
SETL Newsletter No. 112

An Algorithm to Compute Compacted

Use-Definition Chains

August 14, 1973

K. Kennedy

This newsletter describes a modification of the use

definition chaining algorithm presented in SETL Newsletter

No. 37 [1]. The purpose of this modification is to achieve

storage economy by a somewhat compacted form of these chains.

We shall assume that the reader has a familiarity with

the Cocke-Allen interval method of control f~ow analysis.

Expositions of this method are contained in [2,3,4,5].

Basically, an interval is a set of blocks in the program

control flow graph such that a particular block, called

the head, is the only one in the interval with predecessors

outside the interval and all loops within the interval pass

through the head. Thus an interval might be thought of as

a generalized looping structure.

diagrammed below.

A typical interval is

The interval forms a programming locality which may contain

variable names not defined or used elsewhere in the program.

The compacted use-definition chaining algorithm attempts to

take advantage of this hypothesis by restricting use

definition chains to these localities. Putting it another way,

a variable used inside an interval may have been defined in

one of two ways:

SETL 112-2

1. It may have been defined by an instruction within the

same interval, in which case the chain from use to

definition is local to the interval; or

2. It may have been defined in some larger containing

interval, in which case the chain is a global one.

This breakdown allows us to distinguish between two types

of use-definition chains local and global -- which we

treat quite differently. To handle local use-definition

chains, we compute, for each block bin the interval,

the set reaches(b) of all definitions (defining instructions)

within the interval containing b which produce a value which

is still available on entry to b. In other words, if the

value computed by a definition can "reach" b that definition

will be in reaches(b).

To handle global chains, we break them up into parts based

on the following observation: sint~r an interval I is a single-entry

region, a definition which reaches a use within I must also

reach the entry of I. Thus a global definition which sets

variable x reaches a use of x within I if

1. that definition reaches the entry of interval I, and

2. there is a path from the entry of I to the use which

contains no redefinition of x. (Such a path is said

to be definition-clear for x or x-clear.)

If reaches is defined for intervals as well as blocks, we

can use reaches(I) to decide the first condition. For

the second, we can use the set path(b) which contains all

variables x for which there is a definition-clear path to

b from the entry of the interval containing b.

The following algorithm uses these two sets to determine

the set of all definitions in the program which reach a

given block b.

SETL 112-3

1. Begin with the set reaches(b) of all definitions

within I (the immediately containing interval)

which reach b.

2. For all variables x in path(b), add to the above set,

all definitions which reach I and compute x.

The set of definitions which reach I is computed by applying

the same algorithm recursively to I. Let var(d) denote

the variable which is defined by instruction d, and let

intervaZ(b) be the interval immediately containing b.

The following fru1ction computes the set of all definitions

which can reach its argument block b.

define£ defswhichreach(b);

/* reaches, path, interval, and var are global*/

return (reaches(b) + {d E defswhichreach(interval(b))

var(d) ~'.path(b) }) ;

end defswhichreach;

A serious application of this information to global dead

computation elimination is contained in another newsletter [6].

The remainder of this newsletter is devoted to the computation

of the sets reaches and path.

The control flow analysis of the program will provide

us with the following functions, defined for each block (and

each interval) in the program.

1. pred(b) the set of all immediate predecessors of b

2.

3.

succ(b) the set of all immediate successors of b

intervaZ(b) the interval immediately containing b.

Note here that blocks and intervals are represented by blank

atoms which have certain functions defined on them.

1. contents(b) is the set of instructions in b if bis a

block, and the set of nodes in b if bis

an interval.

2. order(b)~ where bis an interval, is a mapping from

the integers {1,2,3, ... } to the blocks in

contents(b) which orders these blocks

SETL 112-4

in interval order (see [5]). The

special element order(b,1) denotes the

head of b.

Finally, an initial scan of the program text will provide

us with three important quantities.

1. aZZ-vars is the set of all variables in the program

2. thru(b,sb) defined for each block band sb E succ(b),

is the set of all variables for which

there is a definition-clear path through

b to sb.

is the set of all definitions contained in b

from which there is a definition-clear path

for the variable defined to an exit from b

leading to sb.

This completes the list of data structures we will need.
'(

Suppose we are considering an interval intv which

contains block b. There is an x-clear path from interval

entry to b if there is such a path to some predecessor pb

of band through that predecessor to b. As a SETL code

fragment, this might be written

(1) path(b) = [+: pb E pred(b)] (path(pb) * thru(pb,b));

For the special case where bis the head of the interval

(1') path(head) =/*all variables */ allvars;

since the entry to the head of an interval is identical to

the entry of the interval.

In order to apply equation (1), we must be sure that

whenever we apply it to a block b, we have already applied

it to all predecessors of the block. This condition is

assured if we process the blocks in interval order [5].

Thus the path sets can be computed in a single pass,

using equation (l') for the head and equation (1) for the

rest of the blocks (processed in interval order).

SETL 112-5

This simple one-pass method will not work for reaches(b),

because of the presence of latches branches from within

the interval to the head. We must divide all definitions

within intv, which reach a block b, into two classes.

1. Those which reach b along a definition-clear path which

does not contain a latch, and

2. Those which reach b along a definition-clear path which

does contain a latch.

