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K. Kennedy Global Dead Computation Elimination 

As a result of optimizations such as reduction in strength 

coupled with linear function test replacement, many instructions 

in a program may compute values which are never used. To really 

reap the advantages of earlier optimizations these computations 

should be eliminated at some point. This newsletter proposes 

a global scheme which makes use of "use-definition chains" 

described in other SETL Newsletters [1,2). 

Intermediate Code 

We assume an intermediate code of the form proposed in SETL 

Newsletter #102 [3] where each instruction is represented by a 

unique blank atom along with several mappings: 

1. op(inst) the operation code 

2. targ(inst) the name of the target variable 

3. args (inst) a tuple containing(~he names of the arguments 

to the instruction 

4. next(inst) the next instruction to be taken. 

In addition to these functions we propose two more functions. 

5. do(inst) a logical variable which indicates whether 

or not the instruction is dead. If do(inst) 

has the value "true" the instruction is not 

dead; if it has the value "false" it is dead 

and can be eliminated. 

6. reaches(inst) the set of instructions in the program whose 

values can reach the instruction at without 

passing through a subsequent definition of 

the value. 

The Basic Idea 

We will assume that all output is done through calls to 

subroutines. With this in mind we must list the set of values 

which are always live. 
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1. All values which appear as arguments to subroutines are 

assumed to be live at the call to that subroutine. 

2. All values which are arguments to conditional branch 

instructions are live at the branch instruction. 

The reasoning behind this algorithm is simple: any instruction 

which computes a value used by a live instruction is itself live. 

Initially we assume all instructions to be dead. Into the set 

Zivecomps we gather all subroutine calls, function calls, and 

conditional branches, which we know to be live from the 

discussions above. The algorithm then proceeds by removing 

an instruction from Zivecomps, setting its do-flag, and 

adding to Zivecomps any instructions which may compute values 

used by this instruction. Specifically, if the selected 

instruction is inst, we examine each instruction in reaches(inst) 

and add any such instruction whose do-flag has not been set and 
·, 

which sets an argument of inst. When Zivecomps is exhausted, 

the do-flags of all live computations have been set. 

The following SETL routine will perform this computation. 

We assume that the set program contains all nodes in the 

program and that all functions on these nodes except do are 

defined prior to entry. 

define deadcomp(program); 

/* targ, op, args, do, and reaches are externally defined*/ 

/* first set all do-flags to false and collect instructions 

which are subroutine calls or conditional branches into 

livecomps */ 

livecomps = n£; 

( 'r/n E program) 

do (n) = f; 

if op(n) E {bsr,bfn brc} 

then livecomps = livecomps with n;; 

if op(n) E {br,hlt} then 

do(n) = t;; end "Jn; 
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/* now proceed through livecomps examining each argument*/ 

(while livecomps ne nt) 

x from livecomps; 

do(x) = t; 
a - args(x); 

(1 <Vi< #a, y E reaches(x) ltarg(y)=a(i) and do(y)=f) 

livecomps = livecomps with y; 

end Vi; end while; 

return; end deadcomp; 

This elegant and simple routine has a major disadvantage: 

the sets reaches(x) are defined for every instruction in the 

program and may be very large. In the interests of storage 

economy, we will sacrifice elegance and efficiency to use a 

more compact form of the use-definition information. 
'( 

Block-Level Method 

To achieve a more compact representation, we must take the 

control-flow structure of the program into account. Let us 

assume that a control-flow analysis pass has provided us with 

a set blocks of one blank atom for each basic block in the 

program. The function contents(b), defined for each b E blocks, 

denotes the set of instructions in the block b. Because of the 

linear nature of basic blocks, each argument of a given 

instruction is computed by a unique instruction earlier in the 

block, or by one of a number of instructions outside the block. 

A new function defined on each instruction inst expresses this 

observation. 

computedby(inst) is a tuple of the same length as args(inst). 

The i-th component of computedby(inst) is the source of the 

corresponding component of args(inst). If the argument is 

computed by an instruction in the same block the component 

of computedby(inst) is that instruction; if the argument is 

computed outside the block then the associated component of 

computedby(inst) is the blank atom representing the block 

itself. This function can be determined by a preliminary scan 

of the program text. 
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The function reaches, previously defined for each instruction, 

is now defined only for blocks. If bis a block, then reaches(b) 

contains the set of all instructions in the program whose 

computed value can "reach" the entry of b. In other words, if 

there is a path from the definition to the entry of b which 

contains no redefinition of the value defined then that definition 

is in re aches (b). 

The live instruction marking algorithm now proceeds as follows. 

1. Begin with the set livecomps of all initially live 

instructions (subroutine calls, function calls, conditional 

branches). 

2. Select and remove an element x from livecomps. The element 

may be an instruction or a pair. If it is an instruction 

a) mark it, i.e., set do(x) = t; 

b) for each argument of x, if the, argument is computed by 

an instruction y within the same block and do(y) ~ f, 
then add y to livecomps. Otherwise, the argument must 

be computed outside the block, in which case form the 

pair <block,arg> (the block node and the argument) 

and add it to livecomps. 

3. If x (the element selected) is a pair <block,value> , 

a) form the set comps of all instructions in reaches(block) 

which compute value. 

b) add each element y of comps for which do (y) ~ f 

to livecomps. 

