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1. Introduction 

These lectures are addressed to mathematics 
students, but a certain amount of immaturity 
with computer science will be essential for a 
complete understanding. 

Computer programs are algorithms written in 
a very stylized format and meant to be under
stood by a machine. The style in which we 
will write algorithms below is called SETL 
(SET Language) and has been devised by Jack 
Schwartz of the Courant Institute of Mathe
matical Sciences (N.Y.U.). It is a style that 
is very comfortable to a mathematician since 
it uses standard mathematical notations and 
modes of expression. The few new notions that 
will be required will be explained as we go 
along. 

For our purposes a machine may be thought of 
as a black box, inside of which is a math 
graduate student slave. The student has a 
finite amount of paper, does not work infinitel1 
fast, and understands the algorithms. She may 
respond by typing out answers on a piece of papE 
or printing them out on a TV-like screen. 

A dialect of SETL, called SETLB, is currentl1 
running on the AEC CDC-6600 at N.Y.U. Future 
implementations will be orders of magnitude morE 
efficient than the present one. 



2. The Data Bank 

A possibly multivalued function 

g: A-+ B 

may be defined by giving its graph explicitly 
as a set of ordered pairs. The following 
notations will be used. 

g(x) = if 3 unique y E B with <x,y> Eg 
omega (or undefined) otherwise, 

g{x} = {y E B I <x,y> Eg}, 
and for a set Cc A 

g[C] = {y EB I (3x EC I <x,y> Eg)} 

A data base is a tuple 

<A,f 1 , ... ,fm,R1 , ... ,Rn> 

where A is a finite set, each f. is a function 
l 

on A, and each R. is a binary relation on A. 
J 

Information that may be accessed includes all 
sets in the weak topology on A generated by the 
functions and relations defined on A. A 
typical such set may have the form 

{xEA I f(x) gt 5 and (g{x}EK or Q(x) ne 6)}. 

This information may be augmented by using the 
operators: 

arb(S) and random(S) 

which chose any old element from S, and a care
fully chosen random element respectively. 

2. 

Suppose 
g = {<2,8>,<3,6>,<4,7>,<2,6>,<8,l>}. Then 

g(3) ~ 6 , g(4) ~ 7, 
g(2) ~ w , g(lS) ~ w, 

g{3} ~ {6} , g{2} ~ {8,6}, 
g{l5} ~ nl (null set), 

g[{2,3,4}] ~ {8,6,7} 
g[{-2,1}] ~ nl 

~ Example 

A= {l < n < 1000}; 

g[{8,9,10}] ~ {l}, 

male= O; female= l; married= 0; 
single= l; divorced= 2; 

Take the functions 

name= {<l,"Tom">,<2,"Eve">, ... }; 
age= {<1,26>,<2,ll>, ... }; 
sex= {<l,0>,<2,1>, ... }; 
income= {<1,17000>,<2,0>, ... }; 
maritalstatus = {<l,l>,<2,1>, ... }; 
address= {<l,"1234 Wood St., Chicago">, ... }; 
yearsschool = {<1,14>,<2,5>, ... }; 

and relations 

friendsof = {<l,36>,<2,47>, ... , 
<942,419>,<47,2>, ... }; 

debtsto = {<3,67>,<14,45>, ... }; 



A great deal of information can be stored in 
such a data base, the 1970 census for example, 
and this information can be used in a variety of 
ways. 

Information may be added to the data base by 
augmenting the base A and updating the functions 
and relations. For example, if bis given along 
with data about b, we merely need write 

bin A; f 1 (b) = c; f 2 (b) = g; .. . 

R1 (b) = {q}; R2 (b) = {r,s,t}; .. . 

To delete a member from the data base we proceed 
as follows: 

C OU t ~; : l ( C) = W; f 2 ( C) = W; ••• 
R

1
(c) - w, .•• 

New functions may be defined using the 
operations of intersection, union, composition, 
transitive closure, etc. For example, if R 
denotes the relation "friendsof" then 

Q = RU (R c:> R) 

is a new relation. For each x EA 
Q{x} consists of all elements of A that are 
either friends of x or friends of friends of x. 