The definitions in class 1 can be computed by a method similar

to the one used for path(b): a definition reaches b if it is

in a predecessor of b or if it reaches a predecessor and

passes through.

(2) reaches(b) = [+: pb E pred(b)] (def(pb,b)

+ {d E reaches(b) lvar(d) E thru(pb,b) }) ;

The initializing definition is obv(i'ous.

(2 I) reaches(head) = n£;

However, after the first pass, we must take the class 2 defini

tions into account. Let latchdef be the set of definitions

which reach the head via a latch, computed in the natural way:

(3) latchdef = [+: pb E (pred(head) * contents(intv)]

(def(pb,head)+{dEreaches(pb) lvar(d)Ethru(pb,head) }) ;

Now any definition of variable x which reaches the head can

reach b if there is an x-clear path from the head to b.

(4) reaches(b) = reaches(b) + {d E latchdeflvar(d) E path(b) };

A second pass (applying equation (4)) will therefore be

required to compute the desired sets.

Once we have processed an interval in this manner we may

wish to process the interval of which it is a part. To do this

we need the sets thru and def £or intervals. These can be

computed during the same processing using some simple considera

tions. Suppose sintv is an immediate successor of intv

SETL 112-6

and shead is the head of sintv. Then an x-clear path

through intv to sintv must lead through intv to b, an

immediate predecessor of shead, and through b.

(5) thru(intv,sintv) = [+: bEcontents(intv) lbEpred(shead)]

(path(b) * thru(b,shead));

Similarly, a definition reaches sintv from within intv

if the definition is in some predecessor b of shead or if

it reaches band passes through.

(6) def(intv,sintv) = [+: bEcontents(intv) lbEpred(shead)]

(def(b,shead)+{dEreaches(b) lvar(d)Ethru(b,shead) }) ;

We are now ready to present the algorithm chains,

which computes the sets reaches and path for every interval.
. I

Its only argument is the sequence i~tervaZs which contains all

the intervals in the program, beginning with the lowest-level

intervals, followed by the next lowest level, and so on.

(This order insures that we will process all intervals of

one level before proceeding to a higher level.)

define chains(intervals);

/* this routine uses the global data items: pred, succ,

contents, order, thru, def, allvars, and var, which

were described earlier. its results, reaches and path, are

are also global*/

(1 ~ Vj ~ #intervals) intv = intervals(j);

/* initialize path, reaches, thru, and def */

head= order(intv,1);

nodes= contents(intv);

path(head) = allvars;

reaches(head) = n£;

(Vsintv E succ(intv)) shead = order(sintv,1);

thru(intv,sintv)= if shead E succ(head)

then thru(head,shead) else n£;

def(intv,sintv) = n£;

end Vsintv;

SETL 112-7

/* first pass. compute thru, path, and the initial reaches*/

(2 2 Vi 2 #nodes) b = order(intv,i);

path(b) = [+: pb E pred(b)] (path(pb)*thru(pb,b));

reaches(b) = [+: pbEpred(b)] (def(pb,b)

+{dEreaches(pb) lvar(d)Ethru(pb,b)});

/* compute thru */

(Vsintv E succ(intv) lbEpred(order(sintv,1) is shead))

thru(intv,sintv) = thru(intv,sintv) +

(path(b) * thru(b,shead));

end Vsintv;

end Vi; /* end of first pass*/

/* now compute latchdef */

latchdef = [+: pbE(pred(head) *nodes)]

(def(pb,head)+{dEreaches(pb) lvar(d)Ethru(pb,head) }) ;

/* second pass -- compute def and the final version of reaches*/

(Vb E nodes) 1

reaches(b) = reaches(b)+{dEl~tchdeflvar(d)Epath(b)};

(VsintvEsucc(intv) lbEpred(order(sintv,l) is shead))

def(intv,sintv) = def(intv,sintv) +

def(b,shead)+{dEreaches(b) lvar(d)Ethru(b,shead)};

end Vsintv;

end Vb; /* end of second pass */

/* all quantities have now been computed*/

end Vj; /* all intervals have been processed*/

return;

end chains;

Acknowledgement. This form of compaction was suggested

by J. Schwartz in relation to constant propagation.

SETL 112-8

References

1. Kennedy, K. and Owens, P. , "An Algorithm for Use

Definition Chaining," SETL Newsletter# 37, Courant

Inst. Math. Sci., New York, July 1971.

2. Schwartz, J., Abstract Algorithms and a Set-Theoretic

Language for Their Expression, Courant Inst. Math. Sci.,

New York 1971.

3. Cocke, J., and Schwartz, J., Programming Languages and

Their Compilers, Chapter 6, Preliminary Notes,

Sec. Rev. Vers., Courant Inst. Math. Sci., New York,

1970.

4. Allan, F. E. , "Control Flow Analysis, 11 Sigplan Proceedings,

Vol. 5, No. 7 (July 1970), pp. 1-19.

5. Kennedy, K. , "A Global Flow Analysis Algorithm, 11

International Journal of Computer Mathematics, Vol. III,

No. 1, Gordon and Breach, pp. 5-15.

6. Kennedy, K., "Global Dead Computation Elimination,"

SETL Newsletter No. 111, Courant Inst. Math. Sci.,

New York, August 1973.