4. If livecomps is exhausted then stop. 

Otherwise, repeat steps 2 through 4. 

The advantage of this method is that the reaches sets need be 

maintained only for each block rather than for each instruction 

a substantial reduction in the size of this data structure. 

The reaches sets required here can be computed by an algorithm 

given in SETL Newsletter #37 [1]. 

Here is the SETL code for the block-level method. 

the sets program and blocks as arg~ments. 

It requires 
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define deadcomp(program,blocks); 

/* targ, op, args, do, computedby, and reaches 

are external quantities*/ 

/* first set all do-flags to false and collect initially 

live instructions into livecomps */ 

li vecomps = n£; 

(Vn E program) do(n) = i: 
if op(n) E {bsr,bfn,brc} 

then livecomps = livecomps with n;; 

/* we always perform branches and halts*/ 

if op(n) E {br,hlt} then do(n) = t;; 

end Vn; 

/* now pass through livecomps applying steps 2 through 4 

of the algorithm above*/ 

(while livecomps ne n£) 

x from livecomps; 

if pair x then 

/* get block and value*/ 

<b,val> = x; 

/* add all instructions which set val to livecomps */ 

livecomps = livecomps+{nEreaches(b) Jtarg(n) ~ val 

and do (n) ~ _!_}; 

else/* x is an instruction*/ 

do(x) = t; arglist = args(x); 

complist = computedby(x) 

/* pass through arguments */ 

(1 < Vi < - #arglist) 

val = arglist(i); /* the value */ 

new - complist(i); /* the computing inst 

if new E blocks then/* add a new pair*/ 

livecomps=livecomps with <new,val>; 

else if do(new) ~ K then 

/* add an instruction*/ 

livecomps=livecomps with new; 
end if new; 

end Vi; 
end if pair x; 

end while livecomps; 
return; /* all flags set*/ 

end deadcomp; 

*/ 
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The reaches sets used by this algorithm may still be too large, 

so one more attempt to reduce their size will be made. 

Interval-Level Method 

Suppose we assume that the control flow analysis pass provides 

the Cocke-Allen interval structure of the program (see [4]), 

in the form of an expanded set blocks which now contains not 

only basic blocks but intervals as well. The function interval(b) 

denotes the interval immediately containing b. 

The interval structure allows us to divide use-definition 

chains into two classes: 

1. Those chains which are entirely contained 

within an interval, and 

2. Those chains which pass from a definition 

in an outer interval to a use within an 

inner interval. 

This division is the basis for a partition of the use-definition 

information. For each element of the set blocks, two functions 

are defined. 

1. reaches(b) is the set of all instructions within interval(b) 

which reach the entry of b. Notice that we have substantially 

reduced the size of the reaches sets.by restricting them 

to one interval. 

2. path(b) is the set of all variables for which there is 

a path from the entry of interval(b) to b which contains 

no redefinition of the variable. In other words, the variables 

in path(b) are those which may be defined outside the interval. 

The marking algorithm which uses this information is essentially 

the same as the block-level algorithm with one modification: 

if the element selected from livecomps in.step 2 is a pair 

<b,value> and value is an element of path{b), we must 

consider definitions which occur outside the interval so we add 

the pair <interval(b),value> to livecomps. Thus, the defini-

tions for that value in the containing interval will eventually 

be added - in a cascade-like effect. The SETL code now looks 
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like this: 

define deadcornp(program,blocks); 

/* targ, op, args, do, computed.by, reaches, path, 

and interval are external quantities*/ 

/* set do-flags false and initialize livecomps */ 

livecomps = n£; 

(Vn E program) do(n) = f; 
if op(n) E {bsr,bfn,brc} 

then livecomps = livecomps with n;; 

/* we always perform branches and halts*/ 

if op(n) E {br,hlt} then do(n) = t;; 

end Vn; 

/* now pass through livecomps applying steps 2 through 4 

modified for intervals*/ 

(while livecomps ne n£) 

x from livecomps; 

if pair x then 

/* get block and value*/ 

<b,val> = x; 

/* add instructions which reach b */ 

livecomps = livecomps+{nEreaches(b) /targ(n) ~ val 

and do(n) ~ f}; 
/* add a new pair to livecomps if the value can reach b 

from outside the interval*/ 

if val E path(b) then livecomps=livecomps with 

<interval(b) ,val>; 

end if val; 

else/* an instruction*/ 

do(x) = !i arglist = args(x); 

complist = computedby(x); 

/* pass through arguments*/ 
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(1 ~Vi~ #arglist) 

val = arglist(i); /* the value*/ 

new= complist(i); /* the computing inst*/ 

if new E blocks then/* add a pair*/ 

livecomps = livecomps with <new,val>; 

else if do(new) ~!then 

/* add an instruction*/ 

livecomps = livecomps with new; 

end if new; 

end Vi; 

end if pair x; 

end while livecomps; 

return; /* all flags set*/ 

end deadcomp; 

The algorithm which computes the required sets, reaches and path, 

is described in SETL Newsletter #112 [2]. This completes our 

description of the marking algorithm. Dead computations 

(marked f) may be actually eliminated during code generation. 
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