
SETL Newsletter 98 J. Schwartz 

Reflections on P. Markstein's Jan. 27, 1973 

Newsletter on SETL extensiorJS1for operating system description 

It is well worth trying to look from an abstract point of 

view at the parallel process dictions described in Newsletter 97, 

i.e., to ask the question: how do these notions relate to the 

aim, fundamental to SETL, of importing into programming the 

powerful descriptive primitives used in mathematics? 

We can begin an answer to this question as follows. Within 

a purely mathematical framework, processes are ordinarily 

(though implicitly) assumed to be infinitely fast; moreover, 

one ordinarily assumes infinite amounts of 'data space' to be 

available, so that data objects of arbitrary size can be 

accommodated. If assumptions even partly approximating these 

are valid in a particular programming situation, the temptation 

to use parallel dictions will normally not be strong, since 

parallel algorithms are generally less transparent than sequential 

algorithms, and since an infinitely fast sequential algorithm 

will run to completion just as rapidly as any parallel algorithm. 

Thus one is only tempted to begin thinking about parallelism when the 

real fact that processes require finite time to execute enters into 

one's viewpoint. Taking this fact into account, and given the 

fact that one will normally be able to execute various types of 

processes in true, real time, parallelism (even though, in many 

cases, all but one of these processes may be constrained to be 

some simple I/O action), it is reasonable to begin exploring 

models allowing maximum amounts of parallelism to be represented. 

Various models of this kind have been described in the literature 

(by Karp, Miller, Kotov, Narinyari, and others). Generally 

speaking, they regard a total computation as a pattern of function 

applications, each of which requires the results produced one 

or more prior functions to begin its own course of calculation. 

In such a model, a function-evaluation can begin as soon as all 

its inputs are available; any number of evaluations can proceed 

in parallel; each evaluation requires some finite amount of time 

to go to completion. 



SETL 98-2 

In a real computer system computational resource will of course 

be limited. From this fact arises the necessity to schedule the 

use of available facilities by some proper subset of a family of 

processes, all of which simply appear in the abstract models 

mentioned above as 'ready to run'. Such scheduling, which in 

accordance with the reflections just set forth we regard as a 

motive necessarily implicit in any decision to make use of parallel 

process dictions, will typically aim to serve at least one of 

two related goals. On the one hand, one may schedule for efficient 

use of available facilities. On the other hand, one may schedule 

so as to guarantee timely response to paraticular external condi­

tions. Of course, the design of any individual scheduler can 

reflect both these goals in mixed proportion. 

A scheduler may be regarded as an ongoing, single process, 

aware of facts of four main kinds: of the existence of certain 

other processes, of properties of these processes important for 

scheduling, of computational facilities available for use, and 

finally of external data affecting scheduling priorities. 

Given all this information, the scheduler selects one or more 

processes for immediate execution and causes them to execute. 

This may involve suspending processes currently in execution; 

in general, processes can be suspended even after they are 

started up, though in some cases a scheduler may have to cope with 

processes which, once launched, cannot be halted until their 

natural termination. 

Note in this connection that it is natural to regard the 

scheduler as a process which executes continually: as it were, 

in its own processor. Of course, even in multiprocessor configura­

tions it will generally not be reasonable to assign a single 

processor full time to the task of scheduling, since a scheduler 

running steadily will in most cases merely reconfirm the correct­

ness of its last previous decision Instead therefore of using 

a full processor for this purpose, one uses a very nuclear 

'interrupt mechanism' capable, but capable only, of detecting all 



SETL 98-3 

changes in data of interest to the scheduler, and of causing 

the scheduler to execute whenever such a change occurs. The 

basic logical situation however is exactly what it would be 

if the scheduler executed continually. 

Having said this much, it is worth noting that a single 

process operating as part of a scheduled family of processes 

faces an environment very much like that which would confront 

it if true multiprocessing were in question. That is, suspend­

able scheduled processes face all problems of interprocess 

coordination which are met in a full parallel-processor situation, 

only qualitative details separating the one situation from the 

other. To see this, one has only to observe that a scheduler 

which caused each process known to it to execute for one cycle 

in rotation would create what was exactly a parallel processing 

environment; between this extreme case and the typical case of 

a scheduler executing and suspending processes in an unpredictable 

way there is only a quantitative difference. 

A remark casting useful light on the internal structure of 

schedulers may be made. The urgency of reaction to situations 

with which a scheduler is required to deal can vary by 

several orders of magnitude between situations of different types. 

