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During the past decade, operating systems have come t(f play an 
increasingly important role in computing, to the point where today, an 
operating system is considered to be an integral part'of a computing 
system. This dissertation attempts to distill diverse efforts in 
operating systems design, and to depict those fundemental algorithms 
which are peculiar to operating systems. 

Our first task will be to make the notion •operating system• as 
preciser as possible. This will not be done with the conciseness and 
precision of a definition occuring in a mathematical text, but by 
setting forth the obiectives to be satisfied by the programs to be 
considered. Examination of these objectives will lead to a coarse 
characterization of operating system algorithms. 

Use of an appropriate proqram~ing la~guage will be necessary if the 
algorithmic content of operating syst~ms is to be presented in a 
satisfactory manner. To keep the algorithms at a sufficiently high 
level (uncluttered by details imposed by the language), the algorithms 
will be described in PSETL, a version of SETL which has been enlarged 
to accoaodate algorithms involving interrupts, parallelisa, and to 
some extent, machine depend~n~ features. 

Usinq PSETL, several operating systems will be presentet in detail. 
The first, a simple uniprogrammed batch system, illustrates basic 
control mechanisms and scheduling. The second, a multiprogrammed 
system, introduces additional complexities due to contention for 
resources and conflicting objectives. Of course, the design of these 
systems will involve several ad hoe decisions; the reasons for the 
strategies adopted, as well dS viable alternatives, will be discussed 
in the final chapter. 

A detailed discussion of the majcir components and problem areas of 
operating systems includes the following topics: system nucleus, 
scheduling, resource allocation, contiol of processes, data 
management, virtual machines, measurements, and operating system 
developement and maintenance. Key algorithms are identified and 
presented for these areas. When alternative approaches exist, these 
are presented with appraisals of their relative merits and weaknesses. 
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Chapter I 

Introduction to Operating Systems 

Our first task is to define what an operat"ing system is. It will not 
be possible to do this with mathematical precision~ Instead, a loose 
characterization of what will be considered an operating system in 
this work will be given, motivated by citing objectives which such 

\ 

systems attempt to satisfy. 

1. 1 O.Qjectives_of O£eratin..g systems 

1.1. 1 The Automatic_O£erator 

In the early days of computing each job or run was an independent 
entity. A user submitted his own copy of a language processor, 
loader, or debuqging aid, along with•instructions for the operator on 
actions to take on the occurance of various machine halts. At the end 
of a run, computer memory was generally cleared, tape reels associated 
wit the concluded run dismounted, and tape reels for the next run 
mounted. Transition time between runs was frequently on the order of 
1 to 5 minutes. These inefficiencies were often compounded by the 
inability of a computing installation to process a multi-step job. 
Thus, a "~ompile and go" job ~as usually two runs, with the attendant 
over hea,J Pii id twice. 

With a larqer number of applications becoming economically feasible 
and with increased computer speed, the length of typical computer runs 
- especially runs for debugging - approached and fell below the run 
transition time. Just as the huaan•s ability to enter data and 
commands became the limiting factor for desk calculators, the speed of 
humans durinq run transition time threatened to become the limiting 
factor in the use of computers. 

As with conventional computing, the solution to the job transition 
problem used the stored program concept. Information describing 
characteristics of a iob and the relations between job steps are 
included in machine readable form along with the data and programs 
which comprise the job. A computer program, given a sequence of iobs 
which include job characteristics information could then determine an 
efficient order in which to run iobs. Such a program is commonly 
called an operating system. (The additonal statements specifying job 
characteristics and other operational information will be called job 
control lanquage.) Multiple job steps per run become more common as a 
machine, instead of an operator, interprets and acts upon conditions 
stating whether subsequent steps should be executed, and uses 
relations between the output of one step and the input to the next. 
In short, by requirinq iob or step transition information and resource 
requirements to be stated precisely, a computer program could take 
many of the actions previously associated with human operators, 
reducinq iob transition time to a few seconds at most. 

Success of the programmed or automatic operator depends on control 
faithfully reaching the operating system at the conclusion of a job or 
step. This is insured either through software conventions, hardware, 
or both. Modern computers have hardware facilities which can be 
employed to quarantee inteqrety of the operating system, and to 
enforce its software conventions. 
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The ability to make a computer progress smoothly fro■ one job step to 
the next is one of the most important characteristics of operating 
systems. Historically, operating systems came into being as a result 
of reducing job transition time by the use of co ■ puters. 

1.1.2 f~Q.g&gm Librarig2 

For any computer, there are a number of programs vhibh are useful to a 
large class of users. Examples of such programs ace;language 
processors, loaders, debugging aids, as well as applications such as 
sorting. Rather than require each user to supply his own copy of such 
programs, a computer installation maintains a library of these 
frequently used programs, and the operating system can invoke these 
library programs on behalf of a user in response to job control 
lanquaqe statements. Thus, instead of submitting a bulky program, a 
few JCL statements are all that a user need submit to invoke a library 
program. 

A centralized proqram library also insures that the most curr~nt 
version of a utility program is available to all. Operating systems 
usually include facilities for updating and maintaining program 
libraries. 

An obvious extension to the program library idea is to permit 
subgroups of users to create and maintain private libraries of 
programs. The same operating system facilities which are used to 
create and aaintain the central library are usually available for the 
private libraries, and JCL gene£ally invokes programs from any library 
with equal ease. 

One aspect of program library maintenance should be mentioned at this 
point because of its utility in a wide class of situations: this is 
the data management capability of operating systems. Data management 
involves construction and maintenance of catalogues which can be used 
to locate users' files, and structuring data files so that specified 
classes of subsets can be easily extracted. In its most primitve 
form, data management merely subsumes some of the complexities of 
coding input-output instructions; in its advanced forms, data 
management provides convenient and powerful linguistic devices for 
characterizing and extracting sobsets from data files. 

1. 1. 3 tlesource_Utilization 

The discussion of automatic operation in section 1.1. 1 indicated the 
need for a program to manage the sequencing of jobs in order to 
prevent excessive system idle time between runs. This function of 
operating systems, while perhaps the function which historically 
motivated their construction, is iust one aspect of the more general 
problem of maximizinq utilization of the entire computing system. 

Many of today's computing systems contain more equipment than any 
single iob in the installation can use. The motivation for such 
configurations is to be able to offer a wide class of services. Ppr 
example, large accounting systems might require many tape or disc 
drives but not much main memory, while even moderate linear 
programming problems can profit from large main memory. Most jobs, 
however, do not tax any one component of hardware to the utmost. For 
such large computing systems, running only one job at a time can 
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. resqlt in a substantial portion of the computing system's resources 
standing idle. 

To increase total system utilization, operating systems exploit the 
fact that equipment other than CPU and main memory can operate 
autonomously from the CPU for myriads of CPU instruction cycles. 
Several iobs are placed into main memory concurrently and control of 
the CPU given to one of them. When that job reaches a state where it 
cannot utilize the CPU until the termination of an rio operation, the 
CPU can be exploited by one of the other jobs in main~memory. On the 
other hand, it would be undesireable if each applica~ion were to be 
written in such a manner to cooperate only with a specific set of 
other applications, for then the economies of concurrent running of 
programs can only be realized vhen all members of a set of cooperating 
proqrams run together. Ideally, it should be possible to write a 
program as if it vere the only program being run, and still realize 
economies if it fits into main memory with another program which has a 
differept pattern of I/0 usage. 

