
SETL Newsletter No. 105

SETL Programs for a Basic Block Optimizer

and an Extended Basic Block Optimizer

April 23, 1973

s. Marateck,

J. Schwartz

In the following, we give SETL code for the basic block

algorithm described in Cocke & Schwartz, pp. 328-332. In a

subsequent section, this is generalized to an extended basic block

optimizer algorithm. The data structures assumed, and the

principal data structures used by the basic block optimizer,

are as follows:

a. Code is represented by a tuple code, each of whose

entries is a vector, whose components, in sequence, are result value­

number~ operation-code~ first input~ second input 5 do-flag.

For indexed stores there is a third operation

argument and a final component third input is present in

this tuple. All other operations are assumed to be binary.

The vector components just listed are given specific names

in the following positional macro:

macro valno, op, in 1, in 2, do, in 3 endm;

b. Some entries in the code vector represent variables or

constants. Such entries are assumed to have the following components:

value number~ operation-code (designating 'variable' or 'constant') ,

hash table pointer. If the entry represents a constant, then a

fourth component, giving the constant value, is present.

These components are named in the following positional macro:

macro valno, op, htptr, constval endm;

c. Four auxiliary maps are built up by the basic block

optimizer as it acts:

i. constfrmval maps the value numbers of constants into

their actual values;

ii. valfrmconst is inverse to constfrmval;

iii. availcomps is a map with three parameters, respectively

designating an operation code and a first and second argument

value number. If an operation with this description has been

SETL 105-2

performed before, availcomps gives the value number of the result.

iv. opfrmval maps a value number into the index of the

first code item whose resalt has this value number.

v. kind maps each operation code into an integer in the

range 1 to 5 designating one of the five main kinds of

entries in the code vector: computation, simple assignment,

indexed assignment, indexed load, and variable.

Several subroutines are used in the code which follows.

A. valnum(i) has as input the index of a code item

representing a variable, constant, or operation. It returns

the value number associated with this item, i.e. either the

result value number or the value number assigned to a variable

or constant. When a variable or constant is encountered for

the first time within a block,valnum assigns it a value number;

in the case of constants, appropriate entries are also made in

constfrmval and valfrmconst.

B. newvalno issues unique value numbers, using an

auxiliary counter valnoctr to do so.

C. calculate takes two constants and an operation code

as input, and combines the constant using the operation to

produce a compile-time result. Code for this subroutine,

whose structure is obvious, will not be given.

Here follows the SETL code.

define bblockopt(start,end);

/* SETL algorithm for basic block optimizer*/

/* code, kind, constfrmval, opfromval,

assumed to be global*/

and valnoctr are

/* start and end delimit the basic block to be optimized*/

constfrmval = nt; /*maps value numbers of constants into constants*/

valfrmconst = nt; /*maps constants into their value numbers*/

availcomps = nt; /*gives result value number from operation

and input value numbers*/

opfromval = ni; /* gives operation producing value having given number*/

SETL 105-3

valnoctr = O; /* auxiliary counter for issuance of unique

value numbers*/

(start~ Vitrnno ~ end)

item= code(itrnno); /* get next operation item and

its operation code*/

opn = op (item);

go to <computation, simpassign, indexassign, indxload,

variab>(kind(opr));

computation:

il = inl(itern); i2=in2(itern); /* two inputs of binary operation*/

vl = valnum(il); v2 = valnurn(i2);

/* if necessary, force both inputs to have value numbers*/

if(constfrmval(vl) is cl) ne ril

and (constfrmval(v2) is c2) ne n
then go to fold;;

procop:

/*else/if (availcornps(op,vl,v2) is oldval) ne n then

do (code (i trnno)) = !_;

valno (code(itrnno)) = oldval;

else

availcomps(opn, vl, v2) =(newvalno(

opfrornval(opval) = itrnno;

do(code(itrnno)) = !;
valno(code(itrnno)) = opval;

end if;

continue;

fold:

is opval);

c = calculate(opn,cl,c2); /* perform compile-time calculation*/

if valfrmconst(c) is cvalno ne n then

else

valno(code(now)) = cvalno;

valno(code(now)) = (newvalno(

constfrrnval(cvalno) = c;

valfrrnconst(c) = cvalno;

end if;

is cvalno);

SETL 105-4

do(code(itmno)) = i;
continue;

simpassign:

variable= inl(item); quantity= in2(item);

valno(code(variable)) = valnum(quantity);

continue;

indxassign:

variable= inl(item); index= in2(item); quantity= in3(item);

v2=valnum(index); v3=valnum(quantity);

valno(code(variable)) = (newvalno() is newvarvalno);

availcomps(indxftch,newvarvalno,v2) = v3;

continue;

indxload:

il = inl(item); i2=in2(item);

vl= valnum(il); v2=valnum(i2);

go to procop;

variab:

continue;

end V itmno;

return;

end;

definef valnum(itmno)

