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A graph algorithmic language (GRAAL) has been developed 

by Rheinhold, Basili, and Mesztenyi at the University of Mary

land to describe and implement graph algorithms. The language 

provides for several non-standard data structures with attend-

ant operations. Prominent among these is the GRAPH with about 

twenty primitive operators for graph manipulation. Also in

cluded is the data type SET with the standard set operations, 

and a data type for stacks. 

The documentation analyzed consisted of 

1. A description of a theoretic basis for a graph 

algorithmic language. 

2. A description of an implemJ~ted version (as an 

extension of Fortran) called FGRAAL. 

3. A text describing some 40 graph algorithms 

written in FGRAAL. 

4. An article defining a proposed graph algorithmic 

extension of ALGOL 60. 

This analysis was done with a view towards extracting 

the fundamental problems of computer representation of graphs 

and the dictions appropriate to their manipulaTion. An ana

lysis was also made of the use of SETL for coding graph al-

gorithms. 

This newsletter proposes to do the ~following: 

1. Describe some key issues presented by the 

GRAAL implementations. 
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2. Discuss the issue of graph representation in 

SETL. 

3. Describe a SETL implementation of a complete 

set of primitive operations for graph mani

pulation. 

4. Describe a SETLB encoding of the algorithms 

presented in FGRAAL Algorithms and present 

possible ways of using SETL's power to improve 

the algorithms. 

5. Present some conclusions comparing SETL and 

GRAAL. 

Some notes on GRAAL: 

One is directed to the GRAAL documentation [see the 

bibliography] for a complete description of the lan-

guage. In this section, we shall present some of the 

design decisions made by the GRAAL group, and the effect 

of these decisions upon the language. 

GRAAL exists in several versions. It is not en-

tirely clear whether a sharp demarcation exists between 

the reference and implemented versions of the language, 

and whether, as the case in SETL, the implemented ver

sion is only meant as a first approximation to the lan-

guage itself. It would seem, however, t;hat the language 

is thought of as a set of several implementations each 
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designed as an extension of a pre-existing higher level 

language. For example, one implemented version called 

FGRAAL is an extension of FORTRAN and follows the FORTRAN 

style very closely. Another proposed version exists which 

is an extension of Algol. 

The concept of GRAAL as an extension of a pre

existing language, has forced (or perhaps suggested) several 

interesting, although theoretically unappealing features. 

For example, in FGRAAL a set is thought of as an array, 

each element being given a sequence number. Thus one can 

specify the "first" member of a set. However, the µnion of 

two sets is not the concatenation of the two arrays, but 

rather the true set-theoretic union. Further, the elements 

of a set are not viewed as individual1elements but rather as 
~ . .:; 
/' / 

"atomic" or single element sets. Thus suppose one has a 

' set S= '{1,3,5} and one executes 

A=ELT(l,S) (first element of S) 

A is set equal to the atomi~ {l} One can then execute 

S=S.DIFF.A 

to set S= { 3 , 5} 

(where .DIFF. is the FGRAAL 

operator for set difference) 

Thus, the FGRAAL .DIFF. operator can 

be used both as the SETL set difference operator and the 

less operator which removes an element from a set. Simi

larly the .UN. operator acts both as the set union (+ 

applied to sets) and as the with operator. 

Although this facility is confusing at first, it is 
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useful in writing short code in which on different loop 

iterations the second operand is alternately a single 

element and a set. It also adheres to the principle of 

reusing syntactic space whenever possible, although in a 

manner different from SETL. It is, of course, a quite 

simple matter to achieve the same effect in SETL. For 

example, we could define an operator UN. for union as 

follows: 

definef A UN.B 
return if atom A then 

end; 

if atom B then {A,B} 
else B with A 

else if atom B then A with B 
else A+B; 

The internal representation of graphs in FGRAAL, although 

meant to be transparent to the user, forces certain annoy-

ing restrictions. Arc and node constants must be of type 

INTEGER and each graph comes supplied with a 'sequence 

number' which is needed (it seems) to distinguish it from 

other graphs. The user can delete or add nodes, arcs, or 

arc-node pairs to a graph by invoking various primitive 

functions. However, since one cannot manipulate the in-

ternal structures, one is limited in the~ types of opera

tions that one can perform. 
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II. Graph representation in SETL: 

In developing graph algorithms in SETL, the first issue to 

be faced is a SETL representation for a graph. This question 

is closely akin to the problem which a FORTRAN programmer would 

face in deciding what representation to use for a graph. 

possibilities suggest themselves: 

Several 

1. Graphs by pairs: Since an arc consists of two adjacent 

nodes, a graph can be represented as a set of pair~. 

