
SETL Newsletter# 101 Robert Bonic

March], 1973 HOW TO PROGRAM IF YOU MUST (The SETL Style)

by

Robert Bonic

1. Introduction

These lectures are addressed to mathematics
students, but a certain amount of immaturity
with computer science will be essential for a
complete understanding.

Computer programs are algorithms written in
a very stylized format and meant to be under
stood by a machine. The style in which we
will write algorithms below is called SETL
(SET Language) and has been devised by Jack
Schwartz of the Courant Institute of Mathe
matical Sciences (N.Y.U.). It is a style that
is very comfortable to a mathematician since
it uses standard mathematical notations and
modes of expression. The few new notions that
will be required will be explained as we go
along.

For our purposes a machine may be thought of
as a black box, inside of which is a math
graduate student slave. The student has a
finite amount of paper, does not work infinitel1
fast, and understands the algorithms. She may
respond by typing out answers on a piece of papE
or printing them out on a TV-like screen.

A dialect of SETL, called SETLB, is currentl1
running on the AEC CDC-6600 at N.Y.U. Future
implementations will be orders of magnitude morE
efficient than the present one.

2. The Data Bank

A possibly multivalued function

g: A-+ B

may be defined by giving its graph explicitly
as a set of ordered pairs. The following
notations will be used.

g(x) = if 3 unique y E B with <x,y> Eg
omega (or undefined) otherwise,

g{x} = {y E B I <x,y> Eg},
and for a set Cc A

g[C] = {y EB I (3x EC I <x,y> Eg)}

A data base is a tuple

<A,f 1 , ... ,fm,R1 , ... ,Rn>

where A is a finite set, each f. is a function
l

on A, and each R. is a binary relation on A.
J

Information that may be accessed includes all
sets in the weak topology on A generated by the
functions and relations defined on A. A
typical such set may have the form

{xEA I f(x) gt 5 and (g{x}EK or Q(x) ne 6)}.

This information may be augmented by using the
operators:

arb(S) and random(S)

which chose any old element from S, and a care
fully chosen random element respectively.

2.

Suppose
g = {<2,8>,<3,6>,<4,7>,<2,6>,<8,l>}. Then

g(3) ~ 6 , g(4) ~ 7,
g(2) ~ w , g(lS) ~ w,

g{3} ~ {6} , g{2} ~ {8,6},
g{l5} ~ nl (null set),

g[{2,3,4}] ~ {8,6,7}
g[{-2,1}] ~ nl

~ Example

A= {l < n < 1000};

g[{8,9,10}] ~ {l},

male= O; female= l; married= 0;
single= l; divorced= 2;

Take the functions

name= {<l,"Tom">,<2,"Eve">, ... };
age= {<1,26>,<2,ll>, ... };
sex= {<l,0>,<2,1>, ... };
income= {<1,17000>,<2,0>, ... };
maritalstatus = {<l,l>,<2,1>, ... };
address= {<l,"1234 Wood St., Chicago">, ... };
yearsschool = {<1,14>,<2,5>, ... };

and relations

friendsof = {<l,36>,<2,47>, ... ,
<942,419>,<47,2>, ... };

debtsto = {<3,67>,<14,45>, ... };

A great deal of information can be stored in
such a data base, the 1970 census for example,
and this information can be used in a variety of
ways.

Information may be added to the data base by
augmenting the base A and updating the functions
and relations. For example, if bis given along
with data about b, we merely need write

bin A; f 1 (b) = c; f 2 (b) = g; .. .

R1 (b) = {q}; R2 (b) = {r,s,t}; .. .

To delete a member from the data base we proceed
as follows:

C OU t ~; : l (C) = W; f 2 (C) = W; •••
R

1
(c) - w, .••

New functions may be defined using the
operations of intersection, union, composition,
transitive closure, etc. For example, if R
denotes the relation "friendsof" then

Q = RU (R c:> R)

is a new relation. For each x EA
Q{x} consists of all elements of A that are
either friends of x or friends of friends of x.