Many operating systems permit precisely this type of programming. 
Using the interrupt facilities of the CPU, the operating system can 
qain control when a user program is about to become idle, and give 
control of the CPU to another job. Similarly, when an awaited 
condition is satisfied, the Qperating system can regain control, and 
return control to the task which had!iust completed it's idle time. 

The sharing of hardware resources by independent jobs in the manner 
described is called multiprogramming. To successfully multiprogra ■ a 
computing system, the operating-system may require characterizations 
of the jobs being submitted for execution. Such information can be 
supplied through the job control language. Assuming a surplus of 
vork, a possible objective.of an operating system in scheduling jobs 
and determinging which ;obs are to run concurrently is to minimze the 
rental paid for idle equipment. 

In practice, however, the obiective function to be minimized is 
subiect to various constraints, such as job deadlines. If we take a 
broader view of a computing system and include as "components" the 
people whose activities depend on the results of computation, then 
their idle time must also be taken into account. A direct consequence 
of such reasoning is interactiv&'computing or time-sharing, which on 
the surface appears to require excessive hardware, but, vhen including 
the human factor, may bP economically justifiable. 

Lower cost is not sufficient for users to agree to run on a 
multiprogrammed computer. They must also have guarantees that their 
programs and data will not be disturbed by co-resident programs. This 
problem has already been alluded to in the discussion of automatic 
operation in section 1.1.1, and the same techniques which guarantee 
integrity of the operating system in a uniprogrammed environment can 
be extended to prevent physical interference among multiprogrammed 
;ohs. 

1.1.4 Hardware_Control 

In the discussion of automatic operation and resource utilization, the 
need was mentioned for the operating system to guarantee the integrity 
of programs sharing a computing system. This is achieved by removing 
from the users dir@.ct control of some hardware features, and making 
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tho~e features available only through simulation, during which ■ isuse 
can be detected and prevented. 

The hardware features which the operating syste ■ reserves for itself. 
are precisely those features which are used to subdi•ide the co■pttting 
system's resources. The instruction set of today•~ co■puters usually 
consists of tvo classes - privileged and non-privileged instructions. 
The privileged ins~ruc~ion ~et includes facilities f_p,r in?ut7output, 
setting of boundaries in main 11e11ory such that an atte■ pt·;to reference· 
beyond the boundary creates an exceptional condition~an interrupt 
system, and means to place the computer in either a p'roble■ state or 
supervisor state. In the supervisor state, all instructions are 
valid; in the problem state, privileged instructions are treated as 
illeqal and cause interrupts. The enabling and disabling of the 
interrupt system requires privileqed instructions. 

Input/output instructions are classified as privileged to prevent one 
user from accessing a device which contains data belonging to another 
user. In many cases, a single physical device, such as a disc, 
contains data of several users, and the operating system is required 
to make the correct correspondences between the various users and 
records on the physical device. Thus even if hardware were able to 
restrict a program to access only certain I/O devices, this would not 
offer adequdte protection. ro replace the privileged I/O 
instructions, the operating system p~ovides routines which users may 
invoke correspondinq to each of the hardware I/O instructions. The 
casual user may even derive a benefit if the operating system provides 
additional facilities which automatically provide buffering and 
synchronization between I/O and-computing. 

Control of physical I/O addresses is often reserved to the operating 
system. The rationale for.removing this level of control from the 
user follows from the desire to maximize the chance that arbitrary 
programs can be multiprogrammed; for if two programs depended on using 
the same physical I/O unit from a set of identical devices, these two 
prgorams could never run concurrently. Job control language provides 
mechanisms to make correspondences between user invented file names 
and the devices on which the files are located. A compensation for 
the loss of direct control of 1/0 devices is that the I/O instructions 
and I/O error indications provided by the operating system tend to be 
device independPnt, so that freq.uently a program can utilize a wide 
variety of devices for a temporary file without any modification. 

The interrupt syst~m is also privileged, as it is the principal means 
of communicatinq exceptional conditions to the operating system, 
including attempted violations of security. Generally, an interrupt 
system is simulated for user programs, so that these programs can also 
treat exceptional conditions without executing tests which usually 
fail. On the other hand, many programs are relieved of any necessity 
to concern themselves with interrupts. 

To allow sharing of main memory, users state how ■uch contiguous space 
is required, but usually do not have the freedom to specify the actual 
addresses in memory where the space will be. This limitation provides 
minimal user discomfort, since the use of relocating loaders has 
already preempted some control over memory allocation. However, 
computing systems with "virtual memory capabilities" can often .be 
programmed so that each user in a multiprogrammed environaent has the -
illusion of havinq all the oriqinal resources of the co■puter, 
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including arbitrary memory locations, at his disposal, and with even 
more memory than is physically present. 

Having stated some ohiectives for operating systems, one is ultimately 
faced with producing a set of programs, which is the operating system 
itself. several questions present themselves: What.shall be the 
environment for initially designing, developing and debugging the 
operating system? What features shall be introduced lnto the 
operating system for self maintenance: what instrumootation, software 
error detection, what ability to test the operating system under 
itself? Flexibility of the operating system to accomodate a wide 
variety of hardware configurations is also an important design issue. 

Not every computing system is suitable for the construction of 
operating systems or for their maintenance. However, a significant 
fraction of an operating system cpnsists of library programs which 
behave as user programs and which' are thus maintained as ordinary user 
programs. Language processors are examples of such components of 
operating systems. Library facilities can also be used to maintain 
and update the source programs comprising the operating system, and 
the language processors to compile these programs. Furthermore, 
ordinary programs can be used_ to structure the compiled operating 
system programs into a new operating 1system. The portions of the 
operating system which are difficilt to debug in an operating system 
environment are those routines involved with hardware and resource 
allocation. 

1.2 Overview of Q.Eerating_Szstem_Internals 

From the operating system objectives, some of the structure and unique 
characteristics of these programs can be deduced. Simulation of human 
operations, achieving hardware control and optimizing hardware 
utilization imply characteristics not often found in ordinary 
application programs. 

A human operator at the console of a computer exercises direct control 
only sporadically, while he observes the system continuously for 
unusual occurances. An operating system, which among other things 
simulates a human computer operaior must be able to exhibit similar 
behavior, that is, the operating system must give up control of the 
CPU for a maiority of the time so that user programs can run, and at 
these tim~s it must place the CPU in such a state such that if any of 
a number of special situations arise, control returns immediately to 
the operating system. Such behavior can be achieved by simulating 
successive user proq~am instructions and testing for the unusual 
conditions as part of the simulator's basic cycle, but this is very 
inefficient. Computers which are designed to run with operating 
systems contain an interrupt system which makes it possible for these 
chanqes of CPU control to take place efficiently. Leaving the 
computers in a state enabled for all interrupt conrlitions is 
equivalent to constantly monitoring for unusual conditions but taking 
overt action only when such conditions occur. Control and managem~nt 
of the interrupt system is fundamental to an operating system. 