~ 

3 • 

Of interest to a sports car salesman might 
be the set 

potentialcustomers = {x EA I 
age(x) gt 18 and age(x) lt 30 and 
20000 and sex(x) ~ male and -
trafficpenaltypoints(x) le 4}; 

income(x) ~ 

The salesman may get a list to give his 
secretary as follows: 

(VxE potentialcustomers) 
print name(x) ,phoneno(x); end Vx; 

or he may print out the following type of form 
letter: 

(VxE potentialcustomers) 
print name (x) ; 
print address(x); print; 
print "Dear", name(x); 
print "As a man with an income of", income(x), 
"I am sure you will be interested in our new", 
favoritevcolor (x), "dinkycar". 
print "Some weeks ago I ran into your friend", 
random friendsof{x}, "and he mentioned that you 
were dissatisfied with your", presentcar(x); 

common = clubs{x} n clubs [number ( "HalBean" )j 
if common ne nl then print "Perhaps I'll see 
you at the", random(cornmon); else print 
"Please drop by my office"; 
print "Personally yours"; 
print "Hal Bean"; 



3. Simulation 

There are many types of situations that can 
be modeled on a machine. When complete infor
mation is known, the model is decisive and 
empirical evidence can often be used in place 
of a more difficult analysis of the situation. 
This will be illustrated with the game of 
"craps." 

A player rolls two dice to establish his 
point E {2,3, ... ,12}. If his point is 2, 3, 
or 12 he loses. If it is 7 or 11 he wins. 
If neither of the above is the case, he con
tinues rolling until he rolls a 7 in which 
case he loses, or his point again in which 
case he wins. A probablistic analysis shows 
that the odds are slightly in favor of the 
house. An empirical estimate of this is 
given on the right where the game is played 
one million times and the number of wins is 
recorded. The program illustrates the use 
of labels, while and go to statements, as well 
as the use of a procedure. 

There are two types of procedures in SETL. 
An example of a functional type of procedure 
is 

define£ g (x) ; return x 2 -3x + 4 ; • 
A procedure of subroutine type does not return 
a value, it does something and then merely 
returns. An example might be 

define message(x); print x; return; • 

4. 

craps= {2,3,12}; wins= {7,11}; 
nowins = 0; nogames = 0; 

die= {l < Vn < 6}; 

define£ roll; return random(die) + random(die) 

playgame: if nogames s.! 1000000 then 
go to finished;; 
no games= nogames + l; point= roll; 

if point£ craps then go to playgame; else 
if point E wins then nowins = nowins + l; 
go to playgame;; 

newroll = roll; 
(while newroll t {7,point})newroll = roll;; 

if newroll ~ point then nowins = 
nowins + l;; go to playgame;; 

finished: print nowins,"games won out of",100001 

The following conversations actually occurred. 
M=mathematician C=computer scientist 

MC=mathematician and computer scientist 

M to MC: What is a procedure? 
MC to M: It's like a lemma! 

C to MC: What is a lemma? 
MC to C: It's like a procedure! 



4. Comparison of Notations 

It is quite easy to translate a mathematical 
algorithm into a SETL program. Translation of 
some typically mathematical phrases or construc
tions are shown below: 

1. The r-function 
f(l)=l and for n>l, f(n)=nf(n-1) 

2. Let {s 1 ,s 2 ... ,Sn} denote the elements of the 

set of integers A arranged in increasing 
order. 

3. The elements of the above set arranged in 
decreasing order. 

4. Is n a prime number? 

5. The smallest prime greater than a given n 

6. A list of the first 500 primes. 

7. The set of primes smaller than 500 

8. The above set in increasing order 

9. The greatest common denominator of two 
positive integers m and n. 

10. Single valued function 

11. Domain of function 

12. Inverse of function 

5. 

The programs below are not written from the 
point of view of efficiency which is a serious 
issue and will be considered later. 