~

3 •

Of interest to a sports car salesman might
be the set

potentialcustomers = {x EA I
age(x) gt 18 and age(x) lt 30 and
20000 and sex(x) ~ male and -
trafficpenaltypoints(x) le 4};

income(x) ~

The salesman may get a list to give his
secretary as follows:

(VxE potentialcustomers)
print name(x) ,phoneno(x); end Vx;

or he may print out the following type of form
letter:

(VxE potentialcustomers)
print name (x) ;
print address(x); print;
print "Dear", name(x);
print "As a man with an income of", income(x),
"I am sure you will be interested in our new",
favoritevcolor (x), "dinkycar".
print "Some weeks ago I ran into your friend",
random friendsof{x}, "and he mentioned that you
were dissatisfied with your", presentcar(x);

common = clubs{x} n clubs [number ("HalBean")j
if common ne nl then print "Perhaps I'll see
you at the", random(cornmon); else print
"Please drop by my office";
print "Personally yours";
print "Hal Bean";

3. Simulation

There are many types of situations that can
be modeled on a machine. When complete infor
mation is known, the model is decisive and
empirical evidence can often be used in place
of a more difficult analysis of the situation.
This will be illustrated with the game of
"craps."

A player rolls two dice to establish his
point E {2,3, ... ,12}. If his point is 2, 3,
or 12 he loses. If it is 7 or 11 he wins.
If neither of the above is the case, he con
tinues rolling until he rolls a 7 in which
case he loses, or his point again in which
case he wins. A probablistic analysis shows
that the odds are slightly in favor of the
house. An empirical estimate of this is
given on the right where the game is played
one million times and the number of wins is
recorded. The program illustrates the use
of labels, while and go to statements, as well
as the use of a procedure.

There are two types of procedures in SETL.
An example of a functional type of procedure
is

define£ g (x) ; return x 2 -3x + 4 ; •
A procedure of subroutine type does not return
a value, it does something and then merely
returns. An example might be

define message(x); print x; return; •

4.

craps= {2,3,12}; wins= {7,11};
nowins = 0; nogames = 0;

die= {l < Vn < 6};

define£ roll; return random(die) + random(die)

playgame: if nogames s.! 1000000 then
go to finished;;
no games= nogames + l; point= roll;

if point£ craps then go to playgame; else
if point E wins then nowins = nowins + l;
go to playgame;;

newroll = roll;
(while newroll t {7,point})newroll = roll;;

if newroll ~ point then nowins =
nowins + l;; go to playgame;;

finished: print nowins,"games won out of",100001

The following conversations actually occurred.
M=mathematician C=computer scientist

MC=mathematician and computer scientist

M to MC: What is a procedure?
MC to M: It's like a lemma!

C to MC: What is a lemma?
MC to C: It's like a procedure!

4. Comparison of Notations

It is quite easy to translate a mathematical
algorithm into a SETL program. Translation of
some typically mathematical phrases or construc
tions are shown below:

1. The r-function
f(l)=l and for n>l, f(n)=nf(n-1)

2. Let {s 1 ,s 2 ... ,Sn} denote the elements of the

set of integers A arranged in increasing
order.

3. The elements of the above set arranged in
decreasing order.

4. Is n a prime number?

5. The smallest prime greater than a given n

6. A list of the first 500 primes.

7. The set of primes smaller than 500

8. The above set in increasing order

9. The greatest common denominator of two
positive integers m and n.

10. Single valued function

11. Domain of function

12. Inverse of function

5.

