a subprogram until a reserved facility becomes
available, a new form of subprogram is added to PSETL. This is the
queued subroutine. A queued subroutine is defined by a header of the
form: )

define gd name(al,...,an) on fac;

This header is distinquished from the conventional SETL subroutine
header by the keywords gd and on and by the expressiqn following the
keyword on. A queued subroutine with the above header is entered only
vhen the calling program has exclusive control of the facility fac,
which is generally an expression in the arguments al,...,an.

Each queued subroutine must use the label '"nonexistent"™ in its body,
to which control passes in the event that facgfacilities. If
fac€facilities, the subroutine is entered as soon as fac is not busy.
At the moment of entry, fac is made ‘busy on behalf of the process
invoking the queued subroutine. It is the process's responsibility to
release the facility when it is no longer needed by issuing the
statement:

free fac;

In addition to the subroutine header shown at the beginning of this
section, the various other function .definition forms which SETL
provides, including infix, postfix and prefix forms, are allowed to
have the obvious queued forms, too. Queued subprograms are invoked in
the same manner as conventional subprograms. This frees the caller
from concern with many detailed synchronization activities implied by
the use of facilities. -

2.2.% Process Control

Among an operating system's prime responsibilities is the control of
processes. Functions belonging to this general heading include
process creation and termination, process suspension, and interprocess
communication. We shall now describe statements useful in supporting
these important functions. We point out that the operations described
in this section are available only to privileged processes in PSETL.

2.2.%.1 Process Creation

The PSETL statement:

split to s(e);
is used to begin a new process from the state s; the process is
identified by processpart(s), and execution begins at loctr(s). The
pair <pl,e> is passed to this process through its environment, where
p1 identifies the process which issued the split. The new process can
extract the pair <pil,e> from its environment by applying the
positional macro initialvar to its state. Moreover, the positional
macros 'ancestor' and 'info' retrieve pl1 and e from initialvar(s).
Thus, a process may identify the process which initiated it by

2.0.7.. Process_susporsion
A privileged process may suspend its own operation until a specitied
condition is met. The PSETL statement:

avajit cond;



.causes the process which issued the await to test the condition cond,
and if it is found to be false, to suspend operation until cond
becomes true. It is clear that for the condition to change in value
other processes must be able to proceed during the suspension of the
process which issued the awvait. (Non-privileged programs will be
provided with a similar capability in the form of an operating systenm
service vhich is invoked by a standard operating system request.)

Processes suspended by await statements will have tﬁgir states saved
in the special set waitset. When a process x is entered into waitset,
loctr(x) is set up it to re-evaluate the condition cond.

2.2.5.3 Interprocess Communication

A process may require the services of a second process, even though in
many cases the time at which the services are rendered are not
material to the first process, which moves forward as soon as the
parameters for the second process are transmitted. The second
process, on the other hand, may already-be occupied with another
request. A PSETL statement, enqueue provides this linkage by using
the workset for the second process. The PSETL statement:

engueue e on p2;
enters the pair <p1,e> on p2's workqueue; here pl=processpart (state),
state being the state of the process executing the request. The
process p2 must be written to examine its workqueue for additional
reguests at the conclusion of servicing each request. See example
2.2.6.4,

2.2.5.4 Process_Terminatjion

A process can terminate its execution by executing the PSETL
Statement:

tern;
This causes all facilities held by the process to be free'd, and its
workqueue to be purqged.

A process can force the termination of a second process by executing
the PSETL statment:

kill p2;
Generally, the issuing process nmust have at least as high a level of
privilege as the process it kills. As on the execution of a term
statement, the kill'd process's workqueue is purged, and facilities
held by it are free'd.

2.2.6 Examples

2.2.€6.1 The following trivial routine can be called to delay a
prccess until a facility x can be secured:

define gd reserve(x) on x;

nonexistent: return;

end;

2.2.6.2 Dijkstra defines P and V operations for process
synchronization using semaphores, which are initialized to 0 or 1.,

A process, Q say, that performs the operation 'P(sem) ' decreases
the value of the semaphore called 'sem' by 1. If the resultant
value of the semaphore concerned in non-negative, process Q can
continue with the execution of its next statement; if, however, the



resulting value is negative, process Q is stopped and booked on a
waiting list associated with the semaphore concerned. Until
further notice (i.e. a V operation on this very same semaphore),
dynamic progress of Q is not logically possible...