Even in its simplest designs, an operating system creates a 
multiprogramming environment in the sense that the operating system 
consists of several relatively autonomous subprograms which run 



"co~currently" and which have the property of requiring only short 
burst of CPU usage between which only monitoring of unusual events is 
required. Examples of functions having this property include: 
scbedulinq and dispatchinq iobs, controlling input output devices, 
requestinq and confirming the mounting of tape reels or disc packs, 
and avoiding user program time overruns. Functions such as these are 
then multiprogrammed with one or more user programs. 

1.2.1 The State of a ComputatiQn 

A computer running under an operating system is actu~lly involved with 
several programs at the same time. One of these programs may be in 
control of the CPU; the state of the other computations must be stored 
in such a form that any of the dormant programs may be restarted. 

The detailed description of the state of a computation is machine 
dependent; however, it can be charac~erized well enough without such 
details. The state of an lnterrupted computation consists of all the 
information necessary to r~sume the computation. This information 
falls into three broad categories: data resident in the registers of 
the CPU, data resident in the address space of the computation, and 
data resident in files. 

For each program sharing the _CPU, the operating system reserves a 
portion of memory addressable only by the operating system for storing 
the CPU resident data while the program does not control the CPU. 
Gen ◄~rally computers can store or restore CPU resident data with only a 
few instructions. One such datum is the location at which to resume 
execution, and this is the last-datum which the operating system 
restores when returning co~trol to a program. 

In many batch system, address space resident data are memory resident 
for the program's entire run, including times when the program does 
not control the CPU. An alternative is to copy memory resident data 
onto a file accessible only by the operating system when a program 
loses control of the CPU, and to restore it to memory before returning 
CPU control to the program. Other schemes involve maintaining only a 
fraction of address space resident data in random access memory; this 
approach will be discussed in greater detail under Virtual Memory. 

Since physical devices may contaJn several files associated with 
independent programs, the operating system must keep track of the 
assumptions which each proqr~m makes about the physical positioning of 
such devices, so that any implicit positioning of devices by problem 
programs will remain valid even if the device is shared in a 
multiproqramminq environment. 

1. 2 •. 2 11~£.Eing.§ 

It has already been observed that proqrams in an operating system 
environment cannot directly access many of the computer's resources 
for reasons of security, and uncertainties over which of several 
identical resources will be assigned. Consequently, such resources 
are referenced by programmer invented symbols, rather than physical 
adresses. The operating system, during the scheduling process assigns 
real resources to the symbolically named resources, and creates a map 
from symbolic name space to the real resources. Operations on 
symbolically named devices are interpreted, and during the 
inteirpretation process the symbolic names are mapped into resource 
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.addr~sses. Explicit inverse maps or the ability to compute the 
inverse must also be available in order to correlate signals from real 
devices with the symbolically named devices. · 

"aps between various symbolic name spaces and device address spaces 
can consume a larqe fraction of the space occupied~by operating 
systems, and many system actions employ these maps or their inverses. 
Often composite mappings are computed. For example, _in file 
manipulation, the following spaces are involved: ex~ernal file name 
space, external volume name space, symbolic file name:~space, and 
physical device address space. • 
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In presenting operating system algorithms, it will be desirable to 
focus on algorithmic content rather than machine depeftdent details. 
The natural approach will be to present programs emboaying the 
algorithms in a higher level language. 

The higher level language to be used should have the property of not 
forcing artificial structure on the data which the operating system 
manipulates. Indeed, in practice, the structure chosen may have a 
great bearing on performance, but this choice of data structure may be 
hardware dependent and should not be dictated by the language chosen. 
In the programs to be given here, the• focus will be on algorithmic 
content. The desire for a structure free notation will become 
apparent when the many maps which an operating system requires are 
considered. In using these maps, a crisp, mathematical notation 
preserves the spirit of the algorithm, which would otherwise be 
obscured by structural manipulation. 

SETL satisfies the requirement for structure independence ano all 
algorithms, after appropriate discussion, will be presented as SETL 
programs. It will be particularly.advantageous to have arbitrary 
index sets without explicit attention to how an index set maps into 
the integers or other preferred entities. 

2.1 SETL Deficiencies 

There are several notions which distinguish operating systems which 
cannot be expressed in SETL (or other commonly available higher level 
lanquages). Operating systems utilize multiprogramming, and 
mechanisms are required to identify the several processes comprising 
the operating system, and to specify the passing of control between 
processes. An interrupt mechanism is necessary as a means of 
communicating between operating system and user programs, and it must 
be possible to specify protection mechanisms in order to have 
concurrent programs with safety. Other features which must be 
described in alqorithms, but whicll are inaccessible in standard SETL, 
include clocks and timers, external device communication, resource 
allocation, and resource sharing. 

Idealized versions of these features will be added to SETL to make it 
possible to describe operatinq system algorithms. As with other 
features of higher level languages, the operating system extensions 
will not necessarily correspond directly to the hardware of a specific 
machine, but these extensions can all be realized on third generation 
or later computinq systems. SF.TL with operating system extensions 
will be called PSETL, short for parallel SETL. 

Enhancements to SETL will take several forms. Special sets will be 
defined within SETL to indicate the state of components of the 
computing system, such as the process in control of the CPU. These 
sets will be accessible to select operating system routines but not to 
user proqrams. As a matter ot notation, names of special sets, which 
~re only accessible by the operating system, will be underlined, both 
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.in tbis text and in programs. 

Nev operations will be defined, although only a few are truly 
fundamental. The remainder can be defined in teras of the fundamental 
ones and ordinary SETL, but most of the time it will be convenient to 
think of these "macros" as fundamental operations.~ Of course, the 
representation of these macros in terms of a stripped down PSETL 
embodies some of the most fundamental operating system algorithms, and 
thes1~ will be described in great detail in Chapter rv'i. 

" 

2.2. 1 Jobs and_Processes 

The coarsest identification of independent programs and data within 
the computer will be by job. To unify the control structures of the 
operating system, the operating system itself will also be considered 
to be a iob, although none of the user jobsiare independent of the 
oper.atinq system. With each job, a •mover' 'is associated as a means 
of identification, and a special set, ~2!~£§, within the operating 
system will hold the names of all currently active jobs. 

In discussing the operating system's handling of a job, it is not 
sufficient to take into accouot only ~he code (i.e. program) and data 
which comprise the iob; the execution1of the program must also be 
considered. The words •program' and 'procedure' will be reserved to 
mean the (static) pattern of bits which the hardware is given to 
execute. A program in execution, i.e. a program already coupled to 
data and thus at least potentially •in motion• will be called a 
'process•. The notion of process can be sharpened by mimicking the 
definition of a computatio~-used in discussing Turing machines. A 
process is the sequence of states which a CPU takes on in executing a 
program. Since we wish to allow programs to initiate independent 
paths of execution (i.e. parallel processing), we will allow for more 
than one process to be associated with a job. Each process 
corresponds to a complete path taken by a CPU through the program. 

