
SETL Newsletter 103 April 10, 1973 

Preliminary Plan for BALM-to-LITTLE Trianslator. J. Schwartz 

1. Introduction 

The debugging of the LITTLE-written, SRTL-compatible BALM 

interpreter which will initially support the new SETLB system 

is now far advanced. However, in order to avoid substantial 

losses in BALM compile efficiency, and possibly significant 

losses in SETLB execution efficiency as well, we will 
i 

undoubtedly require a SRTL-compatible BALM translator as a 

replacement for the interpreter. This is, of course, an 

SRTL-compatible version of the present (R. Paige) BALM trans­

lator. This newsletter will outline a plan for such a 

translator. The overall plan is to go BALM to LITTLE-internal 

(VOA entries and associated tables), though for initial 

debugging (and discussion) BALM to LITTLE-source is probably 

better. The scheme to be proposed suggests certain extensions 

to the present systan of peephole optimization; applied during 

LITTLE code generation, and also some modifications in the 

handling of index registers, with reservation of a few 

B-registers for global BALM pointers. Stack-pointer calculations 

can be systematically optimized. Certain other peephole 

optimizations applicable during BALM to LITTLE translation 

also deserve consideration. 

2. Statistical information on BALM code. 

To estimate the space costs and speed efficiency of any 

BALM translation scheme, basic statistical information on the 

static and dynamic frequency of the various BALM machine 

instructions are required. Here are such figures, for the 

BALM compiler and a short run of it, supplied by Stephanie Brown. 



SETL 103-2 

Length 
(Bytes) 

Static Freq. Dynamic Freq. 
BALM Instruction 

1. ID2➔STACKTOP 

2. STACKPTR PUSHUP 

3. Il+STACKTOP 

4. I2+STACKTOP 

5. STACK(Il) + STACKTOP 

6. ARG(Il) + STACKTOP 

7. CALL 

8. IDENTIFIER FROM INT. 

9. JUMP L2 

10. POP Il 

11. GSTORE 12 

12. NIL+ STACKTOP 

13. STACKTOP + STACK(Il) 

14. MAKE LIST 

15. JUMP FALSE L2 

16. STKPTR PUSHUP WITH SAVE 

17. MAKE PAIR 

18. HEAD 

19. TAIL 

20. RETURN 

21. OTHERS 

3 

1 

2 

2 

2 

2 

2 

1 

3 

2 

3 

1 

2 

3 

3 

1 

1 

1 

1 

1 

2 

960 

530 

430 

410 

400 

370 

360 

330 

300 

290 

280 

240 

240 

220 

210 

160 

140 

110 

100 

100 

380 

10 

9 

3 

1 

8 

12 

4 

1 

3 

4 

2 

3 

5 

0.1 

8 

l 

4 

3 

4 

15 

Total: 3200 insts l00K 

The 20 most frequent instruction account for 85 % of 

the instructions statically and about the same percentage 

dynamically. 

We shall suppose that the LITTLE code generator 

is modified so as to recognize the following global BALM 

quantities, and keep them in B-registers during the execution 

of BALM code: STACKPTR, ARGBASE, VARBASE, 

Moreover, we assume that array references of the form 

A(index + const) are optimized by the absoprtion of a 

constant, and compiled as 

LOAD[A + const] (index) . 

Similarly for array stores. 

insts 



SETL 103-3 

Up to 3 stack positions can be held in the global 

LITTLE quantities INPl, INP2, and RESULT, for which full­

length registers may be reserved. Multiple versions of 

certain very short executive routines may be provided so as 

to make it unnecessary to move arguments among these 

registers. During the generation of each LITTLE instruction 

the BALM to LITTLE translator will be aware of the loading 

of the 3 special registers INPl, INP2, and RESULT, and also 

of a 'correction' applicable to the STACKPTR value. The 

quantities TRUE and NIL can be carried in 'represented by 

nonzero', 'represented by zero' etc. forms. This allows us 

to compile certain of the BALM instructions efficiently 

in-line; the remaining instructions will be compiled by 

loading their arguments (if necessary) and return-jumping 

to an executive routine. The instructions which it should 

be advantageous to compile in-line are as follows: 