/* code is assumed to be global*/

if valno(code(itmno)) is itemvalno ne D then

return itemvalno;

else if op(code(itmno)) ne constop then/* case of variable*/

valno(code(itmno)) =(newvalno() is newval);

opfromval(newval)

return newval;

= itmno;

else/* treat the case of a constant*/

constvalue = constval(code(itmno));

if va.lfrmconst(constvalue) is cvalno ~ D then

cvalno = newvalno();

valfrmconst(constvalue) = cvalno;

constfrmval(cvalno) = constvalue;

SETL 105-5

end if;

valno(code(itmno)) = cvalno;

return cvalno;

end if;

end valnum;

definef newvalno;

/* valnoctr is assumed to be global*/

valnoctr = valnoctr + l;

return valnoctr;

end newvalno;

2. Optimization of extended basic blocks.

We now describe an extended basic block optimizer. This

algorithm processes sections of code ('extended basic blocks')

in which each code item has a unique predecessor. The logical

structure of such a section of code is as shown in the follow­

ing figure.

Each solid line in this figure represents a basic block belonging

to the extended basic block. The dotted lines represent transfers

to sections of code not belonging to the extended basic block.

In optimizing extended basic blocks we shall use an optimizer

algorithm much like that given in the preceding section; each

time an internal branch (such as B
1

,B
2

,B
3

in the figure) is

encountered, we (in effect) save the state of the optimizer's

availcomps data set, optimize down one path from the branch,

SETL 105-6

and then return to the immediate pre-branch situation and

optimize down the other branch. Note that to restore the

pre-branch situation, we must not only drop from availcomps

all computations performed after the branch but must also

restore the pre-branch value numbers of 1all variables.

These two acts of logical restoration may be accomplished

simply and efficiently as follows. On encountering a branch,

we stack up each of its internal descendant blocks, at the same

time associating with each descendant the immediate pre-branch

value vnpre of the value number counter. Then later, when we

return to process a basic block B whose optimization has been

postponed, the value number counter will have reached a value

which we may call vnpost. In processing B, we treat as

irredundant any calculation whose associated value number lies

between vnpre and vnpost , since all such calculations will

have been performed in sections of code that do not precede B

(logically) in the extended basic block.

Restoration of variable values is handled as follows.

We associate a list of value numbers, rather than a single

value number, with variables. The latest value number on the

list is always used, unless this value number lies in the

'forbidden' range between vnpre and vnpost, in which case

entries are dropped in order from this list with a value not

exceeding vnpre is encountered {if the list becomes empty,

a new value number is assigned).

In the algorithm which follows, we use the data structures

assumed by the basic block optimizer described in the preceding

section, plus a few more. The code array is allowed to contain

items of type branch; the first input {i.e., component inl) of

a branch item is a vector, giving all the possible targets of

the branch (in2 defines the branch condition, or, in the case

of multi-way, indexed branches, the branch index value). A

mapping blockend(label), assumed to be available when extended

basic block optimization is initiated, gives the final code item

SETL 105-7

of the basic block whose initial code item is label. If

blockend(label) is undefined, the block starting at label is

external to the extended basic block being processed.

Here is the SETL code.

define ebbopt(start,blockend);

/* SETL algorithm for extended basic block optimizer*/

/* code, kind, bZockstack, constfrmval, vaZfrmconst,

avaiZcomps,opfromvaZ andi'.vaZnoctr are assumed to be global*/

/* the meaning of the parameter bZockend is explained in the

preceding text*/

constfrmval = nl; /* maps value numbers of constants into constants*/

valfrmconst = n£; /* maps constants into their value numbers*/

availcomps = n£; /* gives result value number from operation

and input value numbers*/

opfromval = nl; /* gives operation producing value having

given number*/

valnoctr = O; /* auxiliary counter for issuance of unique

value numbers*/

blockstack = <<start, blockend(start), valnoctr>>;

(while blockstart ne nult);

<start, end, vnpre> = blockstack(#blockstack);

blockstack(#blockstack) = ~;
newbbopt(start, end, vnpre, valnoctr+l);

end while;

return;

end ebbopt;

define newbbopt(start, end, vnpre, vnpost);