"A process, 'R' say, that performs the operationh 'V(sem)' increases
the value of the semaphore called ‘'‘sem! by 1. If the resulting
value of the semaphore concerned is positive, the, V-operation has
no further effect: if, however, the resulting valﬁg of the
semaphore concerned is non-positive, one of the processes hooked on
its waiting list is removed from this waiting list, i.e. its
dynamic process is again logically possible."

In PSETL, with the understanding that semaphore variables are
facilities, that semaphores initialized to 0 are busy, and that semval
is a map from semaphores to their values, we can express the P and V
operations by: '

define P(sem); shared semval;
(dlsable) senmval (sen) semval(sem)-1 is news;
else reserve(sem), EHA"IE end disable;
end P;
define V(sem); shared semval !
(disable) semval (sem)=semval (sem) +1 1s newvws;
if news le 0 then free sen;;;
end V;

Clearly, if one merely desires to synchronize processes, without
requiring that a count of delayed processes be kept explicitly for
sem, our dictions are rich enouqgh to allow 'reserve (sem);' for
'P(sem)' and 'free (sem);' for 'V(sem)'. The number of delayed
processes can always be computed by #workset {sem}.

2.2.6.3 A more complex example: Let d be a set all of whose elements
are facilities. If all elements of d must be secured before a process
can continue, one can simply insert the code:

{¥faced) reserve (fac);;
at an appropriate position. The above code achieves reservations one
at a time. On the other hand, it may be preferable to sieze each
device as soon as it becomes available, since if one follows any
particular sequential order, devices available at the start of the
sequence but required later may be preempted by another process by the
time an attempt is made to reserve them. A parallel reservation
strateqy must surely be at least as fast as the sequential approach,
and may be written in PSETL as follows:

Ww=newat; x=state; loctr (x)=S5;
(¥fac€d) processpart (x) =<w,newvat>;

split to x(fac); end ¥fac;
avwait #process{wleq 0;

52 reserve(lnto(qetflrst(processpart( ate) is q) is h) is fac));

<q,fac> out holds;
term; end disable;
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Recall that getfirst (processpart(state)) is a pair <p,fac>, where p is
the process which spawned the reservation processes, and fac is the
facility to be reserved. The statement S reserves the facility fac on
behalf of the process q executing S; the following disabled block
switches the reservation to the process p to avoid the reservation
being lost when term is executed by q.

2.2.6.4 A final example: Let us sketch a simple output routine which
accepts a single string of characters as input and prFints the string
using embedded er characters to deduce where the lines start. We
assume that the routine is invoked by:

enqueue str on printer;
vhere printer identifies the process associated with the program to be
given below. The advantage to the calling program is that it can
proceed immediately after the enqueue regardless of the work already
scheduled for the printer or the time physically required to print the
string.

output: await #workset {printer} ne 0O
str=info (getfirst(printer)) ;
=13
(while (j<Ek<#str|str(k) eq er) doing j=k+1;)
printout str(j:k-7); o
qo to output;

The first statement causes 'output' to wait until (or unless) there is
wvork stacked on its workqueue, and the second statement extracts the
next string to be printed from the workqueue. The remainder of the
code shown above is straiqhtfoward SETL; we assume that 'printout' is
a more primitive routine which prints its argument on a new line, left

adjusted, on a printer.