The programs below are not written from the
point of view of efficiency which is a serious
issue and will be considered later.

definef f(n); return if n ~ 1 then l else
n*f(n-1); •

define£ incorder(A); S=nl; (YxEA)
k=l+#{yEAlyltx}; S(k)=x; end Yx; •

definef decorder(A); S=incorder(A);
(l~Yn~#S)S(n)=S(n-#S+l); end Yn; return S; •

definef prime(n); return if(l<5k<nln//k ~ 0)
then false else true;•

definef primeafter(n); k=n+l;
(while not prime(k))k=k+l;end while;return k; •

list(l)=l; (while #list lt 500)
list(#list+l)=primeafter(list(#list));end while

primes={l<p<S00lprime(k)};

incorder(primes);

definef gcd(m,n); return if m ~ n
then n else gcd(lm-nl ,min{m,n}); •

definef function(f); return ~(f) ~ set
and (YxEfJpair(x)) and (YxEf,yEfl
x(l) eq y(l) implies x(2) ~ y(2)) ;8

definef domain(£); return {x(l), x£f}; •

definef inverse(f); return {<x(2) ,x(l)>, X£f}; •

13.

14.

15.

16.

17.

18.

19.

20.

21.

Image of function

Injectivity

Composition of functions(or relations)

th Then power of a function

The transitive closure R* of a
relation R

The set of all functions from A to B

Permutations of a set A

Given an integer n~l, if it is even divide
it by 2,and if it is odd multiply by 3
and add 1. It is not known if iteration
of this always leads to 1. For n=7 we have
7,22,ll,34,17,52,26,13,40,20,10,5,16,8,4,2,l

The pair of prime twins greater than n.

22. The center of a group g whose multiplica
tion table is rn.

6 •

definef irnage(f); return dornain(inverse(f)); •

definef injective(f); return(VxE domain(f),
y E domain(f) Ix ne y implies f(x) ne f(y)); •

definef Ro S; return {<x(l) ,y(2)>, XER, yES I
x(2) ~ y(l)}; e

definef power(R,n); return if n ~ 1 then R
else if n ~ 2 then Ro R else
Ro power(R,n-1); •

definef star(R); T=R; n=2;
(while power(R,n) ne nl) n=n+l;
T=T U power(R,n) ;;return T; e

definef fncts(A,B); return
{f E powset(A ~ B) jdomain(f) ~ A

and function (A)};•

definef permutations(A); return {f E fncts(A,A) I
injective(f)}; •

definef getstone(n); return if n S 1 then true
else if even(n) then getstone(n/2) else
getstoDe(3*n+l); •

definef even(n); return 2*(n/2) ~ n; •

define£ nextprirnepair(n); k=n+l;
(while not (prirne(k) and prirne(k+2)))
k=k+2; end while; print"<k,k+2>; e

center = {yEgl (VxEgirn(x,y) ~ rn(y,x))};

Most programming languages, e.g., FORTRAN,
BASIC, APL, ALGOL, LISP, PL/1, COBOL, have
evolved up from the machine and programming
manuals often read like old fashioned text
books on tensor analysis. SETL descends into
computer science from mathematics, and is
essentially a coordinate-free approach to
programming. Problems of efficiency, which
often amount to something like choosing a
suitable coordinate system, can be handled
automatically. The essential contribution
of SETL is the introduction of abstract objects
in place of artificial coordinate representa
tions of them.

7.

There seems to be a difference of opinion
concerning the SETL style of programming as
compared to the current one. The humorous
excerpt below is taken from a 1971 review of
a 300-page SETL manuscript written by an
"expert" on programming languages.

"In summary then, SETL is at worst just a
collection of strange notations and devices,
and at best it is "just another programming
language." Compared with the elegance and clean
design of APL, SETL fails to attract the mathe
matical mind. It does not use the mathematician'
symbols, his notation, his precedences, or his
identities. Its mass of petty detail is no
smaller than that of other languages. The
algorithms presented are little more than trans
literations of what would be written in ALGOL
or APL. Yet the idea of a set as a datatype
(or data structure) and the partially-fulfilled
idea of specifying operations on all the ele
ments of a set are very powerful notions and
are good candidates for incorporation in some
existing programming languages."

