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In SETL Newsletter 94 we gave an algorithm to represent 

each member of a collection of finite sets T1 , T2 , ... , Tn as 

an interval on the line, i.e., a set of the form {x, aj < X < b.}. 
J 

That algorithm determines, if possible, an ordering of the 

elements of the union T = 
n 
u 

j=l 

Ti, i=l, ..• ,n, is an interval. 

T. so that each set 
J 

In this newsletter we give an algorithm which determines 

the minimal number of disjoint sets s 1 , .•. ,sk so that for each 

index s, all of the sets 

can be represented as an interval when the elements of S are r 

arranged in some order. We require that 

= LJ T. 
j J 

and thus each set T. can be represented as the direct product 
J 

of disjoint intervals. 
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If each interval is located physically on a row of the 

lattice of points in the plane with integer coordinates, some 

partitions may allow the representation of each set T, as a 
J 

rectangle in the two dimensional lattice. 

The algorithm we give first determines all maximal subsets 

S of T such that the sets 

can be represented as intervals in the points of s. A modifi­

cation of the algorithm in Newsletter 94 is given for this part. 

The next step is to pick the minimal number of disjoint sets, 

each of which is a subset of a maximal set whose union is all 

of T We do not specify an algorithm for this part. We invite 

the reader to choose one from the literature. 

We now indicate how to modify the algorithm in Newsletter 94. 

Suppose that k-1 sets have been considered,by the process 

specified in Newsletter 94, without determining that simultaneous 

representation of these k-1 sets as interval is impossible. At 

this stage, we have calculated a sequence of sets 

so that each of T1 , T2 , ... , Tk-l is an interval in any ordering 

of the elements of UR. in which each element of R. precedes each 
i l J 

element of Rj+l· We consider the remaining sets Tk' Tk+l' ... , Tn, 
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the class of exceptional sets, and the union T =UTj as the 

"state variables" of the calculation. If UR. is a proper sub­
. 1. 
1. 

set of Tk or Tk is a proper subset of some Ri' then Tk is 

added to the collection of exceptional sets.and Tk+l is then 

considered. If Tk is not exceptional, Tk is used to refine 

R1 , R2 , ..• , Rt in a unique way so that all orderings of the 

elements of T1 , .•. , Tk are contained in the sequence 

Such a refinement exists if the indices of the sets Ri' 

which Tk intersects nontrivially, form an interval. That is, 

Tk intersects all R. 
1. 

when i E: [min,max] and Tk covers all R. 
l 

for i E: (min ,max) • Then I\nin is replaced by I\nin-Tk' Rmin n 
and Rmax is replaced by R n Tk' I\nax - Tk. The algorithm max 

in the case that Tk contains elements not in UR- is explained 
. l 
1. 

in Newsletter 94. 

Tk' 

If Tk is not exceptional and the sequence cannot be refined, 

each set I\nin' Rmin+l' •.. , I\nax is split by Tk into at most two 

Ri. For at least one i, Tk - Riis not 

empty. We construct a family of maximal sets, T1 , T2 , ... , Ti 

so that the restrictions to Ti, i=l, ... £, of T1 , T2 , ... , Tk 

can be represented as intervals. We then constitute£ separate 

problems. A problem is determined by the state variables, Ti, 

the former exceptional sets restricted to T., the restrictions 
1. 

i i Ri to Ti of the sets T1 , T2 , ..• , Tk' and a portion R1 , R2 , ... , £ 
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which is calculated from the restriction of R1 , R2 , ... , Rt to 

Ti. The algorithm is then used separately on each of these 

smaller problems. It is possible that each problem will be 

split again by the repeated applications of the algorithm. 

The algorithm produces a finite collection of sets 

S1 , s 2 , ••• ,. Sr together with a sequence for each which contains 

implicitly all orderings for which each of 

is an interval. A single set UT. is produced,if an ordering 
J 

of UT. exists, so that each of T1 , T2 , ... , Tk is an interval. 
j J 

We now describe the process for determining the sets 

T1 , T2 , ... , Ti, when a single refinement of R1 , R2 , .•. , Ri 

does not exist. If there are members R* = Tk -

process is performed first on the partition R*, 

then the 

and then on the partition R1 , R2 , 

in 
Ri into Ri n Tk = Ri and Tk - Ri 

... , Rt, R*. Tk divides each 

= R?ut. We let min and max 
1 

denote the minimum and maximum indices for which R?ut f ~- Then 
1 

the sequence R. is refined to 
l 

Rout Rout in out 
1 , 2 , •.• ,(R. ,R-. ), ... , min -nun 

in out Rout (R. ,R. ), ••• , n 
l l :,., 

If a single refinement were possible there would be at most two 

sets R. and R for which each of Rin and Rout were not min max 

empty. 



-5-

For each pair of indices i < j, for which R~ut and R~ut 
1. J 

are not empty, a set T . . is formed from the union of 
1.,J 

Rout 
1 , . . . , 

The partition R
i, j Ri, j 
1 ' . 2 ' • • • I 

. . . , Ri_n, out out out 
J Rj , Rj + l , • • • , R Q, 

Ri,j can be calculated from Q, 

R1 , R2 , ••• , Ri by forming the intersection of each Ri with 

T . .• When an intersection is empty, the neighbors are l,J 

replaced by a single set consisting of the union of these two sets. 

