
SETL Newsletter #102 

Reduction in Strength Using Hashed Temporaries 

K. Kennedy 

March 12, 1973 

This newsletter describes a simple 'reduction in strength' 

algorithm which works on strongly-connected regions. 

Intermediate Code 

Since reduction in strength is one of a class of algorithms 

which must examine code in some form, we must begin by describing 

an intermediate code form. The intermediate code we choose is 

simple, yet flexible enough to support the optimization methods 

we propose to describe. 

We take the intermediate code with which we will be concerned 

to be a set of SETL blank atoms (formed by successive calls to 

the primitive newat) with which several mappings are associated. 

Let at be an atom of code. 

1. op(at) is the operation code for the instruction. 

The following operations are 

Operation 

nop 

add 

sub 

mul 

div 

exp 

xld (indexed load) 

sto 

neg (store negative) 

xst (indexed store) 

br (branch) 

brc (branch conditionally) 

bsr (branch to subroutine) 

bfn (branch to function) 

hlt 

available: 

Code 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

The operations 0-5 are reasonably self-explanatory. 

#Argurnen ts 

0 

2 

2 

2 

2 

2 

2 

1 

1 

2 

0 

2 

variable 

variable 

0 

"Indexed load" (xld) takes an array name a and a simple variable i 

as its arguments and loads the value of a(i) into the target variable. 



SETL 102-2 

"Store" (sto) moves the value of its argument to the target. 

"Store negative" (neg) negates the value of its argument 

before moving it to the target. 

"Indexed store" (xst) has an array name a as its target and 

an index i and a simple variable x as its arguents. 

Its effect is to move the value of x to a(i). The branch 

instructions use a flow structure that will be described later. 

"Branch conditionally" (brc) accepts two arguments, xl and x2, 

and causes a branch if xl > x2. The other branch instructions 

are self-explanatory except for the fact that brand bsr have 

no targets while bfn has a target which receives the value 

of the function. In the algorithms which follow we assume that 

the mnemonics listed above are pseudonyms for the opcodes specified. 

2. targ(at) is the name of the target variable for the instruction 

if a target exists. 

3. args(at) is a tuple containing the names of the arguments to 

the instruction. 

4. next(at) is the next instruction to be taken. Its value is 

a single atom for most instructions. However, for 

the branch instructions its value is a pair 

<atl,at2> 

where atl is the next instruction in code sequence 

and at2 is the branch target. In the case of a 

branch to a subroutine, the branch target may be 

a name instead of an atom. 

In manipulating two-argument instructions we use the following 

SETL macros: 

macro argl(at); hd args(at) endm argl; 

macro arg2(at); args(at) (2) endm arg2; 

which allow us to access the first and second arguments. 



SETL 102-3 

Our algorithms will often insert instructions into the code 

contained within a strongly-connected program region, so we will 

need a subroutine to insert an instruction after another instruc­

tion. We will never insert code immediately after a branch 

instruction so the complicated flow problems which such insertion 

would imply need not be dealt with. 

The routine insert presented below has 5 arguments. 

1. at - the instruction after which the new instruction is 

to be inserted 

2. t - the target of the new instruction 

3. o - the opcode for the new instruction 

4. a - the argument tuple for the new instruction 

5. c the code set into which the new instruction is to be 

inserted. 

Here is the SETL code. 

define insert(at,t,o,a,c); 

/* get new blank atom */ 

node= newat; 

/* initialize functions*/ 

<targ(node), op(node), args(node)> = <t,o,a>; 

/* set up flow functions*/ 

<next(node), next(at)> = <next(at), node>; 

/* add node to code set*/ 

c = c with node; 

return; 

end insert; 

2. Finding Induction Variables. 

One of the first subtasks of the reduction in strength process 

is to locate the induction variables appearing in a strongly­

connected program region. In general, induction variables are 

those variables which are defined in terms of region constants 

and other induction variables by operations of the following form: 

X + ± y 

X + y ± Z 



SETL 102-4 

where y and z are either region constants or induction variables. 

To locate induction variables, one must use a process of elimina­

tion. We therefore propose the following scheme for finding 

variables which are not induction variables. Let IV be the set 

of all induction variables and RC the set of region constants for 

the strongly-connected region. 

1. If x + op(y,z) and op is not one of {neg,add,sub,sto} 

then x is not in IV. 

2. If 3 an instructions in the strongly-connected region 

such that op(s) E {bsr,bfn} and x E args(s) then x is not 

an induction variable. This restriction eliminates the 

possibility that a subroutine side effect shall modify an 

induction variable. 

3. If x + op(y,z) and y or z is not an element of IV u RC 

then x is not in IV. 

The algorithm for finding induction variables proceeds by passing 

through the nodes of the set scr (the strongly-connected region) 

and collecting all variables which are targets of {add,sub,sto,neg} 

into a set iv while collecting all subroutine arguments into a 

set subargs. The difference between these two sets gives the 

initial approximation to the set of induction variables. We 

then pass through the code repeatedly applying restriction 3 until 

no more variables are eliminated from iv. 