5. The Labyrinth

The following is from Algorithms and
Automatic Computing Machines by B.A. Trakhtenbrot.
The setting is a symmetric relation Rover a
set of nodes .. Two nodes are given and the
problem is to,: c.onstruct a path between them (if
0

In order to co et such an algorithm, we prescribe a special
method of searc ...,.At~ step of the search we can separate
the corridors into t ree"'classes: those through which Theseus has
never passed (we shall call these green corridors), those through
which he has passed once (yellow), and those through which he has
passed twice (red). Furthermore, from any junction Theseus may
move to an adjacent junction in one of two ways:

I. Unwinding the thread. Theseus moves along any green corri
dor to an adjacent junction, unwinding Ariadne's thread as he
goes; this corridor is then considered yellow.

2'.]<.ewinding_t.Ji~ lhread. Th~seus returns along a yellow corridor
to an adjaa:ntj~tiQn, rewinding Ariadne's thread as he goe!>; this
corridor isJh~\WR$iclered red. _ _ . . _

N'~_e_ !hl!t T eseus is not allowed to go through a red corridor. We
assume thaf~vs makes some rriark ·by Which be can·later dis
tinguish a green corridor from a red one. He can distinguish the
yellow corridors because they have Ariadne's tht ead stretched
along them. The choice of each nwxe. ~pends upon the conditions
which Theseus finds at the junction where he happens to be:These
conditions will be one or more of the following:

1. Minotaur.-The Minota~r- ~s discovered at the grven junction.
. 2._ Loo?- Ariadne's thread ·already. _passes through the given
Junction; m other words, there are at least two other yellow corri
dors leading from the junction.
. 3._ Green. There is at least one green corridor leading from the
Junction. -

4. A ri~Juiadne is at the give ·_. ·
• -1 !!!!!~.J.ifilt -rau "None of the above. c· ·
:1 _-;., ur Sea.J:c4,~!hod may now be
-'f . . ng table.· ·

~ I ~: 0;;=~:·
3. Green
4. Ariadne
5. Fifth case

Stop
Rewind the thread
Unwind the thread
Stop
Rewind the thread

<~

I

./\~~~--~

8.

define labyrinth(ariadne,minotaur,R);

green=R; yellow=nl; red=nl; marked=nl;
/*at each stepafter the first wehave

just traversed a path <a,b>. We have
the following cases*/

easel= b ~ minotaur
case2 = b marked
case3 = {x E green I x(l) ~ b} ne nl
case4 = b eq ariadne

/*the possible actions are*/
stop= go to done
**rewind= <a,b> in red; <b,a> in red;

<a,b> out yellow; <b,a> out yellow;
<a,b> = <b,a>; go to nextmove**

**unwind= x = arb {y E greeniy(l) ~ b};
bin marked; <a,b> = x;
<a--;E°> in yellow; <b,a> in yellow;
<a,b> out green; <b,a> out green;
go to nextmove** --

x=arb{y E Riy(l) ~ ariadne};
<a,b> = x; <a,b> in yellow; <b,a> in yellow;
<a,b> out green; <b,a> out green;

nextmove":°if case 1 then stop;;
if case2 then rewind;;
if case3 then unwind;;
if case4 then stop;;

rewind;
done: if b ~ ariadne then I;rint "no path exists"

else print "The solution is", yellow; end if; I

6. Finite Groups

We will write an algorithm to check the
truth of the Feit-Thompson theorem for all
groups of even order up to one million.

definef group(G); <e,g,m,i> = G; return
type g eq set and type m eq set and
type i eq set and -- -- -- --
es g and i[g] eq g,and m[g,g] eq g and
(YxEg Trri(x,e) eq x and m(e,x) ~ x) and
(YxEg I m(x,i(xTT eq~and m(i(x1,x) eq e) and
(Yx,y,zEgl m(x,m(y-;"z)) eq m(m(x,y) ,z)TT•

definef subgroup(h,G); <e,g,m,i> = G;
return hcg and group(<e,h,m,i>); •

definef normalsubgroup(h,G); return subgroup(h,G)
and (YxEh, yEG(2) lm(i(y) ,m(x,y))Eh); •

