
SETL Newsletter 100 
Making SRTL Debugging Runs February 20, 1973 

Hank Warren 

This note describes the present manner of making debugging 

runs involving the SETL run time library. The setup of a run 

is complicated because of the existence of global macros and 

variables, and because the present LITTLE compiler has no pro

visions designed to avoid recompiling a complete program to 

test any change to the program, no matter how small the change 

may be. The purpose of most of the complications is to circum

vent the latter deficiency. 

There are two files of central importance: 

SETLLIBPL, and 

SETLLIBBIN . 

SETLLIBPL is a random file, or "program library," and it con

tains the source text of: 

1. A list of the SETL run time library routines, 

2. The complete SETL run time library, and 

3. A set of test routines for exercising the 

SETL run time library. 

SETLLIBBIN is a binary file, and it contains, in re-

locatable binary form: 

1. Many (but not all) of the routines in SETLLIBPL, and 

2. All the routines from another file called LITTLELIB. 

Within SETLLIBPL, the first deck, INDEX, contains the list 

of all the SETL routines, with a one-sentence description of 

its function and an indication of its current status. The 

''status" indicates whether the routine has been tested, or 

merely coded, and whether or not it has been specified in SETL, 

etc. (Much of the run time library is specified in SETL; 

see SETL Newsletter 49.) Deck INDEX will not normally be 

compiled; however it is surrounded by commenting brackets so 



-2-

so that it can be; this is one way to obtain a listing of 

it. Deck INDEX is arranged in the same order as the routines 

in the library itself, and hence aids in finding things. 

The next deck in SETLLIBPL is named MACRO, and it con

tains all macros that are either of global significance or 

involve machine dependent code. This amounts to about 99% 

of the macros. 

The third deck is named START, and it contains a sing.le 

subroutine of the same name. This subroutine must be entered 

first in all runs involving the run time library. It 

initializes various variables and sets various constants that 

cannot be preset with a DATA statement. Subroutine START 

also contains the SIZE and DIMS statements for all global 

variables, and a small amount of information, some occurring 

in DATA statements,that is machine dependent {all machine 

dependent details in the SETL run time library are confined 

to decks MACRO and START). 

At the end of subroutine START there occurs the state

ments CALL SETLMPG; CALL EOJSTAT; CALL EXIT. The routine 

that the SRTL user wishes to get control first {after START) 

must be named SETLMPG (for "SETL main program;" ultimately 

to be generated by the SETL compiler). SETLMPG should terminate 

via RETURN. If it terminates by CALL EXIT, or by executing 

an END statement (which is the same thing), or by CALL ABORT, 

then "end of job statistics" available through EOJSTAT will 

not be printed out. In addition, any termination activity 

that might be implemented in the future, such as the flushing 

of output buffers, will not be done. Alternatively, the user's 

program may terminate by the statement ERRSTOP;. This macro 

presently expands into CALL EOJSTAT; CALL ABORT; and hence 

allows one to terminate with an error code set {by ABORT). 

The error code will be recognized by the operating system and 



-3-

will cause skipping ahead to an *FIN card. It may also be 

tested for by a statement such as *IF(.NOT.ERROR(ANY))*TERM., 

which might be followed by DMP cards. 

Use of Pre-Compiled Binary 

To make a test run of a program (e.g., one of the SRTL 

routines) that uses the run time library, it is possible to 

compile only decks MACRO, START, the new program, any SRTL 

routines that are being modified, and a small deck named LAST. 

The compiled code which results can then be combined with 

SETLLIBBIN by the loader; if duplicate subroutine names occur, 

only the new versions will be loaded. Proceeding in this way 

reduces the CP time necessary for a SRTL debug run from about 

300-400 seconds (a figure that is increasing as the run time 

library evolves) to about 70-150 seconds (a figure that will 

remain about the same). This enables the user to get three 

to five runs per day instead of one or two. Before describing 

how to do this, however, we will first explain how SETLLIBBIN 

is made from SETLLIBPL. 

A complete deck setup for making SETLLIBBIN is attached. 

It consists of three main phases: 

1. an UPDATE to select the desired portions of 

SETLLIBPL and convert them from random to 

sequential form, 

2. compilation, and 

3. a final phase combining the appropriate binary 

decks into a single file, and cataloging it as 

SETLLIBBIN. 