Thus for example, the graph 

Fig. 1 

could be represented by 

( 1 ) { { 1 , 2 } , {l , 4 } , { 1 , 5 } , { 1 , 3 } , { 2 , 3 } , { 4 , 5 } } 

However this does not allow for a convenient representa

tion of directed graphs in which an arc consists not only 

of a pair of nodes but also of an orientation between them. 

the graph of Fig. 2 

Fig. 2 

would be represented by a set of ordered pairs, e.g.: 

( 2 ) { <l , ~, > , <l , 3 > , < 3 , 2 > , <4 , 1 > , < 5 , 1 > , < 5 , 4 >} 
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If representation (2) is chosen, we would also like to 

represent the unordered graph of Fig. 1 as a set of or-

dered pairs for the sake of uniformity. Two possibilities 

present themselves. The first is to consider an unoriented 

arc between two nodes, as consisting of two oriented arcs. 

Thus the graph of Fig. 1 would be represented by: 

(3) {< 1,2> ,< 2,1> ,< 1,4> ,< 4,1> ,< 1,5> ,< 5,1>, 

< 1,3> ,< 3,1> ,< 2,3> ,< 3,2> ,< 4,5> ,< 5,4>} 

The problem with such a representation is that it takes 

the approach of forcing the explicit specification of the 

two possible orientations and thus wastes space.· Further 

in processing an undirected graph, it is often desirable 

to process each unoriented arc only once, thus necessita-
'( 

ting a test each time an arc is a ci~ndidate for processing, 

whether or not its mirror image has already been processed. 

The alternative is to represent both the graphs of 

Fig. 1 and Fig. 2 by (2) and force the programmer to keep 

track of whether he is dealing with an undirected or directed 

graph. This does not produce as great a burden as would 

be imagined since in a specific algorithm, one is dealing 

with a specific type of graph (directed or undirected). 

Of course, in the case of a graph with both ~irected and 

undirected arcs, the graph would be represented as directed 
, 

with an undirected arc being duplicat~d by its reversal. 

If a programmer wanted to apply a sub~outine which expects 

a directed graph to an undirected graph, he could use a 

conversion routine to convert representation (2) to (3): 
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definef convertpairs (undgr); 
dp;r=nl; 
(Vt_E:_undgr) dgr=(dgr with t) with < t(2),t(l) > 
return dgr; 

end convertpairs; 

Incidentally, FGRAAL handles the orientation question 

quite nicely by associating a "property" with a graph. Thus, 

if G is declared to be graph (following FORTRAN, a name must 

be declared as naming a specific type of item), then associ

ated with G is the true-false property ORIENT(G) which is 1 

if the graph is directed and O otherwise. Since the name G 

refers to a specific graph, even if the value of G changes 

(i.e. an arc is added or deleted), the ORIENT property re

mains unchanged. This feature is similar to the PL/I struc

ture. To implement such a property\? SETL, one would have 

to represent a graph gas an ordered pair~ the first ele

ment being the graph itself, the second being either true 

or false depending on whether you wished to consider the 

graph as directed or undirected. This would probably add 

an unnecessarily high degree of clumsiness to the graph al

gorithms. 

Unfortunately, the scheme of representation by pairs 

while sufficient for most graphs is not sufficiently flex-

ible for a total graph algorithms package. This is because 
, 

a graph need not be restricted to allow~ng only a single arc 

Fig. 3 
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would be multigraph in which two arcs connect nodes 1 and 2 

and as such would be distinct from the graph of Fig. 1 in which 

only one arc connects these two nodes. Clearly, representation 

by pairs is insufficient for such a graph since in that repre

sentation an arc is defined by its two end nodes and no provi

sion can be made for the same two nodes to define two or more 

different arcs. This problem arises becauses the nodes are 

given names (e.g. 1,2 ... ) in the repesentation, but ~rcs are 

not. Instead, an arc is viewed not as a distinct entity but 

as a composite of two nodes. An alternative representation 

which would solve the problem is representation by ~riples. 

2. Graphs by triples: In this representation, which was 

chosen for the SETL implementation, the arcs as well as 

the nodes are given names. 

would be viewed as 

ii 217) 

5 

'( 

Thus ;,{he graph of Fig. 1 

Fig. 4 

and would be represented as a set of triples, e.g.: 

{< 16,1,2> ,< 11,1,3> ,< L2,l,4>, 

< 14,1,5> ,< 13,2,3> ,< 15,4,5>} 

The first element of each triple is the name of the arc 

represented by that triple and second and third ele

ments, the names of the two nodes which that arc connects. 