Formally, a process is identical with the history of a CPU's running 
of a program. In order to represent such a history, (which 11ay 
actually be executed in bits and fieces) as an identifiable 'thing', 
we will associate a unigue blank/atom p with each process at the time 
of its inception; p will serve as, and occasionally be referred to as 
the £rocess identifier, though sometimes in the interests of hrevity, 
we will refer to this identifier simply as •a process•. That is, we 
will sometimes use the term •process• informally, in the sense 
explained in the previous paragraph. Thus we will use expressions 
such as 'interrupting a process• to mean that a CPU is diverted to 
other activities between the execution of successive steps associated 
with a process, •starting a process' to mean forcing the CPU to take 
on the state indicated hy a state vector supplied with the process 
identifier, and •resuminq a process• (presumably after an interrupt) 
to mean that some CPU which was interrupted after the nth step of a 
process is now resuming at the n+lst step associated with that 
process. An operating system is an example of a job using multiple 
processes, whereas the majority of (today's) applications consist of a 
sinqrle process. 

In the discussion which follows, the special set of pairs, _ErO.£g.§.§, 
contains elements of the form <m,p>, where m is a mover and pa 



-1 

I 

I 

. pro,c.ess belonqinq to 11. The set .Ef.Q£~§§ {11} consists of all active 
pro,cesses belonqinq to the mover m. 

Let us first consider the case in which only a single CPU is present. 
Thei specia 1 set stat~ defines the process controlling the CPU. We 
shall make use of three positional macros which idolate the components 
of state: £rocess£art, environment, and Erivilege. 
pro,cesspart (§!ate) is a ■ ember of £~§§ and ident.i.,fies the mover and 
process currently controlling the CPU. environment(~~!~) gives all 
the information necessary to define the path which e~ecution of a 
prc,cess will take when the process comes into control of the CPU. 
This includes information concerning the code block to be executed, 
the next instruction within it to be executed, and the values of all 
variables accessible to the process, together with the pattern of 
calls effective at a given moment, etc. privilege(§!at~) identifies 
whether or not the process controlling the CPU may issue privileged 
operations. For example, only a pri-vileged process may change st~te. 

i 
Process switching is achieved by changing stat~. (See examples 
2.2.6.3 and the simple dispatcher in 2.4.3.1 for examples of this, 
i.e,. for process switching by assignment to statg.) Ordinacy 'go-tos• 
arei a particular case of modifications of st~,!:~; more specifically, 
for a privileged process, the two statements: 

go to L; and loctr(st~1~)~L; , 
where we assume that loctr extracts the component of 
environment(§!~!~) which defines the next instruction to be executed 
within the current subroutine, have the same effect. The first is 
still the prefered form; the second is shown by way of explanation. 

2.2.2 Control of InterrUE!§· 

Interruption is a major communication mechanism between parts of an 
operating system and problem programs. Generally this mechanism has 
no counterpart in higher level languages, since these languages are 
intended to describe simple, non-parallel, deterministic algorithms. 

Two features are required to describe an interrupt system. It must be 
possible to describe which portion of code is invoked on the 
occurrence of particular interrupts, and it must be possible to 
inactivate the interrupt system. 

We define a set, in1fil:I..Y£!, which consists of a collection of pairs of 
the form <int,place>, where int specifies an interrupt class, and 
'place• identifies the portion of code invoked when an interrupt of 
class int is encountered. 'place' must be of an appropriate form to 
specify a process §!~1~, as described in 2.2.1. A set~§~ takes on 
the value which state had immediately before the moment of 
interruption, and-can be used to resume the interrupted process, via 
the simple statement: 

state= resume; 

Further details concerning an interrupt are contained in the variable 
£~~§~; the value of this variable is modified to show all relevant 
interrupt-related information whenever an interrupt occurs. Only. 
privileqed operating system code has access to the sets in!~££~E1, 
£.g~~~, and£~§~~~, which correspond to the programmable hardware 
mechanism which determines to where control flows after an interrupt. 

In PSETL, the interrupt system is generally active or @.nabled, so that 
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interruption is generally possible. In certain routines, however, 
interruption is intolerable, and computing systems therefore contain 
instructions for disabling and enabling the interrupt system under 
program control. A similar mechanism is required for PSETL. However, 
the PSETL interrupt disabling feature will be less general than that 
found on most computing systems, in that it will fiat be possible to 
keEip the computing system permanently disabled. This may cause minor 
inconveniences in some cases, but it will have the beneficial property 
of making it linguistically impossible to introduce a "bug" which 
prevents the system from re-enabling the interrupt sjstem. 

To this end we add to SETL the disabled_block which has the form: 
(disable) block; end disable; 

The block of code in a disabled block is restricted in the following 
ways: 

1 • 
2. 
3. 
4. 

There may be no ~hi1~ iteration headers within the block. 
Only toward branches within ~he block are allowed. 
Branches out of the block end the disabled condition. 
Calls to user defined subroutines, or subroutine returns, end 

the disabled condition. 
Whi.le in the disabled state, the process in control of the CPU is 
quaranteed uninterrupted control. The restrictions on the disabled 
block quar-antee that a disabled process cannot permanently hold the 
CPU. 

In the case of a multi-CPU config~ration, only one CPU ~ay be in the 
di!~bled state at a given time. Attempted entry into a disabled block 
while another CPU is already disabled implies a wait, which is known 
to be finite because of linquistic limitations on the contents of a 
disabled block. Thus, in PSETL, disabled blocks may be used to 
guarantee integrity of special sets during their- use. 

2. ~!. 3 Private and_Shared Data 

Conventional SETL distinguishes between two types of var-iables, 
loca 11 y owned and external. Locally owned variables are those which 
occur vithin a subproqram and are not otherwise declared. Locally 
owned variables can be referenced by name only within the subprogram 
in which they are defined, although their values may be transmitted 
between subproqrams using the st.andard s ETL 'call' mechanisms. 
External variables are explicitly declared by use of the SETL i!l£11!de 
and .9,!ob~.! statements. External variables may often be thought of as 
implicit arguments. 

PSl~TL requires a third class of variable. Recall that the notion of a 
process involves the further notion of 'path of control of a CPU•. It 
is possible that several paths of control should execute the same body 
of code (thouqh of course at least some parts of their environments 
would be different). Allowing interruption and multiprocessing raises 
th ◄~ possibility that several processes may be executing a common 
subprogram concurrently. Of the variables referenced within the 
subproqram, some, for example may have •overall' significance to the 
subprogram itself, whereas others may have •seperate• significance for 
se •re ral processes, more than one of which 11a y be executing the 
subproqram. 

In the first case, we wish only one instance of the variable to exist, 
ceqardless of the number of processes concur-rently executing the 
subproqr-am. An example of such a variable is one which repr-esents the 



number of processes currently executing the subprogram. Another 
exm ■ ple is a variable representing a table read by all processes 
currently executing a subprogram. such variables will be called 
§hcllXed .!~tiabJ:~.§• 

In the second case, there exist as many instances· of a variable as 
there are processes using the subroutine. Such a variable, for 
example, can represent the time at which the proces~ entered the 
suhprogram. These variables are in effect 12.£.i.!~!~- ·~A process using 
such a variable need not be concerned about possible.interaction 
through that variable with a not her process. The looa 1 variables of 
SETL will be taken to be ipso facto private variables of PSETL; we 
will also allow certain SETL global variables to be private. 