We detail the functions of the principal routines and data 

structures: 

workpile: set contains tuples of state variables of 

the form 

<Partition, universalset, remainset, exceptsets> 

partition: the sequence R1 , R2 , ... , Rk represented as a 

tuple 

universalset: UR. 
J 

remainset: {Tk' Tk+l' ... , Tn}, sets not yet considered 

exceptsets: the exceptional sets 

addset: argument is an element of workpile 

an element of remainset is applied to partition 
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We start with T1 , T2 , ... , Tn in tset. 

workpile = nl; maxsets = nl; 

set from tset; 

<<set>, set, tset, ni> in workpile; 

(while workpile ne nl) 

tuple from workpile; 

if tuple(3) eq nl /* remainset ~ nl */ 

then/* add exceptional sets*/ 

if tuple(4) is tuple(3) s nl 

then tuple(l:2) in maxsets; 

continue while; 

else tuple(4) = nl; 

endif; 

endif; 

addset (tuple); 

end while; 

/* maxsets contains <pa~tition,univset> such that T1 ,T 2 , ... ,Tn 

relativized to univsets are intervals - use any algorithm for 

extracting a minimal collection of univsets */ 

define addset (tuple); 

<listsets, union, remainset, exceptsets> = tuple; 

x from remainset; 

savelistsets = listsets; 
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flow 

extraelts? 

exceptg? 

in except+ 

inworkpile onsmallend? calcints+ 

onsmall+ 

calcints 

onbig+ 

calcints 

nexcepts? 

conflict? 

manysets 

exceptg:= x ~ union or x*union ~ nl; 

inexcept:= x in exceptsets; continue V x; 

extraelts:= x - union is xtraelts ne nl; 

onsmallend:= x*listsets(l) ne nl and 

makinsert+ 
inworkpile 

inexcept+ 
inworkpile 

£ x*listsets(#listsets) S listsets(#listsets); 

onsmall:= listsets=<xtraelts>+ listsets; union= union+ xtraelts ; 

onbig:= listsets = listsets +<xtraelts>; union= union+ xtraelts; 

calcint:= indicescov = {lset,lset £ listsets 

indicessub = {iset,lset E listsets 

minml = ([min:y E indicescov]y])-1; 

lset*x ~ lset}; 

lset*x ne nl}; 

maxpl = ( [max:y E indicessub]y) + l; 

nexcepts:= indicescov ~ nl and #indicessub ~ l; 

/* x is a subset of some member of listsets and is 
therefore exceptional if above is t */ 

conflict:= n (interval (indicescov) and 
indicessub lt (indicescov + {minml, maxpl})); 

/* if true then create more maximal sets*/ 
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makinsert: 
if (minml E indicessub) 

then listsets = listsets(l:minml-1) + 
<listsets(minml)=x,listsets(minml)*x> + 
listsets(mirunl+l:); 

endif; 

if (maxpl E indicessub) 
then listsets = listsets(l:maxpl-1) + 

<listsets(maxpl)*x, listsets(maxpl}-x> + 
listsets(maxpl+l:); 

endif; 
inworkpile: 
<listsets, union, remainset, exceptsets> in workpile; return; 

manysets: 
if (xtraelts ne nl) 

then makstatevar(x,<xtraelts> + savelistsets); 
savelistsets = savelistsets + <xtraelts>; 

endif; 
makstatevar(x,savelistsets); 
return; 
endflow; 

end addset; 

definef makstatevar(x,listsets); 
intuple = [+ : 1 < j < #listsets] <listsets * x> ; 
outtuple = [+ : 1-< j-< #listsets] <x-listsets> ; 

(min < Vi < max) 
(i < Vj < max I jlt max imp (outtuple(j) ne nl) 
newstatevar(i,j) in workpile 
end Vj; 

end Vi; 
return; 
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We now give code for the function 

definef newstatevar(i,j); 
/* intuple, outtuple, exceptsets, remainsets are global*/ 
partition= outtuple(l:i) + intuple(i:j) + outtuple(j:); 

univset = [+ : l<j<#partition] partition (j); 
/* the new maximal-set*/ 
/* suppresses n£ in partition*/ 

first= if (1<3j<#partition I partition(j) ne n£) 
then j else n; 

newseq = partition(first) ; 
j =first+ l; 

(while j le #partition doing j = j + l;) 
if partition(j) ~ n£ 

then newseq(#newseq) = newseq(#newseq) + partition(j+l); 
j = j + 1; 

else newseq = newseq + <partition(j)>; 
endif; 

endwhile; 

newremain = {x * univset, x £ remainset}; 

newexcept = {x * univset, x £ exceptset}; 

return <newseq, univset, newremain, newexcept>; 

end newstatevar; 

definef interval(setofintegers); 

/* determines if input set is an interval*/ 

if (#setofintegers le 1) then return~;; 

minset = [min, i £ setofintegers] i; 

maxset = [max, 1 £ setofintegers] i; 

return (setofintegers ~ {i, minset2i~maxset}); 

end interval; 