definef f(n); return if n ~ 1 then l else 
n*f(n-1); • 

define£ incorder(A); S=nl; (YxEA) 
k=l+#{yEAlyltx}; S(k)=x; end Yx; • 

definef decorder(A); S=incorder(A); 
(l~Yn~#S)S(n)=S(n-#S+l); end Yn; return S; • 

definef prime(n); return if(l<5k<nln//k ~ 0) 
then false else true;• 

definef primeafter(n); k=n+l; 
(while not prime(k))k=k+l;end while;return k; • 

list(l)=l; (while #list lt 500) 
list(#list+l)=primeafter(list(#list));end while 

primes={l<p<S00lprime(k)}; 

incorder(primes); 

definef gcd(m,n); return if m ~ n 
then n else gcd(lm-nl ,min{m,n}); • 

definef function(f); return ~(f) ~ set 
and (YxEfJpair(x)) and (YxEf,yEfl 
x(l) eq y(l) implies x(2) ~ y(2)) ;8 

definef domain(£); return {x(l), x£f}; • 

definef inverse(f); return {<x(2) ,x(l)>, X£f}; • 



13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

Image of function 

Injectivity 

Composition of functions(or relations) 

th Then power of a function 

The transitive closure R* of a 
relation R 

The set of all functions from A to B 

Permutations of a set A 

Given an integer n~l, if it is even divide 
it by 2,and if it is odd multiply by 3 
and add 1. It is not known if iteration 
of this always leads to 1. For n=7 we have 
7,22,ll,34,17,52,26,13,40,20,10,5,16,8,4,2,l 

The pair of prime twins greater than n. 

22. The center of a group g whose multiplica
tion table is rn. 

6 • 

definef irnage(f); return dornain(inverse(f)); • 

definef injective(f); return(VxE domain(f), 
y E domain(f) Ix ne y implies f(x) ne f(y)); • 

definef Ro S; return {<x(l) ,y(2)>, XER, yES I 
x(2) ~ y(l)}; e 

definef power(R,n); return if n ~ 1 then R 
else if n ~ 2 then Ro R else 
Ro power(R,n-1); • 

definef star(R); T=R; n=2; 
(while power(R,n) ne nl) n=n+l; 
T=T U power(R,n) ;;return T; e 

definef fncts(A,B); return 
{f E powset(A ~ B) jdomain(f) ~ A 

and function (A)};• 

definef permutations(A); return {f E fncts(A,A) I 
injective(f)}; • 

definef getstone(n); return if n S 1 then true 
else if even(n) then getstone(n/2) else 
getstoDe(3*n+l); • 

definef even(n); return 2*(n/2) ~ n; • 

define£ nextprirnepair(n); k=n+l; 
(while not (prirne(k) and prirne(k+2))) 
k=k+2; end while; print"<k,k+2>; e 

center = {yEgl (VxEgirn(x,y) ~ rn(y,x))}; 



Most programming languages, e.g., FORTRAN, 
BASIC, APL, ALGOL, LISP, PL/1, COBOL, have 
evolved up from the machine and programming 
manuals often read like old fashioned text 
books on tensor analysis. SETL descends into 
computer science from mathematics, and is 
essentially a coordinate-free approach to 
programming. Problems of efficiency, which 
often amount to something like choosing a 
suitable coordinate system, can be handled 
automatically. The essential contribution 
of SETL is the introduction of abstract objects 
in place of artificial coordinate representa
tions of them. 

7. 

There seems to be a difference of opinion 
concerning the SETL style of programming as 
compared to the current one. The humorous 
excerpt below is taken from a 1971 review of 
a 300-page SETL manuscript written by an 
"expert" on programming languages. 

"In summary then, SETL is at worst just a 
collection of strange notations and devices, 
and at best it is "just another programming 
language." Compared with the elegance and clean 
design of APL, SETL fails to attract the mathe
matical mind. It does not use the mathematician' 
symbols, his notation, his precedences, or his 
identities. Its mass of petty detail is no 
smaller than that of other languages. The 
algorithms presented are little more than trans
literations of what would be written in ALGOL 
or APL. Yet the idea of a set as a datatype 
(or data structure) and the partially-fulfilled 
idea of specifying operations on all the ele
ments of a set are very powerful notions and 
are good candidates for incorporation in some 
existing programming languages." 



5. The Labyrinth 

The following is from Algorithms and 
Automatic Computing Machines by B.A. Trakhtenbrot. 
The setting is a symmetric relation Rover a 
set of nodes .. Two nodes are given and the 
problem is to,: c.onstruct a path between them ( if 
0 

In order to co et such an algorithm, we prescribe a special 
method of searc ...,.At~ step of the search we can separate 
the corridors into t ree"'classes: those through which Theseus has 
never passed (we shall call these green corridors), those through 
which he has passed once (yellow), and those through which he has 
passed twice (red). Furthermore, from any junction Theseus may 
move to an adjacent junction in one of two ways: 

I. Unwinding the thread. Theseus moves along any green corri
dor to an adjacent junction, unwinding Ariadne's thread as he 
goes; this corridor is then considered yellow. 