We adopt the convention that shared variables are to be declared at 
th,~ beginning of a subprogram by means of the ~hg£~Q statement, as 
follows: 

shared v1,v2, ••• ,vn~ 

Recoqnizinq that a single subprogram can be executed on behalf of 
se"eral processes, SETL in.1:tia.!11 blocks will be understood to be 
entered on the first execution of a subprogram on behalf of each 
process. Put another way, the mechanism which controls entry into the 
initial block is private. 

2.2.4 Standard_.Queues and_Facil{ties 

In operating systems, it is common to regard vork as being queued on 
an object such as a process, a -data structure or an I/O device. PSETL 
provides standardized queues through a special set, .!Q.£_!.§et, and 
mechanisms for adding and _-deleting elements of queues. For an object 
x, ~.Ql:~~~!fx} is the queue of work stacked on x. The structure of the 
queues is immaterial to most of our discussion; suffice it to say that 
either linked lists or tuples can serve as an appropriate structure. 

Two subprograms, which define the structure of ~Q.£1§~! as a queue, are 
provided with ~£!§~!- The function get first (x) returns the first 
item in the workset for x and removes it from the workset. The 
routine putlast(x,y) adds y to the end of the vorkset for x. Both 
g~j:.first and £Ut!g§! operate di~abled. 

Various central notions connected with the overall concept of 
dedicated computing system portions will be represented in PSETL using 
a special set called facjJ,.it.!_Q§• An object x is a facility if the 
test x€fa£.ili.!;ie.§ is true. The special set bU.§1 identifies those 
facilities which are momentarily in use or reserved. The special set 
hold§ identifies the facilities which are busy on behalf of each 
process. If p€.E.£.Q£~§§, then _hgld§ {p} is that subset of !?.!!§1 which is 
dedicated top. 

We also regard the pool of a available CPUs as an object with a 
workset. The workset associated with the pool of CPUs contains the 
states for all processes which are ready to start or to continue to 
execute, but which are not running because every CPU is engaged in 
other activity. The following line of code may well serve as the 
final line of a dispatcher (a routine which selects the next process 
to be executed and starts the CPU on that process): 

~te = get first (CPU) ; 
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To ease the coding of the common operating system operation of 
delaying execution of a subprograa until a reserved facility beco■es 
av~ilable, a new form of subprogram is added to PSETL. This is the 
~Y~!.!Aed ~Yli.Q.Y!ine. A queued subroutine is defined by a header of the 
form: 

define g~ name(a1, ••• ,an) QB fac; 
This header is distinguished from the conventional ~ETL subroutine 
hea1der by the keywords g_g and .Q.!! and by the expression following the 
keyword 2n- A queued subroutine with the above head~r is entered only 
when the calling program has exclusive control of the facility fac, 
which is generally an expression in the arguments a1, ••• ,an. 

Each queued subroutine must use the label "nonexistent" in its body, 
to which control passes in the event that fac~facilities. If 
fac:€facilities, the subroutine is entered as soon as fac is not busy. 
At the moment of entry, fac is made •busy on behalf of the process 
invoking the queued subroutine. It is the process's responsibility to 
release the facility when it is no longer needed by issuing the 
s t 21 t em en t: 

... tr~ fac: 

In addition to the subroutine header shown at the beginning of this 
sect ion, the various other function .definition forms which S ETL 
provides, including infix, postfix and prefix forms, are allowed to 
have the obvious queued forms, to6. Queued subprograms are invoked in 
thEi same manner as conventional subprograms. This frees the caller 
from concern with many detailed synchronization activities implied by 
the use of facilities. 

2.2.5 Process_Control 

Amonq an operating system's prime responsibilities is the control of 
processes. Functions belonging to this general heading include 
process creation and termination, process suspension, and interprocess 
communication. We shall now describe statements useful in supporting 
these important functions. We point out that the operations described 
in this section are available only to privileged processes in PSETL. 

2.2. 5.1 Process Creation 
I 

The PSETL statement: 
.§12.li! to s ( e) ; 

is used to beqin d new process from the states; the p~ocess is 
identified by processpart(s), and execution begins at loctr(s). The 
pair <p1,e> is passed to this process through its environment, where 
p1 identifies the process which issued the §E!i!- The new process can 
extract the pair <p1,e> from its environment by applying the 
positional mdcro initialvar to its state. Moreover, the positional 
macros 'ancestor• and 'info' retrieve p1 and e from initialvar(s). 
Thrns, a process may identify the process which initiated it by 
retrievinq ancestor(initialvar(~!A!~)), and it may reference the 
information being passed to it by retri~vinq info(initialvar~!!!~)). 

A privileqed process may suspend its own O!Jeration until a specified 
condition is met. The PSETL statement: 

ll~ait cond; 
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, caus.es the process vhich issued the ll.!il to test the condition cond, 
and if it is found to be false, to suspend operation until cond 
becomes true. It is clear that for the condition to change in value 
other processes must be able to proceed during the suspension of the 
pro,cess which issued the await. (Non-privileged programs will be 
provided with a similar capability in the form of~an operating system 
service which is invoked by a standard operating system request.) 

Pro,c esses suspended by a w9}! sta te11ents will have their states saved 
in the special set ~~itset. When a process x is ent~red into ~~il§et, 
loctr(x) is set up it to re-evaluate the condition cond. 

2.2.5.3 In!_g.£..erocess Communication 

A process may require the services of a second process, even though in 
many cases the time at which the services are rendered are not 
material to the first process, which moves forward as soon as the 
parameters for the second process are transmitted. The s~cond 
process, on the other hand, may already-be occupie~ with ~nother 
request. A PSETL statement, £ggy~y~ provides this linkage by using 
the workset for the second process. The PSETL statement: 

.!Hl.4.Ye u_g e on p 2 ; 
enters the pair <p1,e> on p2 1 s workgueue; here p1=processpart(§!~!f), 
§1~~~ being the state of the_process executing the request. The 
process p2 must be written to examin~ its workqueue for additional 
requests at the conclusion of ser~icing each request. See example 
2. 2'.. 6. 4. 

2.2.5.4 fro~ess_Termination 

A process can terminate its execution by executing the PSETL 
state■ ent: 

1erm; 
This causes all facilities held by the process to be fr~•d, and its 
workqueue to be purged. 

A process can force the termination of a second process by executing 
the PSETL statment: 

~ill p2; 
Generally, the issuing process must have at least as high a level of 
privilege as the process it kill~. As on the execution of a !,g£,! 
statement, the till'd process's workqueue is purged, and facilities 
held by it are !£~~•a. 

2.2.6.1 The following trivial routine can be called to delay a 
process until a facility x can be secured: 

define gg reserve(x) QQ x; 
nonexistent: return; 
end; 

2.2.6.2 Dijkstra defines P and V operations for process 
synchronization using semaphores, vhich are initialized to O or 1. 