2.3 A Remark Concerning Machine Dependent Features and PSETL

The PSETL features introduced in section 2.2 allow the desription of a
good portion of operating systems. At some stage hovever, we will
wish to stop hiding crucial underlying details by linguistic facades,
and to face them. Some (but not all) of these underlying details are
machine dependent. Those which -Are not wvwe may subsequently wish to
describe in additional detail; of course details which are highly
machine dependent we exclude as belonging to a different type of
discussion. Thus, for example, a read verb in PSETL describes an
input acrion, and presumably is translated into a call on a standard
I-0 package. If we wish to desciibe the I-0 package in PSETL, we are
ultimately faced with the necessity of issuing I-O0 instructions which
carry out the read, a task which cannot be circumvented by using
another PSETL read. Such ultimate levels of machine dependence can
only be handled by the use of primitive machine-level subprograms or
by special bit patterns or other data objects whose significance must
be described in English and coded in a lower level language.

The special sets, interrupt and cause, are additional examples of
features of PSETL whose inner details are so machine dependent that
detailed definition is left to the actual system implementer. In our
PSETL discussion we may assume certain distinct interrupt classes, and
some particular manner in which the information describing the
circumstances of the interrupt is posted, but we shall not describe



the machine-level mechanisms which cause this to occur.

2.4

Detailed Summary of The Elements_of PSETL

In this section, the features of PSETL summarised in section 2.2 are

described in detail.
special sets, new primitive operations, and macro operationms.

case of macro operations,

as primitive.

In giving prototypes of PSETL statements,
following standardised ways:
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m represents an element of movers,

possible expansions in terms
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Elements: pairs of the form <m,n> where m€movers, and n is a path of

control for the mover n.

Uses: For m€movers, process({m} identifies the set of paths of control
associated with the mover m. The elements of process are the
processes in progress under control of the operating systen.

2.4.1.3 state "
Uses: sState identifies the process currently controklling the CPU, its
privileqge class, and its environment, i.e. all that information
concerning the subroutine to execute, the location within this
subroutine at which to begin execution, and the values of all
variables accessible to the process; information which fully
determines the future course of the process. These components of
State are retrieved by the positional macros processpart, privilege,
and environment, respectively. A running privileged process can
always identify itself by w=processpart{state); and then refer to its
workqueue, if appropriate, by workset{w} or getfirst (w).

2.4.1.4 interrupt

Elements: pairs of the form <i,s>

Uses: If the pair <i,s>€interrupt, and an interrupt of class i
rcesume, and the variable cause comes to represent all relevant
information concerning the interrupt that has just occurred.

2.4.1.5 esume

2.4.1.6 cause

Elements: machine dependent !
Uses: Makes available, in some suitable form, an abstract 'message'’
giving additional information reqgarding an interrupt being processed.
For example, on arithmetic exceptions, it might be used to distinguish
between overflow, underflow or division by zero; on input/output
interrupts, it might indicate the hardware address of the device
causing interruption, or whether an attempted I/0 operation was
successful, and if not, the reasons for failure.

2.4.1.7 workset

Elements: pairs of the form <j,q>, where j is a system object, and q
is a queue.

Uses: For an object j, workset(j} is the queue of items stacked on j.
The structure of the queue elements are dependent on the object 7.
Note that the detailed structure of the queue workset{j} is not needed
in the alqorithms, since the subroutines getfirst, remove, and putlast
perform the queue manipulations by using auxilliary sets the details
of which need not concern us at this level of discussion. It is



. sufficient to know that FIFO order of workqueues is preserved.

2.4.1.8 waitset

Elements: A collection of states representing processes suspended
avaiting a condition to be satisfied. \

Uses: For x€waitset, executing state=x; re-evaluates the awaited
condition for the process processpart(x), which after this evaluation
will either begin to move forward, or will resume its wait.

2.4.1.9 facilities v

Elements: Serially re-usable system objects, such as devices,

variables or subprogqrams.

Uses: The elements of facilities may be reserved by processes, via
use of queued subprograms. If x€facilities and x€busy, then x has
been reserved by a process. PFor objects in facilities, the use of
queued subroutines and the free statement provides automatic
management of the objects' worksets, and synchronization of processes
with the availability of facilities designated in the queued

subprogram header.

2.4.1.10 busy

Elements: members of facilities !

Uses: x€busy implies that some process is using the facility x.
2.4.1.11 holds

Elements: pairs of the form <p,fac> with pE€process and
facefacilities. :

Uses: <p,fac>€holds implies that the facility fac is busy on behalf
of the facility p.