2'. ]<.ewinding_t.Ji~ lhread. Th~seus returns along a yellow corridor 
to an adjaa:ntj~tiQn, rewinding Ariadne's thread as he goe!>; this 
corridor isJh~\WR$iclered red. _ _ . . _ 

N'~_e_ !hl!t T eseus is not allowed to go through a red corridor. We 
assume thaf~vs makes some rriark ·by Which be can·later dis
tinguish a green corridor from a red one. He can distinguish the 
yellow corridors because they have Ariadne's tht ead stretched 
along them. The choice of each nwxe. ~pends upon the conditions 
which Theseus finds at the junction where he happens to be:These 
conditions will be one or more of the following: 

1. Minotaur.-The Minota~r- ~s discovered at the grven junction. 
. 2._ Loo?- Ariadne's thread ·already. _passes through the given 
Junction; m other words, there are at least two other yellow corri
dors leading from the junction. 
. 3._ Green. There is at least one green corridor leading from the 
Junction. . . . .. . - .. . . 

4. A ri~Juiadne is at the give ·_. · 
• -1 !!!!!~.J.ifilt -rau "None of the above. c· · 
:1 _-;., ur Sea.J:c4,~!hod may now be 
-'f . . ng table.· · 

~ I ~: 0;;=~:· 
3. Green 
4. Ariadne 
5. Fifth case 

Stop 
Rewind the thread 
Unwind the thread 
Stop 
Rewind the thread 

<~ 

I 

./\~~~--~ 

8. 

define labyrinth(ariadne,minotaur,R); 

green=R; yellow=nl; red=nl; marked=nl; 
/*at each stepafter the first wehave 

just traversed a path <a,b>. We have 
the following cases*/ 

**easel= b ~ minotaur** 
**case2 = b marked** 
**case3 = {x E green I x(l) ~ b} ne nl** 
**case4 = b eq ariadne** 

/*the possible actions are*/ 
**stop= go to done** 
**rewind= <a,b> in red; <b,a> in red; 

<a,b> out yellow; <b,a> out yellow; 
<a,b> = <b,a>; go to nextmove** 

**unwind= x = arb {y E greeniy(l) ~ b}; 
bin marked; <a,b> = x; 
<a--;E°> in yellow; <b,a> in yellow; 
<a,b> out green; <b,a> out green; 
go to nextmove** --

x=arb{y E Riy(l) ~ ariadne}; 
<a,b> = x; <a,b> in yellow; <b,a> in yellow; 
<a,b> out green; <b,a> out green; 

nextmove":°if case 1 then stop;; 
if case2 then rewind;; 
if case3 then unwind;; 
if case4 then stop;; 

rewind; 
done: if b ~ ariadne then I;rint "no path exists" 

else print "The solution is", yellow; end if; I 



6. Finite Groups 

We will write an algorithm to check the 
truth of the Feit-Thompson theorem for all 
groups of even order up to one million. 

definef group(G); <e,g,m,i> = G; return 
type g eq set and type m eq set and 
type i eq set and -- -- -- --
es g and i[g] eq g,and m[g,g] eq g and 
(YxEg Trri(x,e) eq x and m(e,x) ~ x) and 
(YxEg I m(x,i(xTT eq~and m(i(x1,x) eq e) and 
(Yx,y,zEgl m(x,m(y-;"z)) eq m(m(x,y) ,z)TT• 

definef subgroup(h,G); <e,g,m,i> = G; 
return hcg and group(<e,h,m,i>); • 

definef normalsubgroup(h,G); return subgroup(h,G) 
and (YxEh, yEG(2) lm(i(y) ,m(x,y))Eh); • 

definef generatedsubgroup(A,G) ;<e,g,m,i>=G; 
G=Awithe; n=0; (while n lt #B) n=#B; 
(Yx,ysB) m(x,i(y)) in B;end Yx; 
end while; return B;e 

definef generatednormalsubgroup(A,G); 
<e,g,m,i>=G; return[ n: BC g I 
Ac Band normalsubgroup(B,G)]B; • 

definef commutator(G) ;<e,g,m,i>=G; 
A={m(x,m(y,m(i(x) ,i{y))) ,xEg,yEg}; 
return generatednormalsubgroup(A,G); • 