Most of the deck setup is self-explanatory, but I will 

explain a few points. 



-4-

The lexical scanner (LTLLEXF) is executed with the 

listing control initialized to 00 (print nothing except 

error messages). The source text will be listed by the 

compiler itself (LITTLE). After executing the lexical 

scanner, a small portion (three lines) of the macro-ex

panded text is printed out (COPYSBF(EXPANDED,OUTPUT)). 

This text is subroutine LASTSUB (deck LAST), and examina

tion of it in expanded form reveals the maximum values 

reached by counters ZZYZ and ZZYY, which are used in the 

TACK and PTR macros. The use of this information is 

explained below. 

When executing LITTLE, we must set the line count to 

20000 or so, as the default value of 10000 (octal) is not 

sufficient. 

The binary output of LITTLE is on TAPE3 and TAPES. 

The next steps make a file consisting of 

TAPE3, 

TAPES, and 

LITTLELIB. 

Normally these could be combined by COPYBF. However, the 

present version of LITTLE produces each 17 words as a 

separate binary record, with the result that the file occupies 

a very large amount of disk space; so much so, in fact, that 

SCOPE refuses to catalog the file. This problem is circum

vented by using RECMRG to combine the files. Note that RECMRG 

copies from the second parameter to the first parameter; a 

statement such as RECMRG(NEW,A,B,C) combines A, B, and C onto 

file NEW. Between the calls to RECMRG, backspace commands 

are needed to get rid of file marks. 

Incidentally, it is planned to improve LITTLE in a very 

short time so that it writes out its binary files in a more 



-5-

compressed manner. This will avoid the inefficient use of the 

disk when creating the temporary files TAPE3 and TAPES. 

After SETLLIBBIN is cataloged, it is loaded with MAP(PART) 

to obtain a load map (NOGO. must also be specified or the 

map will not be produced). The map is desirable for desk

checking purposes and also because we are interested in the 

size of common block START, as is explained below. 

The remainder of the deck consists of UPDATE directives. 

The *COMPILE directives select the decks that we wish to be 

compiled. We do not select all of the run time library, 

because if we did, jobs using SETLLIBBIN would require a much 

larger region size. The region size required at present is 

in the neighborhood of 150,000 to 170,000 (octal) words, 

depending upon how much new code is added. It is important 

to keep this figure below 200,000, because 200,000 is a critical 

point in SCOPE's scheduling algorithm, and jobs exceeding that 

figure suffer substantially increased turn-around time (as they 

should). 

The routines presently included in SETLLIBBIN are those 

that are necessary to build SETL objects, including sets and 

tuples, and print them out. This requires a number of 

auxiliary routines, notably EQUAL and NEXT (the iteration 

routine is used to print sets). The garbage collector is also 

included, as are subroutines START and LASTSUB. START must 

be included in this compilation to define the global variables 

used by the other routines, and LASTSUB is included merely 

to obtain the value of the counters used by the TACK and PTR 

macros. As will be seen, START and LASTSUB will not actually 

be loaded from SETLLIBBIN. Some routines that are not presently 

being included in SETLLIBBIN are ICNV (input conversion routines), 

ATOM, NELT (SETL #x), ELMT(SETL x £ S), ARB, OF, SOF ("storage 



-6-

OF," i.e., f{x)=y), HEAD, TAIL, TYPE, PAIR, most Boolean 

operations, and most integer arithmetic operations. The 

user who wishes to employ these routines must re-compile them 

for every run, or alternatively make his own binary library. 

Incidentally, it should be pointed out that SETLLIBBIN 

is not a "library" in the SCOPE sense of the word, i.e., it 

is not created by the GENLIB utility. However, this facility 

may be used at a later time, if LITTLE is ever fixed up so 

the binary decks it puts out can be loaded with the MACE 

loader. Doing so will permit building a library that includes 

binary decks for ATOM, NELT, ELMT, ARB, OF, etc., and then 

by using the MACE loader they will only be loaded if referenced. 

Then jobs that do not use these routines will run in a reason

able region size, and jobs that do need them will not have to 

compile them, and we will not be faced with the administrative 

nuisance of maintaining several versions of the library. 