"A process, Q say, that performs the operation 'P(sem)' decreases 
the value of the semaphore called •sem• by 1. If the resultant 
value of the semaphore concerned in non-negative, process Q can 
continue vith the execution of its next statement; if, however, the 
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resultinq value is negative, process Q is stopped and booked on a 
waiting list associated with the semaphore concerned. Until 
further notice (i.e. a V operation on this very sa■e semaphore), 
dyna■ ic progress of Q is not logically possible ••• 

"A process, 'R' say, that performs the operation 'V(sem) • increases 
the value of the semaphore called •se ■• by 1. If the resulting 
value of the semaphore concerned is positive, the. v-operation has 
no further effect; if, however, the resulting val,f of the 
semaphore concerned is non-positive, one of the p~ocesses booked on 
its vaitinq list is removed from this waiting lisO~ i.e. its 
dynamic process is again logically possible." 

In PSETL, with the understanding that semaphore variables are 
facilities, that semaphores initialized to Oare Q~§~, and that semval 
is a map fcom semaphores to their values, we can express the P and V 
opet'ations by: 

d€fine P(sem); .§ha£ed semval: 
(disable) semval(sem)=semval(sem)-1 is news; 

if news gQ O then sem in QY.§1; 
else reserve (sem) ; ena if; end disable; 

I? nd P; 

d Ef ine V (sem) ; .§.!rn!:~..Q semval; . 
(disable) semval(sem)=semval(sem) +1 i.§ news; 

if nevs !~ 0 then f!:~ sem;;; 
,end V; 

Clearly, if one merely desi~es to synchronize processes, without 
requiring that a count of delayed processes be kept explicitly for 
sem, our dictions are rich enough to allow •reserve(sem) ;• for 
'P (sem)' and 'free (sem); • for • V (sem) '. The number of delayed 
processes can always be computed by lworkset(sem}. 

2.2.6.3 A more complex example: Let d be a set all of whose elements 
at'e facilities. If all elements of d must be secured before a process 
can continue, one can simply insert the code: 

( ¥f ac€d) reserve (f ac) : ; 
at ,in appropriate position. The above code achieves reservations one 
at a time. On the other hand, ii may be preferable to sieze each 
device as soon as it becomes available, since if one follows any 
particular sequential order, devices available at the start of the 
sequence but required later may be preempted by another process by the 
time an attempt is made to reserve them. A parallel reservation 
strateqy must surely be at least as fast as the sequential approach, 
and may be written in PSETL as follows: 

'" =112~!; x= §!~!~; 1 oct r ( x) = s; 
(¥facEd) processpart(x) =<w,n~~11>: 

split to x(fac); end ¥fac; 
dwait #~Q£~§§{W}eq O; 

S: reserve(info(qetfirst(processpart(~!~!~) i.§ q) 1§ h) 1§ fnc)); 
(disable) h in h2!g§; 

<q,fac> QY! holg§; 
!~£~; end disable; 
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Recall that qetfirst(processpart(st~te)) is a pair <p,fac>, where p is 
the process which spawned the reservation processes, and fac is the 
facility to be reserved. The statement S reserves the facility fac on 
behalf of the process q executing S; the followinq disabled block 
switches the reservation to the process p to avoid the reservation 
being lost when 1~I~ is executed by g. 

2.2.6.4 A final example: Let us sketch a simple oui~ut routine which 
accepts a single string of characters as input and piints the string 
using embedded~! characters to deduce where the lines start. We 
assume that the routine is invoked by: 

enqueue str on printer; 
where printer identifies the process associated with the program to be 
qiven below. The advantage to the calling program is that it can 
proceed immediately after the ~ngy~~~ regardless of the work already 
schedule~ for the printer or the time physically required to print the 
strinq. 

output: await 1worksetfprintP.r} D~ O; 
str=info (qetfirst (printer-)); 
i= 1: 
( w hi 1 e ( i S .f k :5 # s t r- I s t r ( k) t.9 Q!) do in g j = k + 1 ; ) 

pr-intout str(i:k-i) 
qo to output; 

The first statement causes •output• to wait until (or unless) there is 
work stacked on its workqueue, and the second statement extracts the 
next strinq to be printed from the workqueue. The remainder of the 
code shown above is straiq~tfowar-d SETL; we assume that •printout' is 
a more primitive routine which pr-ints its argument on a new line, left 
adiusted, on a printer. 

2.3 A Remark Concer-nin.g ~ 2£hin~ De£endent Features and PSETl 

The PSETL features intronuced in section 2.2 allow the desription of a 
qood portion of oper-atinq systems. At some stage however, we will 
wish to stop hidinq crucial underlying details by linguistic facades, 
and to face them. Some (but not all) of these underlying details are 
machine dependent. Those which ~re not we may subsequently wish to 
describe in additional detail; of course details which are highly 
machine dependent we exclude as belonging to a different type of 
discussion. Thus, for exdmple, a !'.~Q vecb in PSETL describes an 
input action, and presumably is translateJ into a call on a standard 
I-0 packdqE. If we wish to desc1ibe the I-o package in PSETL, we dre 
ultimately faced with the necessity of issuing I-0 instructions which 
carry out the ~~gg, a task which cannot be circumvented by using 
another PSETL read. Such ultimate levels of machine dependence can 
only be handled by the use of primitive machine-level suhprograms or 
by special bit patterns or other data objects whose significance must 
be described in English and coded in a lower level language. 

The special sets, interruEt and cause, are additional examples of 
features of PSETL whose inner details are so machine dependent that 
detailed definition is left to the actual system imple ■ enter. In our 
PSETL discussion we may assume certain distinct interrupt classes, and 
some particular manner in which the information describing the 
circumstances of the interrupt is posted, but we shall not describe 



the machine-level mechanisms which cause this to occur. 

2.4 Detailed_su■■a.[Y_.QL.lhe_Elements_of PSETL 

In this section, the features of PSETL summarised in section 2.2 are 
described in detail. our description is arranged ~nto three headings: 
seecial sets, new ~rimitive .Q.Eerations, and macro Q_Eeratio!}_§. In the 
case of macro operations, possible expansions in t~rms of SETL using 
the special sets and new primitive operations are given in order to 
illuminate the mechanisms involved, although the actu~l implementation 
is partly immaterial, since such macros are designed~to be thought of 
as primitive. In Chapter 4, alternative expansions for some of these 
macros will be considered. 

In giving prototypes of PSETL statements, we will use symbols in the 
following standardised ways: 

fac r~presents a facility, 
p,p1,p2, ••• represent elements of EfQS~§§, 
m represents an element of ~Q~~~, 
n identifies a path of control for a mover, 
s,s1, ••• represent states, 
i,i1, ••• r8present interrupt classes, 
i ,i 1, ••• represent system _objects.having worksets, 
a1, ••• ,an represent arquments to ~ubprograms or processes, 
v1, ••• vn represent names of variables, 
Land M represent compiler generated labels. 