JMPT JMPF JMP NUM2 GLOB GSTORE 

LBL NUMl VAR VSTORE ARG ASTORE 

POP NUM3 NEGATE INT IPOSQ IZEROQ IDENTQ 

V [I] V[I]==X NOT SETSX TRUE NIL 

SETSTK SIMTYPE 

3. Proposed tranalations. Anticipated code-expansion factor. 

The above list includes all of the 20 most common 

instructions, with the exception of CALL, IDENTIFIER FROM INT., 

MAKE LIST, PAIR, HD, TAIL, RETURN; it includes at least 60% 

of the instructions counted statically, and 70% of the instruc­

tions counted dynamically. The following table shows typical 

LITTLE translations for each of the instructions to be 

translated in line, and gives the number of bytes of BALM 

machine and optimized 6600 code which will result. 



SETL 103-4 

BALM Instruction Bytes Translation Bytes 

1. GLOB ID2 3 INP = SYMBTAB (ID2) 4 

2. SETSTK 1 STP = VB 2 

3. NUMl 2 INP = K 4 

4. NUM2 3 INP = K 4 

5. VAR Il 2 INP = STK(VB + Il) 4 

6. ARG Il 2 INP = STK (AB+Il) 4 

9. JMP L2 3 JP L2 4 

10. POP Il 2 STP = STP - K 4 

11. GSTORE ID2 3 SYMBTAB (ID2) = RESULT 4 

12. NIL 1 INP = UNDEFWD 4 

13. VSTORE Il 2 STK(VB+Il) = RESULT 4 

15. JMPF L2 3 ZEROJP L2 4 

16. SETSX 1 STK(VB+NV+l)=RESULT; 

STP = VB+NV+l 6 

Others: JMPT L2 3 NZJP L2 4 

LBL L2 3 INP = PRECALC. CONSTANT 6 

ASTORE 2 STK(AB+Il) = RESULT 4 

NUM3 4 INP = PRECALC. CONST 12 

NEGATE 1 INP = INP.XOR.SBIT 6 

IPOSQ 1 INP = ESIGN INP 6 

IZEROQ 1 INP = EMAG INP 6 

IDENTQ 1 RESULT= INP1.XOR.INP2 

.AND.MASK 6 

V [I] 1 RESULT=HEAP(INPl+INP2) 6 

V [I] = X 1 HEAP (INPl+INP2) = RESULT 6 

NOT 1 RESULT = INP.XOR.NILWD 6 

TRUE 1 RESULT = TRUE 4 

SIMTYPE 1 RESULT = INl. XOR. INP2 

.AND.MASK 8 



7 

8 

14 

17 

18 

19 

20 

SETL 103-5 

Concerning the V[I] and V[I] = X instructions, note 

that the translation shown can only be used if we make the 

assumption that LITTLE will automatically truncate integers 

used as array indices to the size of total memory. If this 

is false, the translation must include a masking operation, 

becomes 12 bytes long, and the operation would probably be 

done offline rather than inline. Note also that the 

suggested translation involves 1 no type-checking and 

no out-of range checking. These might be provided as part 

of a special 'debug' option. 

Other instructions will be translated as 

CALL EXECROUT, 

where EXECROUT is an appropriate executive routine. Since 

this may waste half a word when compiled to the 6600, we 

estimate its length at 6 bytes. Thus space blowups for the 

common instructions compiled off-line are 

Instruction Freq. Bytes Translated Bytes 

CALL 360 2 6 

IDENTIFIER FROM INT 330 1 6 

MAKE LIST 220 3 6 

MAKE PAIR 140 1 6 

HEAD 110 1 6 

TAIL 100 1 6 

RETURN 100 1 6 

The roughly 13,000 bytes of BALM machine code represented 

in the preceding tables should expand into approximately 

30,000 bytes of compiled 6600 code, an expansion factor of 

roughly 2.5/1. Execution speeds should be rather good, 

essentially those attained by the present BALM translator. 