In the case of a directed arc, the arc is thought of as 
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going from the node in the second element to the 

node in the third. The graph of Fig. 2 would be 

viewed as 

and would be represented by 

{<16,1,2 > 

<12,4,1> 

<15,5,4 > 

<14,5,1 > 

Fig. 5 

<11,1,3 > 

<13,3,'.? >} 

Multigraphs are easily accomodated in this 

system of representation. The g0~~h of Fig. 3 
, . 

would be viewed as in Fig. 6 

{< 17,1,2 > 

< 12,1,4 > 

<J5,4,5 >} 

~ 3 . 

< 16,1,2 > 

< ::\-1,1,3 > 

Fig. 6 

by, 

< 14,1,S > 

< 13,2,3 >} 

Note that although both arcs 16 and 11 connect nodes 

1 and 2, they are represented as th~ two distinct arcs 

that they really are in the multigraph. 
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One problem, however, remains to be solved 

and that is the problem of isolated nodes. Both 

representation by pairs and triples present a graph 

as a set of arcs. However, a graph may have a node 

which is not adjacent to any arc and which would there-

fore not be included in the representation. 

ample, consider the graph of Fig. 7 

Fig. 7 

For ex-

which contains 6 arcs none of which include node 6. 

To remedy this we adopt the fol'io.,wing convention: an 
~,,_' I 

isolated node X will be represented by the triple 

<St, X, St> where St is the undefined atom in SETL 

(OM. in SETLB). 

Thus, the graph of Fig. 7 is represented by 

{ <16 , 1 , 2 > 

<L2,l,4> 

<rt,6,rt>} 

<L3,2,o> 

<14,1,5> 

Although this involves occasional checking for rt 

it does allow representation oi graphs and directed 

graphs in full generality and is fairly easy to work 

with. 

We have also provided for two possible triple 

representations of node graphs (i.e. graphs defined 
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solely in terms of their nodes). In the standard 

version, each node pair <X,Y> is represented by the 

triple <n,X,Y> The graph of Fig. 1 above 

would then be defined as follows: 

<n,1,4> 

<~,1,3> 

<n,1,5> 

<~,4,$>} 

In the numbered version an arbitrary sequential 

number~ng is assigned to the arcs. 

would then be represented by 

{<1,1,2> 

<4,1,3> 

<2,1,4> 

<5,2,3> 

<3,1,5> 

<6,4,5>} 

The same graph 

This will be more fully defined in the conversion 

routines described below. 
'( 

Other methods of graph rep~~$entation are 

possible. GRAAL provides Input-Output routines for 

reading and writing graphs expressed in one of the 

various forms described below. The SETL implementa-

tion expands this by allowing one to manipulate the 

structure which represents a graph, thus enabling 

the encoding of an algorithm using the method of 

graph representation which is most convenient and 

using conversion routines to put the graph into the 

desired form. 

3. Graphs by stars: In this representation, a graph is 

represented by a set of ordered pa~rs, the first ele

ment of each pair being a node and the second, the 



SETL # 115 -13 

set of arcs incident on the node. For example, the 

graph of Fig. 7 would be represented by 

{<1, {11,12,14,16}> 

<3, {11,13 } > 

<5, {14,15 } > 

' < 4' 

<2, {13,16}> 

{12,15} > 

This method takes care of the isolated node problem with 

minimal disruption. Perhaps the greatest objection 

to using this as a standard representation is that it is 

counter-intuitive. A graph is usually not thought of as 

a collection of nodes from each of which a se~ of arcs 

emanates, but rather as a set of arcs interconnecting a 

set of nodes. This counter-intuition problem would pro-

·~ ~ . 
bably make it more difficult to ~~ogram using such a 

representation. A SETL objection is that to get at an 

arc one has to go into a high level of nesting (e.g. 

an element of a set which is itself an element of a 

tuple which is an element of a set). This, of course, 

is another obstacle to neat and easy programming which 

does not exist in the pair and triple representations. 

Again, some modification must be made in the repre-

sentation by stars to allow for directed graphs. Various 

possibilities suggest themselves. FGRAAL, which pro-

vides only an I/0 representation by stars, represents 

the graph by a node followed by arcs printed as positive 

or negative integers. For example, the pair < 1, { 16, 

-14,-12,11} > would be an element in the star repre-
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sentation of Fig. 5. This suffers from the general 

objection against forcing nodes and arcs to be repre

sented as positive integers. We have chosen instead 

to represent directed graphs by stars as a set of tri

ples the first element being a node, the second element, 

the set of arcs leaving the node, the third, the set of 

arcs entering the node. The graph of Fig. 5 would be 

represented by 

{<l, 

< 3 ' 

{16,11} 

{13} {11} > 

<5, {14,15} > } 

< 2, nl {16,13}> 

{ 15} > 

Still another method with much the same advantages 
'( 

and disadvantages of representati:O'.n by stars is repre-

sentation by adjacency. 