The table which follows shows where the description of each PSETL 
feature will be found: 

ancestor . . . . 2.4.3.8 loctr . . . . . . 2.4.3.8 
await . . . . . . 2.4.3.1 moverpart . . . . 2.4.3.8 
busy . . . . . . 2.4.1.10 movers . 2.4.1.1 
causes . . . 2.4.1.6 privilege . . 2.4.3.7 
disable . 2.4.2.1 process . . . 2.4.1.2 
environment . 2.4.3.8 process switching 2.4.2.3 
enqueue . . . 2.4.3.5 processpart . . . 2.4.3.8 
facilities . . . 2.4.1.9 putlast . . . . . 2.4.3.7 
free . . . . . . 2.4.3.3 queried subprogram 2.4.3.2 
qetfirst 2.4.3.7 remove . . . 2.4.3.7 
halos . . . 2.4.1.11 resume . . . 2.4. 1. 5 
info . . . . 2.4.3.8 shared . . . 2.4.2.4 
initially 2.4.2.2 state . . 2.4.1. 3 
ini t ia lvar . . . 2.4.3.8 term . . . . . . 2.4.3.6 
interrupt . . 2.4.1.4 waitset . . . 2.4.1.8 
kill . . . . 2.4.3.6 workset . . . . . 2.4.1.7 

2.4. 1 S£ecial_Sets 

Elements: SETL 'blank atoms', used as identifiers for independent 
iobs. 
Uses: To identify independent jobs. 

2. 4. 1. 2 IU;~g;rn 
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Ele■ ents: pairs of the form <m,n> where m€mov~£~, and n is a path of 
control for the mover n. 
Uses: For ■ €~.Q.!~f§, process(m} identifies the set of paths of control 
associated with the mover m. The elements of EfQ~§§ are the 
processes in proqress under control of the operating system. 

·, 

Uses: state identifies the process currently con tro.fling the CPU, its 
privileqeclass, and its environment, i.e. all that information 
concerninq the subroutine to execute, the location within this 
subroutine at which to beqin execution, and the values of all 
variables accessible to the process; information which fully 
determines the future course of the process. These components of 
stat~ are retrieved by the positionai macros ££Q~§2grt, E£ivileg~, 
and environment, respectively. A running privileged process can 
always identify itself by v=processpartfst_g!~); and then refer to its 
workqueue, if appropriate, by ~Qfksg!{w} or getfirst(w). 

Elements: pairs of the form_<i,s> 
Uses: If the pair <i,s>Ejntgff.!!£1, and an interrupt of class i 
occurs, then§!~!~ is set to s, the former contents of §!ate saved in 
resu~, and the variable £~2~ comes to represent all relevant 
information concerning the interrupt that has just occurred. 

Uses: r~sume has the same structure as§!~!~, and the same positional 
macros apply to it. On the occurence of an interrupt, £~§Y~~ saves 
the contents of§!~!~ as it existed immediately before the 
interruption. To restore an interrupted process immediately, execute: 

state=resume; 
Otherwise, save the value of £~§Y~~ in some appropriate way. 

ElemPnts: machine dependent ' 
Uses: Makes available, in some suitable form, an abstract 'message' 
qivinq additional information reqarding an interrupt being processeo. 
For example, on arithmetic exceptions, it might be used to distinguish 
between overflow, underflow or division by zero; on input/output 
interrupts, it might indicate the hardware address of the device 
causinq interruption, or whether an attempted I/O operation was 
successful, and if not, the reasons for failure. 

2.4. 1.7 ~Q£~§~! 

Elements: pairs of the form <j,q>, vhere j is a system object, and q 
is a queue. 
Uses: For an object;, ~Qr!§~1(j} is the queue of items stacked on j. 
The structure of the queue elements are dependent on the object j. 
~ote that the detailed structure of the queue ~Qrk§~!(j} is not needed 
in the algorithms, since the subroutines getfirst, remove, anrl putlast 
perform the queue manipulations by using auxilliary sets the rletails 
of which need not concern us at this level of discussion. It is 
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• sufficient to knov that FIFO order of workqueues is preserved. 

Elements: A collection of states representing processes suspended 
awaiting a condition to be satisfied. 
Uses: For x€~ai1§~1, executing stg~=x; re-evaluates the awaited 
condition for the process processpart (x) , which after this evaluation 
will either begin to move forward, or will resume it~.wait. 

2.4. 1.9 facilities 

Elements: Serially re-usable system objects, such as devices, 
variables or subproqrams. 
Uses: The elements of facilities may be reserved by processes, via 
use of queued subproqrams. If xEfacilities and x€bus1, then x has 
been reserved by a process. For objects in facilities, the use of 
queued subroutines and the free statement provides automat~c 
management of the obiects• worksets, and-synchronization of processes 
with the availability of facilities designated in the qu~ued 
subproqram header. 

2 • 4. 1 • 1 o .!rn.21 

Elements: members of facilities 
Uses: X€RE§1 implies that some process is using the facility x. 

Elements: pairs of the form .< p, f ac> with pEero_£_g.§§ and 
facefaci!_itie2 • 
Uses: <p,fac>€h2!1~ implies that the facility fac is busy on behalf 
of the facility p. 

2.4.2 Primitive_O~erations 

2.4.2.1 disabled_block 

Statement form: (disdble) block; 
Description: While executing 'block', the interrupt mechanism is 
disabled. If there are multiplP~tPus, only one may be disabled at a 
time; indeed, the entry of one CPU into a disable block temporarily 
suspPnds the activity of all othPrs. While-iteration h~aders and 
backward branches are syntactic errors within a disabled block. 
Branches out of the block, returns, or invocations of user defined 
subproqrams end the disabled condition. 

2.4.2.2 initial_block 

Statement form: iBi!i~!!Y block; 
Description: On each process's first entry to a subprogram, the 
'block' is executed. To effectively execute the initial block only 
once reqardless of the number of unique processes executing the 
subproqram, use a shared variable to distinguish between a first and 
subsequent uses of the subproqram. 

2.4.2.3 £!:OCess_switching; the SEecial_va.£iable_•state' 

A CPU is directed to switch processes by assignment to the special 
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, variable stat~. The assignment §!~!~=s; causes the process 
processpart(s) to control the CPU starting at loctr(s), and to operate 
in the privilege class privilege(s). 

2.4.2.4 shared variables 

Statement form: sh~re v1,v2, ••• ,vn; 
Description: Variables declared in a share stateme~t and ovned by a 
subproqram have only one instance in storage, regard·'less of the number 
of distinct processes executing the subprogram. Sue~ variables, 
especially if global, may be used to com•unicate bet~een subprocesses. 
For variables not declared as being shared, a unique value exists for 
each process executing the subprogram. 

2.4.3 Macro_o~erations 

2. 4. 3. 1 U~.!1 
I 

Statement form: await cond; 
Description: The-~~I;ileged process issuinq an ~~~i1 continues 
execution if the boolean expression cond is true; otherwise its 
execution is suspended until cond becomes true. 