SETL 103-6 

The CALL, TEST LOOP, HEAD, and TAIL operations deserve 

additional remark, the second of these not for static but 

for dynamic frequency of occurrence. The BALM calling 

sequence for functions of two arguments will typically have 

a form such as 

GLOB 12, VAR Il, GLOB 12, CALL 3 

and therefore require 10 bytes. The LITTLE translation of 

this would be something like 

INPl = SYMT(I2), INP2=STK(STP+Il), RESULT=SYMT(J2), 

CALL KALLRIN1IN2RES 

requiring 16-22 bytes and not involving any great amount of 

waste motion; the KALLR routine can perform linkage and all 

required register saves. Calls to most primitives will require 

14 bytes, with inputs returned in standard registers. Compila­

tion of the TEST LOOP instructions might usefully be special­

cased to detect loops with positive constant starting point 

and increment, and with loop invariant upper limit. (Note 

however, that this requires at least a small amount of global 

program analysis.) Such loops could be compiled in a manner 

substantially more efficient than results from straightforward 

compilation, which gives code involving calls to the SRTL integer 

addition routine. 

The 'obtain head' and 'assign head', and the corresponding 

'tail' routines can be compiled inline if type-validation is 

omitted and if we make the assumption needed to justify inline 

treatment of the 'obtain tuple component' and 'assign tuple 

component' operations. 

4. Concerning BALM code compression and a microcoded BALM machine 

The BALM machine code for a typical source fragment such 

as A= B + C will typically be something like 

GLOB B, ARG C, ADD, STOREVAR A 

which is 3 + 2 + 1 + 2 = 8 bytes long. Greater density can be 



SETL 103-7 

achieved by passing to a 3-address style of code in which 

each operation is followed by the list of its arguments, 

which are flagged {in 2 bits) as being either local variables, 

arguments, irnrnediates, or globals {the latter requiring 2 bytes). 

In this style, A= B + C would compile as 

ADD{GLOB BARG C) +VARA, 

requiring 1 + 2 + 1 + 1 = 5 bytes Thus BALM code could 

be compressed to about 60% of its present size. Suitable 

hardware could execute the compressed code as rapidly as the 

existing BALM machine code, and even as fast as its 

translation. 

Note that this degree of compression, which is probably 

close to the maximum attainable, comes from the separation 

of the environment of BALM processes into the following subparts. 

i. Local variables, addressed by one byte 

ii. Arguments, addressed by one byte 

iii. Global variables, more numerous, and addressed 

by two bytes 

iv. Heap space, requiring longer addresses. 

Local variables and arguments have a pattern of usage allowing 

them to be concentrated at the top of the BALM stack. 

An optimizing BALM translator for a microcoded multi­

register machine could probably keep quantities of types 

i, ii, and iii in registers, and fit most instructions 

involving only such quantities into the time between stores 

and loads of heap quantities. Since heap references are 

dynamically about 14% of BALM code, the maximum execution 

speed {BALM instructions) attainable with this kind of adapted 

architecture is therefore about 5-6 times the basic heap­

memory cycle time, or about 5 mips running against a 1 micro­

second bulk memory. Paging to faster buffer memory might 

double or triple this. The micro machine should have at least 

five times the bulk memory speed, and with a fast buffer memory 

probably at least ten times this speed. 



SETL 103-8 

The microinstructions desirable for the SRTL executive 

code are different from those desirable for BALM simulation, 

but the same gross conclusions concerning attainable speeds 

are probably valid SETL instruction rates of 2-5 mips based 

on a 50 mip micro-machine appear plausible. 