definef generatedsubgroup(A,G) ;<e,g,m,i>=G;
G=Awithe; n=0; (while n lt #B) n=#B;
(Yx,ysB) m(x,i(y)) in B;end Yx;
end while; return B;e

definef generatednormalsubgroup(A,G);
<e,g,m,i>=G; return[n: BC g I
Ac Band normalsubgroup(B,G)]B; •

definef commutator(G) ;<e,g,m,i>=G;
A={m(x,m(y,m(i(x) ,i{y))) ,xEg,yEg};
return generatednormalsubgroup(A,G); •

9.

definef quotient(G,R); <e,g,m,i> = G;
cosets = nl; (while g ne nl) x = arb g;
coset = {yEglm(x,i(y) I Eh};
coset in cosets; coset outof g; end while;

M=nl; I=nl;
(YaEcosets,bEcosets) M(a,b)=m[a,b];
I(a) = i[a]; end Ya; return
<h,cosets,M,I>; •

definef solvable(G); (while G ne
commutator(G)) G=quotient(G,
commutator(G)); end while; return
#G(2) ~ l; e

A= {l<n<l000000}; g = permutations(A);
i = {<x,Inverse(x)>, XEg};
m = {<x,y,xoy>, XEg,yEg};
e = {<a,a>, aEA};
P = <e,g,m,i>;

if 3 B c g I subgroup(B,P) and even (#B)
and not solvable {<e,B,m,i>) then
prTnt"Feit-Thompson Theorem is wrong";
else print "OK through 1000000";;

7. Drawin9: Pictures

<100,100>
p

' r I /

/ ' I '

Aer
B C

<1,1>

A = <70,30>; B = <70,10>; C = <90,10>;
D = <90,30>; E = <80,40>;

house= brokenline(<A,B,C,D,E,A,D>);
sun= {<x,z>£Pl(x-80) 2 +(y-80) 2 le 100};
ray= {<x,y>£P y ~ 80 and 95 le x le 100};

rays=ray; (l<Vn<ll)rotated(ray,<80,80>,n*30)
into-rays; end Vn;

tower= {<x,2y>,<x,y>£ translated(house,<-60,0>) };
picture= house u sun u rays u tower;

draw(picture);

The code to implement the above is given
on the right. A three dimensional version
could be used to draw a picture in one perspec
tive, rotate the axes, and then view it from
a different perspective.

P = {<m,n>, l<m<l00, l<n<l00};
star= "*";-blank=" ";
blankline = l00*blank;

10.

lines= nl; (l<Vn<l00)lines(n)=blankline;end Vn

define draw(set); (V<x,y> £ set)
lines(x)(y) = star;;
(l00~n~l) print lines(n) ;; return; •

define translated(set,point); <a,b> = point;
return {<x+a,y+b>,<x,y> £set};•

definef rotated(set,point,degrees); <a,b>=point;
0 = degrees/6;return{<a+(x-a)cos(0)+(y-b)sin(0)

b+(x-a)sin(0)-(y-b)cos(0)>,<x,y>£set}; •

definef brokenline(t) ;return
[U: l,S_Vn,S_#t-1) segment (t (n) ,t (n+l)); •

definef segment(~,q); <a,b>=p; <c,d>=q;
k = sqrt((a-c) +(b-d) 2

); return
{<a+(c-a)n/k,b+(d-b)n/k>, l.s_n.s_k}; e

definef cos(x); return l-x 2 /2 + x 4 /24; •

definef sin(x); return x-x 3 /6 + x 5 /120; •

Assuming that the draw routine prints on
35mm film one can use the routines above to
make movies. Suppose the sets

tail, body, fleg, bleg

are given along with the pivots A, B, C and
dog= tail u body u fleg u bleg. Then
(1 < Vn < 50) draw (dogs(n));;
will produce the movie on the right if the
dogs routine is defined as follows:

definef dogs(n); if odd(n) then return
trans(dog,<n,o>) ;;
e = if divides(4,n) then -1 else l;
newdog = body u
rot(fleg,C,8*45)u
rot(bleg,B,-8*45)u
rot (tail ,A, 8*30);

return trans(newdog,<n,o>); •

• 11 .
A

B---------1C

•

•

J,

8. Forestry

A powerful aspect of SETL is that it allows
procedure names to be elements of sets or com
ponents of tuples. This use will be illustrated
below.