For example, to prevent over-writes a simple data-move routine 

operating in conjunction with a high-bandwidth external reader may 

have to be activated within a fraction of a millisecond after 

a small buffer becomes filled, whereas it may be perfectly appro­

priate to use tens of milliseconds in carefully choosing the next 

job to run on a timesharing system. This implies that particularly 

urgent processes will have to be scheduled more rapidly than the 

most complex parts of the scheduler can act. There is of course an 

easy way out of this superficial dilemma, namely to use not 

one but a layered family of schedulers. The first of these will be 

extremely simple and fast, and will decide whether the second level 

scheduler or some other process of greater urgency is to be executed; 

and so forth through as many layers as are necessary. The organi­

zation of such 'layering' by the use of an interrupt system is 



SETL 98-4 

straightforward. Observe that the hardware design of interrupt 

systems is often such as to provide optimal primitives for use 

in the innermost portions of a layered scheduling system of the 

type envisaged. 

We now return from a discussion of these questions of technique 

to review in more detail the goals which might lead a programmer 

to complicate his work by the use of scheduled-process dictions 

rather than generally simpler monoprocess dictions of the sort 

embodied in standard SETL. I list those which appear to me most 

plausible, as follows: 

1. Maximally expeditious completion of a job, or scheduling of 

a sequence of jobs for maximal throughput. 

2. Response, having real-time character, to external circum­

stances. 

3. Scheduling of processes using common data, on a data avail­

ability basis. 

Concerning goal (1), the following may be said. The availability 

of true multiprocessing configurations might lead the individual 

job, as opposed to the operating system, programmer to employ 

multiprocess scheduling within his own job as a standard technique. 

However, experience with such configurations is at present extremely 

limited, and it is dangerous to regard hypotheses concerning the 

probable pattern of such use as anything more than a very tentative 

guide to present problems of dictional design. Setting aside the 

consideration of multiprocessor hardware configurations, we come 

to the judgement that the single-job programmer will normally not 

wish to treat his job as a set of potentially parallel processes 

to be scheduled by a private scheduler which he supplies. The 

complications of this approach will in most cases outweigh its 

possible advantages, though it is possible to imagine a single-job 

programmer aiming at an I/O buffer-management scheme complicated 

enough to make a fair degree of internal subprocess scheduling 

attractive. Nevertheless, it seems probable that only processes 

which collect and coordinate tasks arising independently and 

externally, i.e., only processes having in substantial degree 



SETL 98-5 

the character of an operating system, will find the use of 

parallel-process dictions easy enough, and the gains from their 

use substantial enough, for such dictions to find more than 

occasional use. However, the programmer of processes whose main 

purpose is the coordination of other independent processes will 

in some cases prefer to be able to receive software interrupts 

even from devices over which he does not have direct physical 

control. For example, the scheduler routine for a simp·le data 

retrieval system, even one that uses the services of a quite 

autonomous operating system for actual file access, might have 

to be executed each time a read operation was complete, in order 

to determine which of a number of independent processes all 

requesting access to a given file element was to be executed. 

These last considerations emphasize the fact that it can be 

valuable, in putting together the base-level interpreter which 

defines a semantic structure, to establish a hierarchical 

family of interrupt conventions which allows any process in a 

total family of processes receive an interrupt. 

The preceding discussion confirms that goals (1) and (2) above, 

rather than goal (3) are likely to lead a programmer to use scheduled­

process dictions systematically. Goal (1) typifies operating 

systems; goal (2) typifies real-time control systems. It must 

now be noted that the operating system designer faces a fundamental 

problem which does not trouble the designer of real-time control 

systems. The processes executed in a real time control system 

can be assumed to cooperate harmoniously- That is, an operating system 

must allow undebugged processes, i.e., processes which will 

certainly attempt to perform entirely perverse actions, to execute 

at least temporarily. Thus an operating system design must 

address an entire range of protection problems; problems which 

can be avoided in a real-time system design. For this reason 

real-time and specialized data-availability driven systems 

are essentially simpler than full operating systems. Before going 

on to survey the charcteristic problems of protection, we therefore 



SETL 98-6 

choose to round out our discussion of scheduled-process dictions 

in an unprotected environment by saying something more concerning 

the use of an extended SETL for the description of these simpler 

systems. 