9. 

definef quotient(G,R); <e,g,m,i> = G; 
cosets = nl; (while g ne nl) x = arb g; 
coset = {yEglm(x,i(y) I Eh}; 
coset in cosets; coset outof g; end while; 

M=nl; I=nl; 
(YaEcosets,bEcosets) M(a,b)=m[a,b]; 
I(a) = i[a]; end Ya; return 
<h,cosets,M,I>; • 

definef solvable(G); (while G ne 
commutator(G)) G=quotient(G,
commutator(G)); end while; return 
#G(2) ~ l; e 

A= {l<n<l000000}; g = permutations(A); 
i = {<x,Inverse(x)>, XEg}; 
m = {<x,y,xoy>, XEg,yEg}; 
e = {<a,a>, aEA}; 
P = <e,g,m,i>; 

if 3 B c g I subgroup(B,P) and even (#B) 
and not solvable {<e,B,m,i>) then 
prTnt"Feit-Thompson Theorem is wrong"; 
else print "OK through 1000000";; 



7. Drawin9: Pictures 

<100,100> 
p 

' r I .... / 

/ ' I ' 

Aer 
B C 

<1,1> 

A = <70,30>; B = <70,10>; C = <90,10>; 
D = <90,30>; E = <80,40>; 

house= brokenline(<A,B,C,D,E,A,D>); 
sun= {<x,z>£Pl(x-80) 2 +(y-80) 2 le 100}; 
ray= {<x,y>£P y ~ 80 and 95 le x le 100}; 

rays=ray; (l<Vn<ll)rotated(ray,<80,80>,n*30) 
into-rays; end Vn; 

tower= {<x,2y>,<x,y>£ translated(house,<-60,0>) }; 
picture= house u sun u rays u tower; 

draw(picture); 

The code to implement the above is given 
on the right. A three dimensional version 
could be used to draw a picture in one perspec
tive, rotate the axes, and then view it from 
a different perspective. 

P = {<m,n>, l<m<l00, l<n<l00}; 
star= "*";-blank=" "; 
blankline = l00*blank; 

10. 

lines= nl; (l<Vn<l00)lines(n)=blankline;end Vn 

define draw(set); (V<x,y> £ set) 
lines(x)(y) = star;; 
(l00~n~l) print lines(n) ;; return; • 

define translated(set,point); <a,b> = point; 
return {<x+a,y+b>,<x,y> £set};• 

definef rotated(set,point,degrees); <a,b>=point; 
0 = degrees/6;return{<a+(x-a)cos(0)+(y-b)sin(0) 

b+(x-a)sin(0)-(y-b)cos(0)>,<x,y>£set}; • 

definef brokenline(t) ;return 
[ U: l,S_Vn,S_#t-1) segment (t (n) ,t (n+l)); • 

definef segment(~,q); <a,b>=p; <c,d>=q; 
k = sqrt((a-c) +(b-d) 2

); return 
{<a+(c-a)n/k,b+(d-b)n/k>, l.s_n.s_k}; e 

definef cos(x); return l-x 2 /2 + x 4 /24; • 

definef sin(x); return x-x 3 /6 + x 5 /120; • 



Assuming that the draw routine prints on 
35mm film one can use the routines above to 
make movies. Suppose the sets 

tail, body, fleg, bleg 

are given along with the pivots A, B, C and 
dog= tail u body u fleg u bleg. Then 
(1 < Vn < 50) draw (dogs(n));; 
will produce the movie on the right if the 
dogs routine is defined as follows: 

definef dogs(n); if odd(n) then return 
trans(dog,<n,o>) ;; 
e = if divides(4,n) then -1 else l; 
newdog = body u 
rot(fleg,C,8*45)u 
rot(bleg,B,-8*45)u 
rot ( tail ,A, 8*30); 

return trans(newdog,<n,o>); • 

• 11 . 
A 

B---------1C 

• 

• 

J, 



8. Forestry 

A powerful aspect of SETL is that it allows 
procedure names to be elements of sets or com
ponents of tuples. This use will be illustrated 
below. 