A binary tree is either an atom or a pair of
trees. The atoms in the tree are called its
leaves. Two trees will be called similar if
they have the same structure when the leaves are
ignored. A forest is defined as a set of trees.
A forest may be enlarged by adding to it all
trees of the form T(2) when T(l) and T already
belong to the forest. Iterating this procedure
will eventually lead to a fully grown forest.
Suppose Fis a forest. Then the p~ogram

(while #Flt# enlarged(F)) F=enlarged(F) ;;

expands F until it produces no new trees. The
growth can be spedup considerably using features
where a feature (Qf trees) is a function defined
on all trees. Using the definition on the right
of enlarging the forest, F, with respect to a
set of features, feats, gives the more efficient
growth

(while #Flt# enlargedwrt(feats, F))
F = enlargedwrt(feats, F) ;;

How efficient the growth is dependent on how
quickly the features can be evaluated. If f is
a feature and the test f(S) ~ f(T) can be com
puted much more quickly than the test S sim T
then the feature may be useful.

I \
<a, <b, c> >-+/a/be\\ -+ a/be\-+ ~

b C

12.

~ definef tree(T); return if atom T then true else
pair T and tree(T(l))and tree(T(2)); •

definef S sim T; return if atom S then atom Tel~
S(l) sim'I'(l) and S(2) sim T(2); e

definef forest(F); return (Vx£FJtree(x)); •

defin~f. enlarged(F)~ return Fu
{T(2), T£FJ (3S£FJ S sim T(l))}; •

define£ enlargedwrt(features,forest); new=nl;
(VS£forest)
(\itTdR£forest I (Vf£features If (S) simf (T (1))})

if SsimT(l) then T(2) in new;end VT;
end \itS;"°return forest+ new;•

... ' -
Typical features might be

definef size(T); return if atom T then l else
size(T(l))+size(T(2)); • --

definef lean(T); return if atom T then O else
if size(T(l)) lt size (T(~then -1 else if
size (T(l)) ~size (T(2)) then O else l; e

9. Real Reals

This section follows the spirit of Errett
Bishd)p's Foundations of Constructive Analysis
(pp . 18 , 19 , 2 6) .

Let z+ devote the positive integers.

A procedure x defined VnEZ+ is said to
be real if for every k £ z+ there is an
A(k_)_E_z+ satisfying

lx(n)-x(m) I ,2_1/k Vm,n.:_A(k).

Two reals x and y are equal (x=y) if for
every k £ z+ there is an B(k) £ z+ satisfying

lx(n)-y(n) I .2_ 1/k V n > B (k) •

A real x is positive(x > 0) if for some
k £ z+ there is a C(k) £ z+ such that

x (n) :__ 1/k V n > C(k)

A real x is nonnegative (x .:_ 0) if for each
k £ z+ there is a D(k) £ z+ such that

x(n) > -1/k V n > D (k)

It can occur that a given real number x is
known to satisfy x > 0, but that neither
x > 0 nor x = 0 is known to be true. More
striking is the fact that there is no general
method (nor will there ever be one) for
deducing that x > 0 or x = 0 given that
x > 0. Examples are given on the right.

definef a(n); return 0; •
definef b(n); return 1/n; •
definef c(n); return n/(n+l); •

definef d(n); return

13.

if (l<3k<2n I prime(k) and prime(2n-k))
then O else l; •

k definef e(n); return[+:l,2_k,2_n)d(k)/l0 ; •

The procedures a,b,c, and e are real numbers.
On the other hand the procedure dis not known
to be real. It generates a sequence of zeros
and ones, but the Canchy criterion cannot be
verified since it would involve finding a proof
of Goldbach's conjecture.