/* basic block subroutine for use with extended basic block

optimizer*/

include ebbopt(blockend); /* the bZockend map is required

in this routine*/

/* code, kind, constfrmval, opfromval, blockend, blockstack

are valnoctr are assumed to be global*/

SETL 105-8

/* start and end delimit the basic block to be optimized*/

(start< Vitmno < end)

item= code(itmno); /* get next operation item and

its operation code*/

opn = op(item);

go to <computation, simpassign, indxassign, indxload,

branch, variab>(kind(opr));

computation:

il = inl(item); i2=in2(item); /* two inputs of binary operation*/

vl = valnum(il); v2 = valnum(i2);

/* if necessary, force both inputs to have value numbers*/

if(constfrmval(vl) is cl) ne n
and (constfrmval(v2) is c2) ne n

then go to fold;;

procop:

/*else*/ if (availcomps(op,vl,v2) is oldval) ne n andd

oldval le vnpre or oldval ~ vnpost then
do(code(itmno)) = i;

else
valno(code(itmno)) = oldval;

availcomps(opn,vl,v2) = (newvalno(

opfromval(opval) = itmno;

do(code(itmno)) = !;
valno(code(itmno)) = opval;

end if;

continue;

fold:

is opval);

c = calculate(opn,cl,c2); /* perform compile-time calculation*/

if valfrmconst(c) is cvalno ne n then

else

valno(code(now)) = cvalno;

valno(code(now)) = (newvalno(

constfrmval(cvalno) = c;

valfrmconst(c) = cvalno;

end if;

do(code(itmno)) = f;

continue;

is cvalno);

SETL 105-9

simpassign:

variable = inl(item}; quantity= in2(item};

putvalno(variable, valnum(quantity}};

/* the subroutine putvalno(i,v), for which code is given

below, updates the list of value numbers associated

with the variable code(i), putting the value vat the

head of this list*/

continue;

indxassign:

variable= inl(item}; index= in2(item}; quantity= in3(item};

v2 = valnum(index}; v3 = valnum(quantity};

putvalno(variable, newvalue(} is newvarvalno};

availcomps(indxftch, newvarvalno,v2} = v3;

continue;

indxload:

il = inl(item}; i2=in2(item);

vl = valnum(il); v2=valnum(i2};

go to procop;

branch:

targlist = inl(itern); /* get list of target addresses*/

{\fst(j) E targlist I blockend(st) is newend ne Q)

/* make entry on bZockstack for later processing*/

blockstack(#blockstack+l) = <st,newend,valnoctr+l>;

end \fst;

return;/* since current block is at an end*/

variab:

continue;

end \fitmno;

return;

end;

SETL 105-10

define putvalno(variable,newvalno);

include newbbopt(vnpre,vnpost);

/* value numbers not in the range vnpre to vnpost will be

deleted*/

if valno(code(variable)) is itemval ne ~

/* case of an old variable*/ then

(while itemval ne nult)

if hd itemval is iternvalno _g.:!:. vnpre or iternvalno lt vnpost then

itemval = tt itemval;

else

valno(code(variable))=(if itemvalno le vnpre then<newvalno>
else nult) + itemval;

return;
end if;

end while;

/* treat fallthru case just as case of new variable*/

end if;

valno(code(variable)) = <newvalno>;

return;

end putvalno;

definef valnum(itmno);

include newbbopt(vnpre,vnpost);

/* only value numbers not in the range vnpre to vnpost are

acceptable*/

if valno(code(itmno)) is itemval ne ~ then

if op(code(itmno)) ne variable then return itemval;;

/* in the case of a variable, itemval will be a list.

we examine its leading elements, rejecting those

which lie in the forbidden range from vnpre to vnpost */

(while itemval ne nult)

if hd itemval is itemvalno ~ vnpre or itemvalno lt vnpost then

itemval = tt itemval;

else/* replace value list with edited version*/

valno(code(itmno)) = itemval;

return iternvalno;

end if;

SETL 105-11

end while;

/* on fallthru, a new value number must be assigned*/

valno(code(itmno}} = <newvalno(is newval>;

opfromval(newval} = itmno;

return newval;

else/* case of a constant or a hitherto unencountered variable*/

if op(code(itmno}) ne constop then/* case of variable*/

valno(code(itmno)) = <newvalno(is newval>;

opfromval(newval} = itmno;

return newval;

else/* treat the case of a constant*/

constvalue = constval(code(itmno});

if valfrmconst(constvalue) is cvalno ~ n then

cvalno = newvalno();

valfrmconst(constvalue) = cvalno;

constfrmval(cvalno) = constvalue;

end if;

valno(code(itmno}) = cvalno;

return cvalno;

end if;

end valnum;

The routine newvalno is unchanged from the preceding section.