What is really needed to further improve the situation 

is a loader capability similar to the "NEVERCALL" feature 

found in some loaders. This permits the user to specify that 

certain routines will never be called, even though they may 

be referenced. The loader then does not load these routines 

and does not automatically bring in routines that they reference. 

The deck setup shown includes three *D (delete) UPDATE 

directives. These delete certain subroutines that are not 

wanted, even though other subroutines in the same deck are 

needed. For example, from deck PLUS we delete ADDI (add inte

gers), and retain CONCATC and other routines (CONCATC is used 

by the print routines). 

To make a test run using SETLLIBBIN, you must set up a 

run in which the following is compiled: 



-7-

1. deck MACRO, 

2. deck START, 

3. any routines from SETLLIBPL that you need and 

that were not included in SETLLIBBIN, 

4. any routines from SETLLIBPL that you are 

revising, 

5. new routines, and 

6. deck LAST. 

Deck MACRO must be included because your new routines 

will in all probability use some of the SRTL macros (such as 

THEN, ELSE, ENDIF, and BUMPZZl0). Deck START must be included 

because your new routines will in. all probability use some of 

the SRTL global variables (in fact, deck LAST does). Deck 

LAST must be included so the proper values will be assigned 

to two global variables MAXZZYZ and MAXZZYY, which are needed 

by the run time library. 

This would be a straightforward matter except for two 

difficulties. The first is that the run time library has a 

need to map certain variables into certain array locations. 

That is, we wish to accomplish something like the FORTRAN 

statement EQUIVALENCE (X,A(l)), (Y,A(2)), (Z,A(3)). This is 

done by the TACK and PTR macros, in conjunction with "counters" 

ZZYZ and ZZYY (see SETL Newsletter 73, User's Guide to the 

SETL Run Time Library, section 3.2). If the new code contains 

any TACK or PTR macros (as it usually will), we must assure 

that the corresponding variables are assigned locations 

following those used by other SRTL routines. This may be 

accomplished by artificially incrementing counters ZZYZ and ZZYY 

to some value at or above the maximum attained when the library 

was made. To do this easily, two macros called BUMPZZl0 and 

BUMPZYl0 are included in deck MACRO. Invoking these macros 

causes the corresponding counters to be incremented by ten. 



-8-

For example, when SETLLIBBIN cycle 6 was made, it was found 

that ZZYZ was 48 and ZZYY was 32. Many of the TACK- and 

PTR-variables are located in START, and hence it should be 

sufficient to increment ZZYZ by 40 and ZZYY by 30 (or 50 and 

40 could be used to be sure). This is done by the four 

invocations of BUMPZZl0 and three of BUMPZYl0 shown on the 

last page of this note. These must be included at the end 

of START and before the compilation of new or revised code. 

The second difficulty alluded to above is due to the fact 

that LITTLE maps all variables into a single COMMON block. 

This block has the same name as the first compiled subroutine 

or function: START, in our case. Since some of the global 

variables are both set and used (e.g., T, the top of stack 

pointer, and STORAGE, the dynamic storage array), we must 

assure that code in the precompiled library and the new 

code reference the same location for the same global variable. 

This means that (1) we must run with only one copy of common 

block START (a fact which the loader insists on anyway), (2) 

the precompiled library and the new code must be compiled with 

identical versions of subroutine START (which contains the 

SIZE and DIMS statements of all global variables), and (3) we 

must assure that local variables in the new code are mapped 

into distinct locations from local variables in the precompiled 

code. This last requirement is met by placing a large dummy 

array at the end of subroutine START and before any new code, 

as shown on the last page. The size of the array must be at 

least as large as the size of common block START in the pre

compiled library, minus the size contributed by variables that 

are defined in subroutine START. A value of 30,000 {octal) 

is used in the attached sample run, but actually 20,000 or 

even less would suffice. 



-9-

The common block START from the new compilation must, 

of course, be used. 

The picture below will help to visualize the situation. 

Common Block START 

From SETLLIBBIN 

Global 
variables 

Local 
variables 

From new compilation 

Global 
variables 

Dummy 
Array 

Local 
variables 

The above scheme would not work if any local variables 

in SETLLIBBIN were initialized with DATA statements, because 

the left block above is not loaded. All DATA statements in 

the SETL run time library are confined to deck START (there 

are also some in deck TEST, the SRTL test routines, but this 

is safe as they are not precompiled ... at least not at the 

present time). 