2.4.2 Primitive Operations

2.4.2.1 disabled block

Statement form: (disable) bplock;

Description: While executing 'block', the interrupt mechanism is
disabled. If there are multiple.-CPUs, only one may be disabled at a
time; indeed, the entry of one CPU into a disable block temporarily
suspends the activity of all others. While~-iteration headers and
backward branches are syntactic errors within a disabled block.
Branches out of the block, returns, or invocations of user defined
subprograms end the disabled condition.

2.4.2.2 initial block

Statement form: initially block;

Description: On each process's first entry to a subprogram, the
'block' is executed. To effectively execute the initial block only
once reqardless of the number of unique processes executing the
subproqram, use a shared variable to distinguish between a first and

subsequent uses of the subprogranm.

2.4.2.3 process_switching; the special variable 'state’

———— ——— e e — - ——— e e . s e e o PO S

A CPU is directed to switch processes by assignment to the special



varhable state. The assiqgnment state=s; causes the process

processpart (s) to control the CPU starting at loctr(s), and to operate
in the privilege class privilege(s).

2.4.2.4 shared variables

Statement form: share vi,v2,...,vn;

Description: Variables declared in a share statement and owned by a
subprogram have only one instance in storage, regardless of the number
of distinct processes executing the subprogram. Such variables,
especially if global, may be used to communicate betﬁeen subprocesses.
Por variables not declared as being shared, a unique value exists for
each process executing the subprogranm.

2.4.3 Macro Operations

2.4.3.1 await '

|
Statement form: await cond;

Description: The privileged process issuing an await continues

execution if the boolean expression cond is true; otherwise its
execution is suspended until cond becomes true.

Expansion: 3 :
if not cond then !
(disable) s=state; loctr(s)=L; s in waitset;
go to getwork; end disable;
L: (disable) <isok,locgoto>=<cond, M>;
go to sortout; end disable;
end if; '
M:

In this expansion, L and M are compiler generated labels, and s a
compiler generated variable. The expansion works in cooperation with
the operating system's dispatcher, getwork. ‘'getwork' and 'sortout’
are labels in the dispatcher. The variables 'isok' and 'locgoto’
transmit to the dispatcher the recomputed condition and the location
from which the process resumes computation when the condition is
satisfied. A simple dispatcher is:
getwork: waitcopy=waitset;
loop: if waitcopy ne nl then
s from waitcopy;
state=s; /*recompute conditionx*/
sortout: if isok then s out waitcopy;
loctr (s) =locqoto;
putlast (CPU,s); end if;
go to loop; end if;
/¥if waitcopy eq nl then#*/
s=qetfirst (CPU) ;
if s eq om then go to getwork;;
state=s; /*give control of CPU to chosen process*/

Notice in the fourth line that executing state=s; causes control to
flow to loctr(s), which corresponds to the label L in the above
expansion for await. The dispatcher first tests all avaited
conditions, and moves processes with satisfied conditions to the CPU's
workqueue. The first element of the CPU's workqueue is then selected
as the next process to run, unless the CPU workqueue is empty, in



whigh case the dispatcher re-examines the unsatisfied conditions.
Since the dispatcher is enabled, interrupt response is possible and
may result in one of the conditions becoming satisfied.

2.4.3.2 queued subprogram header

Statement forms: (1) define gd name(al,...,an) on fac;
(2) definef gd name(al,...,an) on fac;
(3) infix, prefix and postfix forms of the above

Description: Entry to the subprogram 'name' is completed only when
the facility fac is available. While fac is busy for another process,
the calling process is queued on fac. When control reaches the first
user-coded statement in the subprogram, fac€busy and
<{processpart (state) ,fac>€holds. It is the responsibility of the
calling process to eventually release the facility when no longer
needed. A queued subprogram must include a statement labeled
'nonexistent! to which control will flow in the event that fac is not

a facility.