The number e satisfies e > 0 since we have
that e(n) > 0 for all n. To show that e = 0
would amount to showing that Goldbach's conjec
ture were true and a proof that e > 0 would
provide a counter example to the conjecture.
Hence, from e > 0 we cannot conclude either
e > 0 ore= 0~ as is done in the formal
setting. In fact, many basic results in formal
analysis are false in the constructive sense.

10. References and Remarks

1. Schwartz, J. Abstract Algorithms and a
Set-Theoretic Language for their Expression
N.Y.U. Notes (1972).

This is the basic reference work on SETL.
It includes a discussion of programming prin
ciples, details concerning the design of the
language, and a variety of algorithms written
up in SETL.

2. SETL-Newsletters 1-100+. N.Y.U. Dittoed
Notes.

A miscellaneous collection of papers mostly
concerned with implementation problems, but
some have an independent theoretical importance.
Variously authored.

3. Mullish, H. SETLB~Manual, N.Y.U. Notes
(1973).

A users' manual for SETLB with all the gory
details explained and illustrated.

4. Cocke, J. and Schwartz, J. Programming
Language and Their Compilers, N.Y.U. Notes
(1972).

A comprehensive discussion of the problems
involved in getting a machine to understand a
language. Parsing algorithms and optimization
techniques are discussed at great length.

14.

5. Schwartz, J. Sinister Calls, SETL News
letter #30. Krutar, R. An Algebra of Assign
ment, SETL Newsletter #50.

These two papers are concerned with a quite
different approach to programming. It will be
illustrated with a few examples.

Suppose x = <2,8,6,4>.

Then, setting y=x(3) gives y the value 6.

By contrast, setting x(3)=45 will change the
value of x which then becomes <2,8,45,4>.

Rewriting x(3)=45 as x(3) ~ 45 = true, opens
the door to a new style of programming. For
example, instead of writing an algorithm to
solve the pair of equations

2x + 3y = 7 & 4x - Sy= 3,

one would merely write

2x + 3y ~ 7 and 4x - Sy~ 3 = true;

The compiler would then fiddle away until it
established the truth of this statement by
finding x = 2 and y = 1.

The general principle here is quite simple and
programs could be written in the following
form:

Whatever you wish to be true= true.

A programming language developed along these
lines would lead to a descriptive, rather than
algorithmic, style of programming, and this could
be very powerful. A descriptive sort of a
sequence x(rn) has the form

(1 < Vk < #x I x(k) lt x(k+l)) = true.

Eventually one might be able to write the
ultimate program

Let there be light= true.

6. Bishop, E. Mathematics as a Numerical
Language, How to Compile Certain Formal Systems,
and A General Language. (Preprints-La Jolla)

In these three papers as well as his book
(cited earlier) Bishop speaks about writing a
compiler for mathematics. The input to the
compiler would be a mathematical proof of the
existence of some object, and the output would
be a program that constructs the object. This
would of course only be feasible in the con
structive framework where "proof" refers to a
constructively valid argument.

7. Westin, A. and Baker, M. et al., Databanks
in a Free Society.

From the book jacket: "During the past two
decades, as the large-scale record systems of
most government agencies and private organiza
tions have been computerized, the American
public has become concerned that something
fundamentally dangerous might be happening."

15.

8. Bailey, A. From Intellect to Intuition,
Lucis Publ. Co., 1932.

A philosophical work which is pertinent
to the design of software for the increasingly
popular notion of the teaching machine.
Chapter 2, The Purpose of Education, leads
off with the following quote from H.A. Overstreet

" ... education is undergoing important trans
formations. From a relatively external process
of pouring in facts, it is increasingly be
coming a process of evoking the deeper, gener
ative possibilities that lie within the individ
ual."

