
SETL Newsletter 109

FASTER EXECUTION FOR THE LITTLE BASED BALM SYSTEM

Stephanie Brown
July 27, 1973

Initial runs of the LITTLE written MBALM simulator indicate that it
runs almost a factor of two times more slowly than the current FORTRAN
based MBALM simulator. Allowing for expected improvements in the new
LITTLE assembler the LITTLE based simulator can probably be made to
perform as well as the FORTRAN version. Since the LITTLE based simulator
will use the SETL run time library procedures in executing SETLB programs
it will actually be considerably faster than the FORTRAN based version.
However, it seems unlikely that the LITTLE based simulator will match the
overall speed of our current MBALM to COMPASS translator system. Con
sequently a SRTL-compatible BALM translator will probably be necessary to
make the LITTLE based system a viable alternative.

WHY A TRANSLATOR?

The BALM compiler generates code for a virtual machine which we call
the MBALM. MBALM instructions are executed on the 6600 via a program
which simulates the MBALM machine. Clearly this method of execution is
inefficient. Runs of the SPY' program on our Fortran written simulator
show that about 70% of the total execution time is spent unpacking the
MBALM instruction and jumping to the code which simulates it. Furthermore
if the code were executed directly some simple register management could
eliminate unnecessary loads and stores. In (f~c t the MBALM to COMPASS
translator runs between 6 and 10 times faster than the simulator system.

WHY NOT GENERATE COMPASS INSTEAD OF BALM?

Several reasons influenced the decision to write the existing trans
lator as a FORTRAN program whose input is MBALM and whose output is a
COMPASS code block.

1) MACHINE INDEPENDENCE

The BALM compiler is truely machine independent since it generates code
for the virtual MBALM machine. It is easily transportable to other machines,
needing only an MBW1 simulator program to run.

2) COMPLEXITY

The MBALM machine is ideally suited to running BALM programs. For
example, it is a stacking machine and it supports lists and vectors.
COMPASS is a much lower level language than MBALM. Problems of efficient
register assignment and efficient storage of COMPASS code skeltons make
generation of COMPASS more reasonable in a lower level language than BALM.

-2-

3) TRANSPORTABILITY

The translator program is written in FORTRAN. It has a table of
skelton COMPASS code for each MBALM instruction and a table which directs
parameter substitution into COMPASS instructions. Since the FORTRAN
program is essentially table driven it was hoped that code for any machine
could be contained in the tables.

4) STABILITI OF BALM

At the time the current BALM translator was being considered the BALM
compiler was undergoing considerable changes. Shortcomings and problems
pointed out by users were being rectified thus making it particulary
unwise to maintain two versions of the BALM compiler - one into MBALM
and one into COMPASS.

WHY NOT MODIFY THE BALM COMPILER TO GENERATE LITTLE?

One solution to the problem of faster execution for a SRTL compatible
BALM system is to write a program which translates MBALM code into LITTLE.

A second solution is to modify the BALM code generator routines to
produce LITTLE rather than MBALM.

Most of the objections to directly generating CC?1PASS disappear when
we consider LITTLE. Machine independence is preserved since LITTLE is
presumably machine independent. Transportability is the same whether
a program is written to translate MBALM to LITTLE or whether BALM directly
generates LITTLE. BALM is considerably more stable than it was a year
ago. Maintenance of a second set of code generators is not likely to be
made difficult by continuing changes to the compiler.

Complexity of the task is a bit more difficult to access. However
in most respects LITTLE is a higher level language than MBALM. Granted
that it does not include stacking, recursive calls and does not directly
handle vectors or lists. However, generating LITTLE is not as difficult
as generating COMPASS. The LITTLE compiler will handle register assignment
and many of the other problems associated in generating COMPASS.

Producing LITTLE directly from BALM is an easier prograrrnning task
than writing an MBALM to LITTLE translator. Much of the work such as
label resolution which is done by the compiler nrust be repeated in the
translator.

The general design of the BALM code generator would probably be
retained even if LITTLE became the target language. This means that similar
LITTLE code would be procuded regardless of whether it was generated
directly from BALM or via an MBALM-LITTLE translator. However, it would
be very easy to include special cases in BALM and quite difficult to add
them to a translator.

-3-

SHOULD WE PRESERVE MBALM?

In one sense producing MBALl1 is an extra task. It will not result
in a better final product (i.e., LITTLE code). Nor will it simplify the
progrannning and maintenance tasks.

MBALM is very convenient if one wishes to MICRO program or mini
computer. However, in this case the LITTLE translator would be as useless
as BAlli code generators for LITTLE.

One reason for keeping MBAlli is that it provides a concise semantic
definition of BALM or BAlli SETL. If we directly produce LITTLE we no
longer have a simple intermediate language.

EXAMPLE:

Consider the BALM statement

A = VECTOR (1, 2, X, 4, 5);
which is equivalent to the SETLB

A= <l, 2, X, 4, 5>;

The following MBALM code is produced:

LOAD 1
LOAD 2
LOAD X
LOAD 4
LOAD 5
VECTOR (5)
STORE A

The LITTLE code produced by a translator or initially by BALM would probably
be something like this:

ARG 1 = ROOTS INT ;
EVAL ARGl = l;
ARG 2 = ROOTS INT ;
EVAL ARG2 = 2;
RESULT = VALTB (X) ;
PUSHl (ARG 1) ; /*FREE A REGISTER*/
EVAL (ARGl) = 4;
PUSHl (ARG2) ;
EVAL ARG2 = 5;
PUSHl(RESULT);
PUSHl(ARGl);
PUSHl(ARG2);

/*FREE A REGISTER*/

/-,:CLEAR REGISTERS AS */
/-x-GARBAGE COLLECTOR MAY BE */
;xcALLED */

-4-

ARGl = ALLOTUP(5);
STP = STP+5; /* POP STACK */
ARG 2 = E PTR ARG 1 +OFFTUPLE ;
DOM (I,O,4);

HEAP(ARG2+J) =- STACK(STP-J); /* STORE TUPLE */
EDOM;
PUSHl(ARGl);
VALTB(A) =ARGl;

Treating this as a special case in BALM the following LITTLE code
could probably be generated.

ARGl = ALLOTUP(5);
PUSHl(ARGl);
ARG 2 = E PrR ARG 1 + OFFTUPLE ;
RESULT= ROOTSINT;
EVAL RESULT = 1;
HEAP(ARG2) = RESULT;
EVAL RESULT= 2;
HEAP(ARG+l) = RESULT;
HEAP(ARG2+2) = VALTB(X);
EVAL RESULT= 4;
HEAP(ARG2+3) = RESULT;
EVAL RESULT= 5;
HEAP(ARG2+4) = RESULT;
VALTB(A) = ARGl;