Expansion: 
if .!1Q1 cond then 

M: 

(disable) s=2!~1~; loctr(s)=L; sin ~~its~1; 
go to getwork; end disable; 

L: (disable) <isok,locgoto>=<cond,M>; 
go to sortout; end disable; 

end if; 

In this expansion, Land Mare compiler generated labels, and s a 
compiler generated variable. The expansion works in cooperation with 
the operating system's dispatcher, g~!~Qf1• 'qetwork' and •sortout• 
are labels in the dispatcher. The variables 'isok' and 'locgoto' 
transmit to the dispatcher the recomputed condition and the location 
from which the process resumes computation when the condition is 
satisfied. A simple dispatcher is: 

qetwork: waitcopy=~ait2 ~1; 
loop: if waitcopy g~ n1 then 

s f£Q.!!! waitcopy; 

I 

stat~=s; /*recompute condition*/ 
sortout: if isok then s Q~t waitcopy; 

loctr(s)=locgoto; 
putlast(CPU,s); end if; 

qo to loop; end if; 
/*if waitcopy ~g n1 then*/ 
s=get first (CPU) ; 
ifs ~g Q.! then go to getwork;; 
§.t~te=s; /*qive control of CPU to chosen process*/ 

Notice in the fourth line that executing §tat~=s; causes control to 
flow to loctr(s), which corresponds to the label Lin the above 
expansion for ~~i!- The dispatcher first tests all awaited 
conditions, and moves processes with satisfied conditions to the CPU'B 
workqueue. The first element of the CPU's workqueue is then selected 
as the next process to run, unless the CPU workqueue is empty, in 



• whiGh case the dispatcher re-examines the unsatisfied conditions. 
Since the dispatcher is enabled, interrupt response is possible and 
iay result in one of the conditions becoming satisfied. 

2.4.3.2 gueueg suheFosram header 

State men t for II s: ( 1 ) define gg name ( a 1 , ••• , an) .Q!! fa c ; 
( 2) de f in e f gg name ( a 1 , ••• , an) Q!! fa c ; 
(3) infix, prefix and postfix forms '~f the above 

Description: Entry to the subproqram •name' is completed only when 
the facility fac is available. While fac is busy for another process, 
the callinq process is queued on fac. When control reaches the first 
user-coded statement in the subprogram, facERQ§Y and 
<processpart(§!~!~) ,fac>€holg2 • It is the responsibility of the 
callinq process to eventually release the facility when no longer 
needed. A queued subproqram must in«lude a statement labeled 
•nonexistent• to which control will flow in the event that fac is not 
a facility. 

Expansion: 
define name(a1, ••• ,an); 
if facrfacilities then qo to nonexistent;; 
(disable) if fac€~Y§l theQ 

M: 

save=2 tat~: loctr(save)=M; 
putlast (fac,save); go to 'getwork; 

else fac in ~Y..§y; <processpart(§!~te) ,fac> 
end disable; 

Statement form: !£~~ fac; 

in holds·· ----·' 

Description: The facility fac is released by the process which issued 
the free. fac is removed from £Q§1 unless another process is enqueued 
on fac, in which case that process is activated and the f~cility 
reserved for that process. 

Expansion: / 
(disable) v=getfirst (fac); 

<processpart(~!~!~) ,fac> QY! hQlQ§; 
if v=Q~ then v QUt ~~§1: 

else putlast(CPU,v); 
<processpart(v),fac> 1~ hQ1g§;; end disable; 

2.4.3.4 .e.E1i! 

Statement form: §.E1it to s(e); 

Description: In the above statement, sis a state variable, such that 
processpart{s) represents a new process, p. A new process is created 
as follows: µ is added to ££OC~ss, the pair <p1,e> is stored in p 1 s 
environment in such a manner that it can be retrieved by 
initialvar(s), (where p1 represents the process which executed the 
~li1), and and an entry is made on the CPU's workqueue, indicating 
that the process p begins its execution at loctr(s). 



Expansion: 

(disable) moverpart(processpart(s)) in.!£~£§; 
processpart(s) in E£Q£g§§; 
initialvar(s)=<processpart(§1ft1~) ,e>; 
putlast (CPU,s); end disable; 

Statement form: g~gygg~ e on p; 
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Description: The pair <p1,e> is placed at the end of p•s workqueue, 
where p1 is the process issuing the enqueue statement. Upon adding 
the pair top's workqueue, p1 is free to continue execution. A 
process which services enqueued requests will, upon becoming idle, 
generally suspend its operation for later resumption by waiting for 
its workqueue to become non-empty. See examplei2.2.6.4. 

Expansion: putlast(p,<p1,e>) 

2.4.J.6 Erocess_termination 

Statement forms: fi!1 p; 
!~£!1!: 

Description: The process identified by f is terminated; items 
already stacked by it on other vorkqueues are eliminated, facilities 
held by it are released, and its workqueue is dropped The statement 
1~rm; is equivalent to 1.i.11 processpart(.§!at~); and is used by a 
process to terminate its own execution. 

Expansion: 
(disable) 

(¥x€hi[worksetl, VyEworkset{x}) 
if ancestor: (y) gg p then remove (x, y),,, 

(¥fac€holds{p}) 1£~~ fac;; 
workset {p} =2.!!!: 
if #£f.Qf~§§{move~part(p)} ~g O then 

moverpart(p) Q~! mo~g£§;; 
if processpart(§ta!~) ~g p/then go to qetwork;; 
end disable; 

2.4.l.7 gueue_management_su.Q_Ero.91:ams 

Statement forms: qetfirst (i); 
putlast (j,x) 
remove ( i, x) 

Description: getfirst (i} returns the first element on ohject. j's 
workqueue and removes that element from the queue. If there are no 
elements in i's workqueue, then getfirst (j)=Q~ putlast(j,x) stores x 
as the last element on j's workqueue. remove(j,x) will remove x from 
i's workqueue if x is present, in such a manner that the FIFO ordering 
of the remaining enqueued items is preserved. 

These subproqrams haVP. routine SETL expansions defined by whatever 
logical structure is chosen for the workqueues. The only PSETL 
consider:ation that arises is that these subprograms might have to he 
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, be 4isabled to prevent other processes from modifying the workset 
while getfirst, putlast, and remove are in operation. 

Forms: processpart(s) 
en viron11en t (s) 
privilege(s) 
loctr(s) 
initial var (s) 
ancestor ( x) 
info (x) 
111overpart (p) 

Description: Once a specific structure for§!~!~ has been chosen, the 
first three macros, to be used on sets with the same structure as 
stat~, extract the process portion, •environment portion, and privilege 
class portipn of their arguments, respectively. If for example, state 
is a triple', we could use the conventions processpart (s)=s (1), 
environment (s) =s (2), dnd privilege (s) =s ( 3). 

loctr and initidlvar also apply to obiects with the s~me structure as 
21at~- loctr(s) extracts the location portion of s•s environment, and 
initialvar (s) extracts the pair <p,e> from environment (s), where p is 
the process which initiated process part (s), and e is initialization 
information passed by p to processpart(s). 

ancestor(x) and info(x) apply to objects of the form occuring on 
vorkqueues, and respectively reference the process which placed the 
object on the workqueue, arid the request being transmitted through the 
vorkqueue. These macros are also applicable to objects retrieved by 
the initialvar macro. 

moverpart(p) extracts, from a process identifier p, the identification 
of the mover to which it belongs. 