4. Graphs by adjacency: In this method, which is of pri-

mary importance in node-graphs, a graph is also repre

sented as a set of ordered pairs. The first element of 

the pair is a node and the second element, the set of 

nodes which are connected to the given node by some arc. 

Thus the graph of Fig. 7 would be represented by 

{<l, {2,3,4,5} > 

{1,5 }> < 5' 

< 2 ' {1,3 } > < 3 ' {1,2} > 

{1,4} > 

Directed graphs can be treated by a\ technique similar 

to the one classified for STARS above. The graph of 
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Fig. 5 would appear as 

{<l, {2,3} { 5,4 }> < 2 , nl , { 1 , 3 } > 

<3, {2} ,{l}> < 4 , { 1 } { 5 } > 

< 5 , { 1 , 4 } , nl > } 

where the first element of each triple is a node, 

the second, the set of nodes leaving the given node 

(PADJ), the third, the set of nodes entering the 

node ( NADJ) . 

5. Conversion routines: The above sections described 

various forms of graph represen~ation. As noted 
·. , 
.,/ ~,. ; 

earlier, representation by triples was chosen as the 

basic form for the SETL implementation of the graph 

algorithms. However, a set of routines are provided 

for converting from any of the other forms (pairs, 

stars, and adjacency) to triples and vice-versa. 

These routines, which were quite simple to create, 

display the facility of manipulating graphs in SETL. 

The GRAAL conversion routines are provided only 

for I/O, that is, they allow one to either print or 

read the graphs in various formats. , The SETL routines 

are written as functions and can be. used to translate 

from one form to another. The following tables iden

tify the routines. 
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Table 1. Functions to translate from alternate form 
to triples. 

Routine Name 

RDGPRS 
RDGPRSN 

RDPADJUD 
RDPADJD 
RDGADJUD 
RDGADJUDN 

RDGADJD 
RDGADJDN 

RDGSTUD 
RDGSTD 

Input Parameter 

pairs 
pairs 

undirected adjacency 
directed adjacency 
undirected adjacency 
undirected adjacency 

directed adjacency 
directed adjacency 

undirected stars 
directed stars 

Returns 

triples with D arcs 
triples with arbitrarily 
numbered arcs 
pairs 
pairs 
triples with D arcs 
triples with arbitrarily 
numbered arcs 
triples with D arcs 
triples with arbitrarily 
numbered arcs 
triples 
triples 

These routines which are inherently set-theoretic, 

are easily expressed. As an example, consider the· 

translation from undirected adjacency to triples (RDGADJUD). 

We first use the routine RDPADJUD to transform the graph 

to pair notation. 
~t , • 

The input is a set:13, in the form 

expressed above (Section 2.4). An element p€ Sis of 

the form <n, {V 1 , ... ,Vj}> where n is a node and v1 , ... ,Vj 

are the nodes adjacent ton. The graph, G, created must 

contain all pairs <n,Vi> However, since the graph is un-

directed, we do not want both <n,V-> 
l 

and 

The routine is therefore of the following form: 

definef rdpadjud(s); 
local g,p,v; 
g=nl; 
C Vp € s) 
if p(2) ~ nl then ( < n,p(l),n > ) in g; 

in G. 

/*if the node is not adjacent to any other nodes add 
< D,n,D> tog*/ d 

else g=g + {<p(l),v>., vE p(2) I <v,p(l)>lfg} 
/1:add all pairs <n,v> if <v,n>is nbt already there~':/ 
return g; 
end rdpadjud; 
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This routine transforms the graph to pairs. To complete 

the transformation into triples, we use the routine RDGPRS. 

definef rdgprs(S) 
return {<St ,p(l) ,p(2) > ,PE S >} 
end rdgprs; 

The final routine to transform adjacency to triples calls 

on both of the above routines: 

definef rdgadjud(S); 
return rdgprs (rdpadjud(S)); 
end rdgadjud; 

The routines to convert from triples to the various 

other forms are listed below. 

Table 2. 