In providing such a system of dictions, one's essential aim is to 

define a logical framework conducing toward a highly modular 

description of general scheduling processes; at the same time, 

these dictions should not preclude (though they need not imply) 

ultimately efficient implementation. For systems of the type 

considered, much of what is necessary can be obtained by using 

scheduling system built around a set of priority queues. The 

scheme which this consideration suggests may be sketched as 

follows. Operations which are not performed 'in line' as part of 

an ongoing single process can be posted, with a stated priority 

n, on the work-queue of a suitable 'facility'. With each facility 

there will be associated a process P which 'serves' the facility, 

i.e., which attends to the work deposited on the facility's work 

queue. Moreover, with each facility F there will also be associated 

one or more processes which schedule the facility. An appropriate 

scheduler Swill either be executed or enqueued for execution 

(on the CPU facility) whenever work is enqueued on the facility 

F for which S schedules (within some range min < n < max of 

priorities). The facility service-process P will operate in a 

relatively automatic way, merely dispatching the first item from 

its highest-priority nonempty work queue, monitoring the progress 

of operations, and transmitting appropriate 'operation-complete' 

messages, perhaps with substantial associated data blocks, to the 

process which initiated the request for an enqueued service. 

Note that primitives must be provided which allow data-blocks to 

be transferred back and forth between a process enqueueing a 

service request and the server which executes this request. 

A reasonable communication convention is to have the server insert 

such a data block as the k·-th component of a communication vector 

associated with each process in a standard way; for example, 



SETL 98-7 

the communication vector may itself be some standard component 

of the state-vector defining a process. 

The scheduling process S operating in conjunction with a 

particular facility F, and for work enqueued in a given range 

of priority on the use of this facility, will itself have a 

definite execution priority m. The enqueueing macro which 

enqueues work to be scheduled by S should have essentially 

the following form: 

if m 9-E currentpriority then 

savepriority = currentpriority; currentpriority=m; 

enter service request into appropriate queue; 

place current process on 'request CPU' queue, with 

priority value= savepriority; 

transfer to execute scheduler of priority level m; 

else enter service request onto appropriate queue and 

continue executing. 

Note that this enqueuing form deviates somewhat from that proposed 

by Markstein, in that priorities enter in an explicit way. 

The relatively straightforward system of inter-process linkages 

outlined above should allow a wide range of real-time control and 

data-availability driven systems to be described in a transparent, 

modular way. Moreover, they should encourage the development of 

orderly, efficient work-flow patterns. However, in designing 

particularly complex systems, it might be desirable to allow an 

additional level of modularization, namely to allow secondary 

systems of work queues to be maintained for secondary task groups, 

with a secondary family of priority-organized schedulers examining 

each secondary system of workqueues and transferring items from 

these queues to central queues for execution. 

Note in connection with the above that it is possible and desirable 

to allow all schedulers and facility service programs to operate 

with all levels of interrupt enabled (except for short periods oftime). 

Moreover, these processes need and should not reserve exclusive access 

to the work queues with which they are concerned. (This is an 



SETL 98-8 

important design consideration: It would be quite undesirable, 

for example, to have a low priority scheduler prevent a higher 

priority scheduler from accessing some workqueue of interest 

to both these processes.) The following technique can be used 

to avoid undesirable acts of data-structure reservation: a 

scheduler or service process P can, as a stnadard matter, execute 

an await C whenever it believes that no more work remains for it; 

here C designates the condition required for P to begin its next 

cycle of execution. If work to be performed by P has been posted 

by a higher-priority process even before this await is executed, 

P will begin a new execution cycle immediately; if not, 

it will actually be suspended until some other process' activity 

causes C to be satisfied. 

Note that the modular process-coordination techniques which 

have been suggested make heavy use of the await diction. It will 

be particularly common for processes to be suspended awaiting some 

change in their own communication vector. All in all, the optimiza­

tion of await requests emerges as an issue important for the 

efficiency of systems using the design approach suggested above. 

Various manual techniques potentially useful for such optimization 

suggest themselves. For example, conditions awaited can be 

classified into coarse categories and re-evaluated only when 

coarse a priori evidence indicates that they might possibly be 

satisfied. Certain manual techniques for the optimization of 

await requests might lend themselves to automatic implementation. 

This whole question is deserving of further study. 

The techniques suggested above should suffice to handle most 

situations in which service requests can be posted to some single 

facility for disposition. More severe problems will arise in 

connection with services which can only be supplied by the 

coordinated use of several independent facilities. These are 

the situations in which specially programmed, carefully thought out 

schedulers are apt to be required. It may be anticipated that 

a coordination problem will arise most commonly in securing the 



SETL 98-9 

central memory space necessary for a secondary memory or I/O 

transfer operation to be initiated. However, other cases of 

coordinated facility use will undoubtedly be encountered; careful 

consideration of representative examples is necessary if optimal 

approaches to these coordination problems are to be elucidated. 

An important technical problem must be solved if interrupts 

are to be handled within a SETL or even BALM-like semantic 

framework providing a garbage-collected memory millieu. Namely, 

the garbage collector must be made i~terruptable; moreover, high 

priority processes must be able to secure memory even after the 

garbage collector has been set into motion by a process of 

lower priority. A scheme 