Expansion:
define name(al,...,an);
if facgfacilities then go to nonexistent;;
(disable) if fac€busy then, .
save=state; loctr (save)=4;
putlast (fac,save) ; go to getwork;
else fac in busy; <processpart (state),fac> in holds;;
end disable;
M:

2.4.3.3 free

Statement form: free fac;

Description: The facility fac is released by the process which issued
the free. fac is removed from busy unless another process is enqueued
on fac, in which case that process is activated and the facility
reserved for that process.
Expansion: J

(disable) v=getfirst (fac);

else putlast (CPU,vV) ;
<processpart(v),fac> in holds;; end disable;

2.4.3.4 split
Statement form: split to s(e);

Description: In the above statement, s is a state variable, such that
processpart(s) represents a new process, p. A new process 1s created
as Follows: p is added to process, the pair <pil1,e> is stored in p's
environment in such a manner that it can be retrieved by
initialvar(s), (where p1 represents the process which executed the
split), and and an entry is made on the CPU's workqueue, indicating
that the process p begins its execution at loctr (s).
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Expansion:

(disable) moverpart (processpart(s)) inh movers;
processpart (s) in process;
initialvar (s) =<{processpart (
putlast (CPU,s) ; end disable

2.4.3.5 engqueue

Statement form: engqueue e on p; N

Description: The pair <p1,e> is placed at the end of p's workqueue,
where p1 is the process issuing the enqueue statement. Upon adding
the pair to p's workqueue, p1 is free to continue execution. A
process which services enqueued requests will, upon becoming idle,
generally suspend its operation for later resumption by waiting for
its workqueue to become non-empty. See examplei2.2.6.4.

Expansion: putlast (p,<p1,e>);

2.4.3.6 process_termination

Statement forms: kill p;
ter

18 -~

i
ern;
Description: The process identified by p is terminated; itenms
already stacked by it on other workqueues are eliminated, facilities
held by it are released, and its workqueue is dropped The statement
term; is equivalent to kill processpart (state); and is used by a
process to terminate its own execution.

Expansion:
(disable)
(¥x€hd[ workset ], ¥y€workset {x})
if ancestor(y) eq p then remove (X,y);:;
(¥fac€holds {p}) free fac;;
workset {p}=onm;
moverpart (p) out movers;;
if processpart(state) eq p’then go to getwork;;
end disable;

2.4.3.7 gqueue_management_ subprograms

Statement forms: gqgetfirst (j) ;
putlast (j,x)
remove (j,x)

Description: getfirst (j) returns the first element on object j's
workqueue and removes that element from the queue. If there are no
elements in j's workqueue, then getfirst (j)=om putlast(j,x) stores x
as the last element on j's workqueue. repove (j,x) will remove x from
j's workqueue if x is present, in such a manner that the FIFO ordering
of the remaining enqueued items is preserved.

These subprograms have routine SETL expansions defined by whatever
logical structure is chosen for the workqueues. The only PSETL
consideration that arises is that these subprograms might have to bhe



« be 4qisabled to prevent other processes from modifying the workset
while getfirst, putlast, and remove are in operation.

2.4.3.8 positjional macros

Forms: processpart(s)
environment (s)
privilege (s) .
loctr(s) .
initialvar (s)
ancestor (x)
info (x)
moverpart (p)

Description: Once a specific structure for state has been chosen, the
first three macros, to be used on sets with the same structure as
state, extract the process portion,:environment portion, and privilege
class portipn of their arquments, respectively. If for example, state
is a triple, we could use the conventions processpart(s)=s (1),

environment (s)=s(2), and privilege(s)=s(3).

loctr and initialvar also apply to objects with the same structure as
state. loctr(s) extracts the location portion of s's environment, and
initialvar (s) extracts the pair <p,e> from environment(s), where p is
the process which initiated processpart(s), and e is initialization
information passed by p to processpart(s).

ancestor (x) and info(x) apply to objects of the form occuring on
vorkqueues, and respectively reference the process which placed the
object on the workqueue, and the request being transmitted through the
vorkqueue. These macros are also applicable to objects retrieved by
the initialvar macro.

moverpart (p) extracts, from a process identifier p, the identification
of the mover to which it belongs.