'l'he routine findivars is coded in SETL as follows. 

define£ findivars(scr,rc); 

/* scr is the set of nodes in the strongly-connected region, 

re is the set of region constants, 

iv is the set of induction variables, 

subargs is the set of variables which are arguments to subroutines, 

ivnodes is the set of instruction nodes which set variables in iv*/ 

<iv,subargs,ivnodes> = <ni,ni,ni>; 



SETL 102-5 

/* pass through the region applying rules 1 and 2 to get 

the initial approximation for iv*/ 

(~n E scr) 

if op(n) E {add,sub,sto,neg} 

then/* rule 1 */ 

iv= iv with targ(n); 

ivnodes = ivnodes with n; 

else if op(n) E {bsr,bfn} 

then/* rule 2 */ 

subargs = subargs + {(args(n)) (i), l~i~#args(n)}; 

end if; 

end Vn; 

/* take the difference to form the approximation*/ 

iv= iv - subargs; 

ivnodes = {n E ivnodes I targ(n) n E subargs}; 

/* we can now restrict our attention to ivnodes --the set of 

instructions which set possible induction variables. we pass 

through iv nodes eliminating induction variables which do not 

obey restriction 3 */ 

oldiv = nt; 

(while iv ne oldiv) oldiv = iv; 

(Vn E ivnodesjargl(n) ~ E (iv+rc) 

or arg2(n) ~ E (iv+rc)) 

iv= iv less targ(n); 

end Vn; 

/* reduce ivnodes */ 

ivnodes = {n E ivnodesjtarg(n) E iv} 

end while; 

return <iv,ivnodes>; 

end findivars; 

Note that the value returned by the function findivars is a pair, 

consisting of the set of induction variables and the set of 

instructions which set those variables. 



SETL 102-6 

3. Finding Candidates for Reduction. 

The algorithm we will present will aim to reduce all multipli­

cations of the form 

i * C 

where i is an induction variable and c is a region constant. 

These can be found by passing through the region and checking 

the arguments of multiplications. The following routine findcands 

returns the set of nodes which represent operations of the appro­

priate form. 

definef findcands(scr,rc,iv) 

/* scr is the region, re is the set of region constants, 

iv is the set of induction variables*/ 

/*initialize*/ 

cands = ni; 

/* pass through scr looking at multiplications*/ 

(Vat E scr I op(at) ~ mul) 

if argl(at) E iv and 

arg2(at) Ere 

then cands = cands with at; 

else if arg2(at) E iv and 

argl(at) Ere 

then/* switch arguments to establish canonical form*/ 

<argl(at) ,arg2(at)> = <arg2(at) ,argl(at)>; 

cands = cands with at; 

end if; 

end \fat; 

return cands; 

end findcands; 



SETL 102-7 

4. The Temporary Table. 

by 

The idea of reduction in strength is to replace 

X +- i * C 

X +- t 

where t is a temporary which holds the current value of i * c 

over the entire region. In the present package of algorithms 

these temporaries will be accessed through a hash table which 

uses the names of the ope;rands of the multiplication as keys. 

Thus 

t.* l C 

will contain the value of i*c in the region. In using this trick 

we must do two things to assure that t.* always contains the 
l C 

correct value. 

1) An initilization of the form t.* +- i*c must be inserted 
l C 

just prior to entry to the scr. For this purpose, it is useful 

to assume that each strongly-connected region has a prolog --

a basic block which is always executed just prior to entering 

the region. New initializations will be inserted at the end 

of the prolog. 

2) After each instruction which sets i we must insert an instruction 

which modifies the vlaue oft.* appropriately. This is not as 
l C 

simple as it sounds since instructions of the following forms 

can occur. 

Instruction Operation to be Inserted 

i +- c2 t.* +- t 
l. C C *c 2 

i +- -c2 t.* +- -t 
C *c l. C 2 

i +- j + c2 t.* +- t.* + t 
l. C J C C *c 2 

i +- j - c2 t.* +- t.* - t 
C *c l C J C 2 

This table shows that we must not only create temporaries for i*c 

but also for j*c and c 2*c for every j and c 2 that can affect the 

value of i. In addition, we must insert initializations and 



SETL 102-8 

modifications for these temporaries. Thus we must find all 

induction variables and region constants.that can affect the value 

of i. To handle all the cases which can arise we develop a routine 

which computes a set affect of ordered pairs 

<i,x> 

where i is an induction variable and x is an induction variable 

or region constant which can affect it. 