Routine Name 

WRGPRS 
WRGSTD 
WRGSTUD 
WRGADJD 
WRGADJUD 

From triples to 

pairs· 
stars, for a directed graph 
stars, for an undirected graph 
adjacency for a directed graph 
adjacency for an undirected graph 

These routines are easily expressed since. they use 

the primitive functions for graph manipulation (described 

below in Section 3). e.g. 

definef wrgadjd(G); 
/* to change from triples to adjacency representation 
for a directed graph*/ 
return {< n,padj(G,n), nadj(G,n) > 

n E nodes(G)} 
end wrgadjd; 
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III. Basic graph operations in SETL: 

FGRAAL provides for a large set of operations on 

graphs which are used as FORTRAN subroutine calls. The 

implementation of these operations are invisible to the 

user. For example, given a graph G and a subset A of 

arcs of the graph, one would want a routine which returned 

the set of nodes incident (connected) to one of the arcs 

in A. FGRAAL provides this facility with the incidence 

operator and one would code 

N=INC(G,A). 

Using the extended triple representation discussed ~n 

(2) above, the SETL routine for INC would be: 

definef inc(g,a); 
local z,i; 
return if atom a then 

else 
end inc; 

'L 
,I 

{ g ( a ) ( 1 ) , g' ( a ) ( 2 ) } 
{g(z)(i),z G:a, l_s i< 2} 

Given the graph g of Fig .. 7~ 

{<16,1,2> , < 14,1,5> , < 12,1,4> , < 11,1,3> 

<13,2,3> , < 15,4,5> , < s-2,6,s-2 > }. 

and the set of arc s a= { 14 , 12 , 1 S } , 

inc(g,a)= {1,5,4} 

Note that in GRAAL, a single element of a set 

is indistinguishable from a singleton set so that one 

can call INC even if A is a single arc. ·.Thus, INC 

acts to some extent as a generic routine. To imitate 

this facility in the SETL routine, a test is made as 
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to whether or not the second argument is a set and if 

not the routine simply returns the endpoints of the arc. 

Thus inc(g,12)= {1,4} , where g is the above graph. 

Two very common operations on a graph are finding the 

nodes and arcs of a given graph. 

as follows: 

definef arcs(g); local z; 

In SETL these are coded 

return {z(l),z ~ g lz(l) ne n} 
end arcs; 

definef nodes(g); local z,i; 
return {z(i) ,z E:.. g, 2 <i <3 I z(i) ne n} 
end nodes; 

For gas in Fig. 7, nodes(g)= { 1,2,3,4,5,6 } and arcs(g)= 

{11,12,13,14,15,16} 

The routine star is given a graph and a set of nodes 

(or a single node) and returns the set of all arcs which 

are incident to some node in the set. 

definef star(g,n); local z,j; 
j=if atom n then { n} else n; 
return7 z(l) ,z E. g lz(l) ne n and ( { z(2) ,z(3)} 1~j) ne nl}; 
end star; 

The routine adj is given a graph and a set of nodes. It 

returns the set of all nodes which are connected to some node 

in the input set by a single arc of the :graph. 

definef adj(g,n); local p,a; 
return if atom n then {p ➔ nodes(g)f (3 a£star(g,n)I 

-- inc(g,a) ~ {p,n})} 
else [+:pE.n] adj(g,p); 

end adj; 
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To illustrate: 

star(g, { 5,2} )= { 13,16,14,15} 

adj(g, {5,2 })= {1,3,4} 

where g is the graph of Fig. 7. 

Note the use of the compound operator in defining adj. 

The compound operator facility of SETL gives these algorithms 

a clear and concise expression which would otherwise be 

lacking. 

Directed graphs can be operated on by the preceding 

operators, but these operators take no account of the orienta-

tion of the arcs. It is often desirable to specifJ such sets 

as "the set of arcs leading outward from a given node" or 

"the set of nodes in which a given set of arcs terminates~•. 
'( 

To facilitate such concepts, GRAAL pr9~ides a positive and 

negative form of the above operators. Thus, given a graph 

g and a set of arcs a, pinc(g,a) gives the set of nodes 

from which some arc of a emanates, while ninc(g,a) gives the 

set of nodes in which some arc of a terminates. Similarly, 

pstar(g,n) gives the set of arcs which have a node inn 

as a starting point and nstar(g,n) gives the set of arcs 

which have a node inn as a terminating point. Corresponding 

to the adjacency operator we have padj(g,n) which gives the 

set of nodes n' such that there is an arcing going from a 

' node inn to a node inn' and nadj(g,n) ~hich gives the set 

of nodes n' such that there is an arc irl g going from a node 

inn' to a node inn. 
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To illustrate with the graph g of Fig. 5: 

pinc(g, {14,12,15} ) = {5,4} 

pstar(g, {5,2} ) = {15,14} 

padj(g, {5,2} ) = {1,4} 

ninc(g, {14,12,15} )= {1,4} 

nstar(g, {5,2} ) = {13,16} 

nadj(g, {5,2} ) = {1,3} 

The following is SETL code for the routines PINC, NINC, PSTAR, 

NSTAR, PADJ, and NADJ: 

