
SETL Newsletter# 106 

Gray Jennings 

User Variation of the 

Semantics of Function 

and Subroutine 

Invocation 

May 17, 1973 

The second generation of SETLB, SETLB.2, based upon aver

sion of the BALM interpreter written in LITTLE and the SETL Run 

Time Library will become operational in the near future. It 

will offer a limited capability for variation of the semantics 

of subroutine and function invocation by the SETLB programmer. 

The subroutine or function to be invoked as a result of the 

fragment of source text 

fname (a,b) 

will be determined by the interpreter from information supplied 

by the user through execution of SETLB code. Two sets aliasl 

and alias2 will contain tuples of the form 

<function,kindl,realfn> 

and 

<function,kind1,kind2,realfn> 

Entries may be made in or deleted from these sets by SETLB source 

statements like 

<. , • , • > in a ii as 1 

or 

aliasl = alias2 with<.,.,.> 



-2-

The routine to be called as a result of the appearance of 

the code fragment 

fname (a ,b) 

is in SETL 

if a Zias 2 (fname, type (a) , type (b)) is realfn ne r.l then realfn else fname 

The function to be invoked when a subroutine invocation is made 

with one argument is determined from aliasl. A number of user 

defined types will be available. A token can be designated as 

a type by execution of the SETL code, 

k = iskind k 

If the value of k is not already a type which may have resulted 

from the prior execution of a statement of this form, an integer 

designating a type not currently being used is assigned to 

designate a novel type code. The SETL code 

a= a ask 

results in the type field of a being altered to the value of k. 
The token k must have been declared previously to be a type 

designator. 

The tokens aliasl, alias2, as, iskind are reserved words 

and may not be used for other purposes. 

The determination of the routine to be invoked in this manner 

is time consuming. The algorithm for determining user variations 

must be enabled by executing vardef(~). The process may be 

discontinued by executing vardef(!). It may be subsequently 

enabled by executing vardef(t). 

In SETLB.2, addition is implemented as a call to the rou

tine PLS. {a,b). Addition of 



-3-

<'PLS.',aplarray,aplarray,apladd> 

to aZias2 will cause the fragment ••• a+b .•• in the context 

aplarray = iskind aplarray; 

a= a as aplarray 

b =bas aplarray 

(1) 

to be executed by a call to apZadd(a,b) rather than to PLS. 

The first statements in the (SETL routine) apZadd should be 

a= a as setZkind 

a= a as setZkind 

The type field of a and of bis changed by (1) and must be re

stored to a type (setZkind) recognized by the RTL routines prior 

to the execution of any code which checks the types of a and b. 

The semantics of other operations standard to SETL may be varied 

dynamically by making entries into one of aZiasl, or aZias2. 

The BALM-SETL manual contains the name of the procedures used. 

The tokens designating the standard SETL data types are 

integer 

set 

cstring 

bstring 

tupZe 

blank (newat) 

code (subroutine or function) 

No distinction is made between long and short objects at the 

user level. 