Most of the remainder of the deck setup on the last page 

should be clear. Note that CHLISTSTAT (change listing status) 

is used to suppress printing of decks MACRO and START. There 

are at present no CHLISTSTAT or SETLISTC statements in 
XX 

SETLLIBPL, and it probably should be kept free of these to 

avoid hopeless confusion. There are already a sufficient number 

of opportunities for error in the way we are working. 



-10-

J117306,CM152500~DT3~0, HANK WARREN MAKE SETLLIABIN. 
RF"LC40000) 
ATTACH(OLOPL,SETLLIB~L.cv,16) 
UPDATE(Q,8,L ■ A12> 
RETURNCOLOPL> 
•TI ME, 
MAl'<OF"F") 
ATTACM(LEXDO~LTLLExr~ 
RF"LC15250Q0) 
SETCORE, 
LEXOO<COMPILE,OUTPUT:ExPA~OED,BINfILE~ (SLaOO> 
RETURN(LEXDO) 
REWINO(EXPANDEO) 
COl'YSBr(EXPANDEO~OUTpUT) 
•TIME, 
ATTACH(NGO,LITTLE,CY~6) 
REWIND(BINF'ILE> 
NGO(LC•20000,BINF'ILE~ 
•TIME, 
MAl'CPART> 
REWIND(TAPE3,TAPE5> 
ATTACH(LLIB,LlTTLELIR,CY•1> 
RECMRG(SLIB,TAPE3) 
BKSP(SLIB,1) 
RECMRG(SLIB,TAPE5) 
BKSP(SLIB,1) 
REOMRG(SLIB,LLIB> 
CATAL0GCSLIB,SETLLIBBlN,Pw•SETL,RP=999,Cy:6) 
LOAC<SLIR) 
None. 
BATCH(OUTPUT~SITE17,END) 
e.o .. R 
•IDEMT TEMP 
•D PLUS.32,242 
•D SUBS.29,125 
•D MISC,109,185 
•I LAST,2 

SETLISTC10 
+COMPILE HACRO,GENS 
+COMPILE QCNV,HASH 
•CnMPlLE ECU 
•COMPILE WITH,LESS 
•COMPILE NEXT 
•COMPILE COPY 
•COMPILE PLUS 
•COMPILE SUBS 
•COMPILE MISC 
•COMPILE LAST 
E•O•F" 



-11-

J117306,CM170000~DT1n0, HANK WARREN TFST LESS AND ARB, 
RF'L(35000) 
ATTACH(OLDPL,SETLLIBP~~cv,16) 
UPOATECQ,8,L•A12) 
RETURNCOLDPL> 
•TIME, 
ATTACHCLEXDO,LTLLEXt) 
MAP(OFF') 
RF"L<151000) 
SETCORE, 
LE~OO<COMPILE,DUMMVf:EXPANDEO,BINtILE~ (SL•OO) 
RETURN(LEXDO) 
•TI ME, 
ATTACHCNGO,LITTLE,CY~6) 
REWINDCBINF"ILE> 
NGOCLC•20QOO~BINFILE~ 
RETURN(NGO) 
•TIME, 
ATTACH(SLIB,SETLLIBBiN~CV~6) 
MAF'(PART> 
RF'L(170000) 
SETCORE(65766,66666,~6666,66666) 
LOAO<TAPEJ) 
LOAO(TAPE5) 
SL!BCOUTPUT) 
•r;" IN, 
E•O•R 
•IDENT TEMP 
•BEF'ORE MACR0,2 

CHLISTSTAT I• TURN OFF' LISTING, •I 
•I START,252 

CHLISTSTAT I• TURN ON LISTING, •I 
BUMPZZ10 BuMPZZ10 BUMPZZ10 RUMPZZ10 MACDROP(BUMPZZ10) 
BUMPZY10 BuMPZV10 8UMPZY10 MACOROP<BUMPZY10) 
SIZE DUMMYiRRAV(WS)J DIMS DuMMVARRAY(12288)J /* 30000 ncTAL,•/ 

•D TEST,15,20 
•D TEST,2J,26 
•D TEST,29,300 
•D TEST,397,933 
•D TEST,1138,1679 
•COMPILE MACRO,START 
•COMPILE ARB 
•COMPILE TEST,LAST 
F•O•F' 