definef pinc(g,a); local p; 
return if atom a then {g(a)(l)} 

else {g(p)(l), pE.a} 
end pine; 

definef ninc(g,a); local p; 
return if atom a then {g(a)(2)} 

else {g(p) (2), p €a} 
end ,nine; 

definef pstar(g,n); local z,j; 
j= if atom n the {n} else n; 
return {z(l), z E: g I z ( 1) ne r2 ~ z ( 2) E.. j} 
end pstar; - .;.r 

definef nstar(g,n); local z,j; 
j= if atom n then {n} else n; 
return--rzTl),z Eg I z(l) ne rt and z(3)E j} 
end nstar; 

definef padj(g,n); local p,a; 
return if atom n then{p E'nodes(g) I ( 3 a€ pstar(g,n)/ 

ninc(g,a) eq {p} )} 
[ + : p E. n] pad j ( g , p) ; else 

end padj; 

definef nadj(g,n); local p,a; 
return if atom n then{p E..nodes.(g) I (3 aE.nstar(g,n)/ 

pinc(g,a) eq {p} )} 
e 1 s e [ + : p E n ] n ad j ,( g , p ) ; -

end nadj; 

Note that each of these three operator categories: 

inc, star, and adj are expressed as unions over a set and 

that 
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inc(g,a)= pinc(g,a) + ninc(g,a) 

star(g,n)=pstar(g,n) + nstar(g,n) 

adj(g,n)= padj(g,n) + nadj(g,n) 

There is another class of operators whose members 

are expressed not as a union over a set but as the 

symmetric difference over a set. The first of these is 

the coboundary of a set of nodes in a graph. This is the 

set of all arcs which connect the set to a node outside 

the set. Thus, if g is the graph of Fig. 7 and n={6,l,6} 

then cob(g,n)={l4,ll,16,15} Mathematically, cob is 

defined recursively on the number of elements in the node 

set. If n is a single node then cob(g,n)={a e star(g,n) I 
#inc(g,a)=2} . This last condition on a is to exclude 

a self-loop from cob. Finally, if ~-is a set of nodes, 
,I 

then cob(g,n) is the symmetric difference over all nodes 

n 0 inn of cob(g,n 0 ). 

Similarly, given a set a of arcs in a graph, the 

boundary of a is defined as the set of nodes which are 

incident at only one point (i.e. again excluding a node 

for which an arc is a self-loop) to exactly one of the 

arcs in the set. Thu if g is, again, the grciph of Fig. 7 

and a={ll,12,13,14} , then bd(g,a)= {5,4,2} . Mathematically, 

if a is a single arc, 

bd(g,a)= Ginc(g,a) if #inc(g,a)=2 
nl otherwise 

and if a is a set of arcs bd(g,a) is t~e symmetric difference 
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The publication versions of the operators cob and bd 

follow: 1 

definef cob(g,n); 
local p,d; 
return if atom n then star(g,n)-{ d €.arcs(g) I < d,n,n > E. g} 

else [/:pE:n] cob(g,p); 
end cob; 

definef bd(g,a); 
local p; 
return if atom a then if #inc(g,a) ~ 2 then inc(g,a) 

else nl 
else [/:p€a] bd(g,p); 

end bd; 

1 Note that whereas in publication SETL the symmetric 
difference operator is indicated by a/, in the current 
SETLB version it is indicated by//. However, due to a 
deficiency in the current SETLB fro~t end, the operator 
// when used in a compound operator '1ields a syntax error 
(since the parser upon detecting a 'L' expects an operator 
followed by a colon. It gets the operator but then gets the 
second/ rather than the expected colon). 

To remedy the situation, we defined a new user-
defined operator P. by 

definef A P. B 
return A//B 
end; 

and then rewrote the SETLB routine using the operator 
P. as the compound operator rather than the troublesome 
//. This led to the discovery of a SETLB error in trans
lating a user defined operator in a compound form. How
ever, this problem has been remedied and the ~urrently 
running SETLB versions of the two algorithms are: 

definef cob(g,n); 
local p,d; 
return if atom n then star(g,n)-{~d Earcs(g) 

else [P.: pE. n] cob(g,n); 
end cob; 

<d , n , n > E. g } 

(continued on next page) 
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For directed graphs, we again introduce positive and 

negative versions of cob and bd. However, these versions 

do not bear the same relation to their antecedents as do 

pine, nine, pstar, nstar, etc. to inc, star, etc. For 

example, pcob is not defined as the set of arcs leading 

from the given set of nodes to some external node; rather 

it is defined as the set of arcs emanating from any of the 

nodes in the set. Similarly, ncob is defined as the set of 

nodes terminating in some one of the nodes in the set. 