A binary tree is either an atom or a pair of 
trees. The atoms in the tree are called its 
leaves. Two trees will be called similar if 
they have the same structure when the leaves are 
ignored. A forest is defined as a set of trees. 
A forest may be enlarged by adding to it all 
trees of the form T(2) when T(l) and T already 
belong to the forest. Iterating this procedure 
will eventually lead to a fully grown forest. 
Suppose Fis a forest. Then the p~ogram 

(while #Flt# enlarged(F)) F=enlarged(F) ;; 

expands F until it produces no new trees. The 
growth can be spedup considerably using features 
where a feature (Qf trees) is a function defined 
on all trees. Using the definition on the right 
of enlarging the forest, F, with respect to a 
set of features, feats, gives the more efficient 
growth 

(while #Flt# enlargedwrt(feats, F)) 
F = enlargedwrt(feats, F) ;; 

How efficient the growth is dependent on how 
quickly the features can be evaluated. If f is 
a feature and the test f(S) ~ f(T) can be com
puted much more quickly than the test S sim T 
then the feature may be useful. 

I \ 
<a, <b, c> >-+/a/be\\ -+ a/be\-+ ~ 

b C 

12. 

~ definef tree(T); return if atom T then true else 
pair T and tree(T(l))and tree(T(2)); • 

definef S sim T; return if atom S then atom Tel~ 
S(l) sim'I'(l) and S(2) sim T(2); e 

definef forest(F); return (Vx£FJtree(x)); • 

defin~f. enlarged(F)~ return Fu 
{T(2), T£FJ (3S£FJ S sim T(l))}; • 

define£ enlargedwrt(features,forest); new=nl; 
(VS£forest) 
(\itTdR£forest I (Vf£features If (S) simf (T (1))}) 

if SsimT(l) then T(2) in new;end VT; 
end \itS;"°return forest+ new;• 

... ' - .... 
Typical features might be 

definef size(T); return if atom T then l else 
size(T(l))+size(T(2)); • --

definef lean(T); return if atom T then O else 
if size(T(l)) lt size (T(~then -1 else if 
size (T(l)) ~size (T(2)) then O else l; e 



9. Real Reals 

This section follows the spirit of Errett 
Bishd)p's Foundations of Constructive Analysis 
( pp . 18 , 19 , 2 6) . 

Let z+ devote the positive integers. 

A procedure x defined VnEZ+ is said to 
be real if for every k £ z+ there is an 
A(k_)_E_z+ satisfying 

lx(n)-x(m) I ,2_1/k Vm,n.:_A(k). 

Two reals x and y are equal (x=y) if for 
every k £ z+ there is an B(k) £ z+ satisfying 

lx(n)-y(n) I .2_ 1/k V n > B (k) • 

A real x is positive(x > 0) if for some 
k £ z+ there is a C(k) £ z+ such that 

x (n) :__ 1/k V n > C(k) 

A real x is nonnegative (x .:_ 0) if for each 
k £ z+ there is a D(k) £ z+ such that 

x(n) > -1/k V n > D (k) 

It can occur that a given real number x is 
known to satisfy x > 0, but that neither 
x > 0 nor x = 0 is known to be true. More 
striking is the fact that there is no general 
method (nor will there ever be one) for 
deducing that x > 0 or x = 0 given that 
x > 0. Examples are given on the right. 

definef a(n); return 0; • 
definef b(n); return 1/n; • 
definef c(n); return n/(n+l); • 

definef d(n); return 

13. 

if (l<3k<2n I prime(k) and prime(2n-k)) 
then O else l; • 

k definef e(n); return[+:l,2_k,2_n)d(k)/l0 ; • 

The procedures a,b,c, and e are real numbers. 
On the other hand the procedure dis not known 
to be real. It generates a sequence of zeros 
and ones, but the Canchy criterion cannot be 
verified since it would involve finding a proof 
of Goldbach's conjecture. 

The number e satisfies e > 0 since we have 
that e(n) > 0 for all n. To show that e = 0 
would amount to showing that Goldbach's conjec
ture were true and a proof that e > 0 would 
provide a counter example to the conjecture. 
Hence, from e > 0 we cannot conclude either 
e > 0 ore= 0~ as is done in the formal 
setting. In fact, many basic results in formal 
analysis are false in the constructive sense. 
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