The idea is to pass through the scr building an initial affect 

relation from instructions which set induction variables and then 

to fill in all necessary addition items using a process of 

transitive closure. The following routine returns the set affect. 

definef findaffect(ivnodes,iv,rc); 

/* ivnodes is the set of nodes which set induction variables, 

iv is the set of induction variables, ra is the set of region 

constants*/ 

/* initialize so that each iv affects itself*/ 

affect= {<x,x>, x E iv}; 

/* pass through ivnodes to get the initial relation -- any 

operands of an instruction which sets x must affect x */ 

(Vat E ivnodes) x = targ(at); 

if pair args(at) then 

affect{x} = affect{x} + {<x,argl(at)>,<x,arg2(at)>}; 

else affect{x} = affect{x} with <x,argl(at)>; 

end if; 

end Vat; 

/* now take the transitive closure by adding to affect{x} any 

variable which affects an induction variable in affect{x} */ 
n = O; 

(while #affect _g_!:_ n) n = #affect; 

(Vx E iv) affect{x} = affect{x} 

+{< x,y>, y E affect[iv * affect{x}]}; 

end Vx; 

end while; 

return affect; 

end findaffect; 



SETL 102-9 

Once we have the affect set we can accomplish strength reduction 

very neatly using the temporary table. If i*c is a candidate 

for reduction, we must form 

t for all x E affect{i} x*c 

inserting appropriate initializations and modifications for these 

temporaries. 

In the setl routine which follows we assume a mapping t such 

that t(x,y) maps x and y to the unique compiler-generated name. 

fort* . (In standard practice, this mapping would be realized 
X y 

by a hashed table.) The initialization instruction for each 

temporary will be inserted at the end of the prolog when the entry 

for that temporary is inserted in the table. This will require 

a pointer plast to the last instruction in the prolog. 

The algorithm presented below takes the candidates one at 

a time and performs reduction for them. Note that in implementing 

such a routine, efficiency could be improved substantially by 

using more parallelism. 

define streduce(prolog,plast,scr,rc); 

/* prolog is the initialization block whose last instruction is 

plast, scr is the region and re are the region constants which 

we assume are found in an earlier code-motion pass*/ 

/* find induction variables */ 

<iv,ivnodes> = findivars(scr,rc); 

/* find candidates for reduction*/ 

cands = findcands(scr,rc,iv); 

/* find the affect relation*/ 

affect= findaffect(ivnodes,iv,rc); 

/* now pass through the candidates creating temporaries and 

inserting initializations and modifications*/ 

(Vat E cands) x = argl(at); c = arg2(at); 

/* create the new temporaries as required*/ 

(~yE~ffect{x} I t(y,c) = ~) 

t,y,c)=newtemp; /*compiler generated name*/ 

/* initialization in prolog */ 



SETL 102-10 

/* 

I* 

insert(plast,t(y,c) ,mul,<y,c>,prolog); 

plast = next(plast); 

double entries for canst * canst 

if y E re then t(c,y) = t(y,c);; 

insert modifications to the new 

instructions which set induction 

('t/n E ivnodes I targ(n) ~ y) 

newargs = if pair args(n) 

*I 

temporaries 

variables 

then <t(argl(n) ,c) ,t(arg2(n) ,c)> 

else <t (argl (n), c) >; 

after 

*I 

/*the inserted instruction has the target t(y,c), the same 

operations as n, and newargs as its argument*/ 

insert(n,t(y,c), op(n), newargs, scr); 

end Vn; 

end 't/y; 

/* now replace the candidate by a store operation*/ 

<op(at) ,args(at)> = <sto,<t(x,c)>>; 

end Vat; 

end streduce; 

This completes the presentation of our strength reduction 

algorithm. An example will show what this algorithm will do. 

Original Code: 

prolog { i = 1 
j = 1 

l = j+l 

X = j*S 

region 
j = i+3 

y = i*6 

j = j+l 



SETL 102-11 

After reduction: 

i = 1 

J = 1 

ti*S = i*S 

tj*S = j*S 

tj*6 = j*6 

prolog 
ti*6 = i*6 

tl*S = 5 

tl*6 = 6 

t3*5 = 15 

t3*6 = 18 

j = j + 1 

ti*S = tj*S + tl*S 

ti*6 = tj*6 + tl*6 

X = tj*S 

j = l + 3 

tj*S = ti*S + t3*5 

region tj*6 = ti*6 + t3*6 

y = ti*6 

j = j + 1 

tj*S = tj*S + tl*S 

tj*6 = tj*6 + tl*6 

It seems appropriate here to mention two of the limitations 

of this algorithm as presented. 



SETL 102-12 

1) The algorithm does not include a systematic clean-up of the code. 

This subject will be discussed in a later newsletter on variable 

subsumption and test replacement. "".: "·' , ·- 1 ., ~~,• ,· .,."u·-:,., ', \\ '·" i),, 

2) The algorithm does not recognize the fact that all generated 

temporaries are themselves induction variables. Thus, in the 

above example, x and y might become induction variables after 

reduction in strength and a later instance of x+c might be 

reducible. The generalizations to handle this case will also 

be the subject of a later newsletter. 

We have presented a very simple reduction in strength algorithm 

based on the principle of hashed temporaries in hope that it 

will be a first step toward more general algorithms. 