This is because ncob and pcob are defined so that the rela-

tion cob=pcob//ncob holds. 

and star where the relations 

Thus cob is unlike inc, adj, 

hold. 

inc=pinc+ninc 

adj=padj+nadj 

star=pstar+nstar 

Indeed, upon examination it is apparent that pcob 

is identical to pstar and ncob to nstar. However, cob 

represents an entirely different relation from star since 

star=pstar+nstar=pcob+ncob 

but cob=pstar//nstar=pcob//ncob. 

1 (contd) 

definef bd(g,a); 
local p; 
return if atom n then if#inc(g,a) ~ 2 then inc(g,a) 

else nl 
else [P.: pc a] bd(g,p); 

end bd; 
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Why GRAAL provides two distinct operator names for the 

same operator is not entirely clear, although it seems 

to stem from the graph theoretic origins of the language. 

Pcob is defined recursively, so that pcob(g,n) where n 

is an atomic set (a set with only one element) is identical 

to pstar(g,n) (i.e. the set of all arcs emanating from the 

node n) and pcob(g,n) where n is a general set, is defined 

as the symmetric difference over all atomic 1 sets n 0 inn 

of pcob(g,n 0 ) (which is the same as pstar(g,n0 )). However, 

since an arc can emanate from only a single node this 

symmetric difference is identical to the union of ·pstar(g,n ) 

over all such atomic sets n. Thus pstar(g,n) which is 

defined as the union of pstar(g,no) over all such n 0 is 
,,( 

identical to pcob(g,n). A similar ch,a:in of definitions 

leads to the identity of ncob and nstar. However, cob and 

star are distinct since cob is defined as the symmetric 

difference of pcob and ncob whereas star is defined as the 

union of pstar and nstar (this, of course, applies only to 

the case of directed graphs; in the undirected case, star 

and cob are defined directly). 

As an illustration of the preceding, consider gas in 

Fig. 9: 

Fig. 9 
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Let n = {1,3} 

pstar(g,n)=pstar(g,l) + pstar(g,3)={1' ,2 1 ,4'} + nl = 
{l',2',4'} = {l',2',4'} // nl = pcob(g,l)//pcob(~3)= 
pcob(g,n) 

nstar(g,n)=nstar(g,l) + nstar(g,3) = {5'} + {2'}= 
{ 5' , 2 ' } = { 5' } / / { 2' } = ncob ( g, 1) / / ncob ( g, 3) 

star(g,n)=pstar(g,n) + nstar(g,n) = {l' ,2' ,4'} + {5' ,2'} = 
{ l',2',4',5'} 

but cob(g,n)= pcob(g,n) // ncob(g,n) = {l',2',4'} // {5',2 1
} 

= {l' ,4' ,5'} t star(g,n). 

Although the SETL routines pstar and nstar above 

suffice for pcob and ncob, we present routines which mimic 

the theoretical definition directly: 

definef pcob(g,n); 
local p; 
return if atom n then pstar(g,n) 

else [/:pE n] pcob(g,n); 
end pcob; 

definef ncob(g,n); 
local p; 
return if atom n then nstar(g,n) 

·else [/:p€n] ncob(g,n); 
end ncob; 

The operator pbd and nbd are defined by a similar 

process as pcob and ncob. Recall that bd(g,a~, where a is 

a set of arcs, is the set of nodes incident to exactly one 

arc of a at only one point. For a directed graph, this same 
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set may also be defined as follows: first define the 

operators 

pbd(g,a)=pinc(g,a) 

nbd(g,a)=ninc(g,a) 

if a is a single arc and then extend the definitions by 

symmetric differences for the case where a is an arc set. 

Note that unlike the case of pcob and ncob a node may be 

the starting or terminating point of more than one arc 

so that the symmetric difference is not identical to 

the union. For this reason, pbd and nbd operating on a 

set of arcs a, are distinct operators from pine ~nd nine. 

Finally, the operator bd can be defined for a directed 

graph by 

bd(g,a)=pbd(g,a)llnbd(g,a). 

To illustrate these points, consider again, the graph of 

Fig. 9 and let a= { 4' , 2' , 3'} • 

pinc(g,a)=pinc(g,4 1 ) + pinc(g,2') + pinc(g,3') 

={l} + {l} + {2} = {1,2} 

pbd(g,a) =pinc(g,4') II pinc(g,2') II pinc(g,3') 

={l} II {l} II {2} ={2} 

ninc(g,a)=ninc(g,4') + ninc(g,2') + ninc(g,3') 

={4} + {3} + {4} = {3,4} 

nbd(g,a) =ninc(g,4') II ninc(g,2') II ninc(g,3') 

={4} II {3} II {4} ={3} 

inc(g,a) =pinc(g,a) + ninc(g,a) : 

={1,2} ,+ {3,4} = {1,2,3,4} 

bd(g,a)=pbd(g,a) II nbd(g,a) = {2} II {3} = {2,3} 
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The SETL routines for pbd and nbd are: 

definef pbd(g,a); 
local p; 
return if atom a then pinc(g,a) 

end pbd; 

definef nbd(g,a); 
local p; 

else [/:pE.a] pbd(g,p); 

return if atom a then ninc(g,a) 
else [/ :pE. a] nbd(g,a); 

end nbd; 

Note that all of the above primitive routines are 

coded assuming the extended triple representation of graphs. 

However, by recoding them to apply to any of the other 

representations, one can specify higher-level algorithms 

directly to that representation. Alternatively, one could 

use the previously described conve¼ion routines to convert 
~r ; 

back and forth between any other representation and 

extended triples. 
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IV. Graph algorithms in SETL: 

The preceding conversion routines and fundamental 

routines can be used in SETL programs to produce more 

complex graph algorithms. Indeed, this is the philosophy 

behind GRAAL where these routines are provided as built-in 

functions. Thus, the developers of GRAAL also have devel

oped a large set of routines in FGRAAL for such purposes 

as generating random graphs, finding induced graphs for 

a set of arcs or nodes, finding spanning trees of various 

forms and discovering connected components, cycles, 

cocycles, and blocks of graphs. 

Unfortunately, these algorithms are rather complex 

and it is not at all apparent fro~ the FGRAAL code what 
:1 
~ . 

the algorithm purports to do and how it does it. Part 

of this problem is the lack of recursive routines in 

FORTRAN, and so in its extension FGRML. It is our 

belief that the development of set-theoretic recursive 

definitions of the algorithms would be trivially trans

latable into SETL and would produce cleaner code. 

However, we did not undertake such analysis of the 

algorithms, but rather were interested in producing SETLB 

programs which produced working graph theoretic algorithms. 

The path of least resistance (although by no means most 
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creative and useful) was to, as far as possible, transcribe 

the FGRAAL algorithms into SETLB. The first step, of 

course, was to code the conversion and primitive routines. 

These have been (hopefully) completely debugged and accom-

plish their avowed aims. Once those routines were coded, 

they could be used in SETL algorithms which mimicked the 

FGRAAL algorithms given by the GRAAL developers. This, 

of course, uses only a fraction of the SETL power. For 

example, a common strategem in these algorithms is to 

trace down several paths and then retrace that path which 

is found to work. A more natural SETL approach would be 

to save the path that one is tracing along with the node 

that one is at in the trace so that when the "right" node 
✓( 

is finally found, the path to it is;~mmediately available. 

Two peculiarities, one of SETL and one of GRAAL 

caused minor difficulty in the transcription: 

1. Since all SETLB argument transmission is by value 

(except for sets and tuples, when what is actually 

passed is a pointer), in order to return a graph 

which has been created within a routine, the 

routine must be coded as a function if it is to 

be used as an external procedure (which is of course 

desirable in coding a set of general purpose algo

rithms). This also means that two distinct graphs 

must be returned as a pair. FGRML, being an exten-

sion of FORTRAN, passes arguments by value-result and 

so can return a result in one or more parameters. 
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2. The GRAAL phenomenon, mentioned earlier, of using 

union and set difference to include the SETLB 

WITH. and LESS. operators. This problem continually 

crops up since a single FGRAAL statement such as 

A=B.UN.C 

can have C be a set on one iteration of the loop 

and be a single node or arc on the second. A uniform 

way to avoid this would be never to use single arcs 

or nodes as values of SETLB variables, but always 

sets of a single element, e.g. to write 

x= {~ s} 

rather than x= arb s. Another peculiarity of 

GRAAL is that one can ask for the nth element 
'( 

of a set by using the primi ti:ve ELT(N, S). Thus, 

to insure that A and Bare two distinct arbitrary 

elements of S one would write: 

A= ELT(l,S) 

B= ELT(2,S) 

This would have to be encoded in SETL by 

A= arb S; 

B= arb (S less A); 

GRAAL also provides for what Knuth calls "deques" 

and which the GRAAL authors call "staques", i.e. 

linear lists in which items can be inserted or 

deleted at either end. Such st~ques and insertions 

and deletions from them can easily be simulated 

using SETL tuples. 
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