
SETL Newsletter# 115

A SETL Representation

of the Maryland

GRAAL graph-munipulation language
·I~ ~ . [

G. Weinberger

A. T.enenbaum

August 21, 1973

SETL # 115 - 2

A graph algorithmic language (GRAAL) has been developed

by Rheinhold, Basili, and Mesztenyi at the University of Mary

land to describe and implement graph algorithms. The language

provides for several non-standard data structures with attend-

ant operations. Prominent among these is the GRAPH with about

twenty primitive operators for graph manipulation. Also in

cluded is the data type SET with the standard set operations,

and a data type for stacks.

The documentation analyzed consisted of

1. A description of a theoretic basis for a graph

algorithmic language.

2. A description of an implemJ~ted version (as an

extension of Fortran) called FGRAAL.

3. A text describing some 40 graph algorithms

written in FGRAAL.

4. An article defining a proposed graph algorithmic

extension of ALGOL 60.

This analysis was done with a view towards extracting

the fundamental problems of computer representation of graphs

and the dictions appropriate to their manipulaTion. An ana

lysis was also made of the use of SETL for coding graph al-

gorithms.

This newsletter proposes to do the ~following:

1. Describe some key issues presented by the

GRAAL implementations.

I.

SETL # 115 -3

2. Discuss the issue of graph representation in

SETL.

3. Describe a SETL implementation of a complete

set of primitive operations for graph mani

pulation.

4. Describe a SETLB encoding of the algorithms

presented in FGRAAL Algorithms and present

possible ways of using SETL's power to improve

the algorithms.

5. Present some conclusions comparing SETL and

GRAAL.

Some notes on GRAAL:

One is directed to the GRAAL documentation [see the

bibliography] for a complete description of the lan-

guage. In this section, we shall present some of the

design decisions made by the GRAAL group, and the effect

of these decisions upon the language.

GRAAL exists in several versions. It is not en-

tirely clear whether a sharp demarcation exists between

the reference and implemented versions of the language,

and whether, as the case in SETL, the implemented ver

sion is only meant as a first approximation to the lan-

guage itself. It would seem, however, t;hat the language

is thought of as a set of several implementations each

SETL # 115 - 4

designed as an extension of a pre-existing higher level

language. For example, one implemented version called

FGRAAL is an extension of FORTRAN and follows the FORTRAN

style very closely. Another proposed version exists which

is an extension of Algol.

The concept of GRAAL as an extension of a pre

existing language, has forced (or perhaps suggested) several

interesting, although theoretically unappealing features.

For example, in FGRAAL a set is thought of as an array,

each element being given a sequence number. Thus one can

specify the "first" member of a set. However, the µnion of

two sets is not the concatenation of the two arrays, but

rather the true set-theoretic union. Further, the elements

of a set are not viewed as individual1elements but rather as
~ . .:;
/' /

"atomic" or single element sets. Thus suppose one has a

' set S= '{1,3,5} and one executes

A=ELT(l,S) (first element of S)

A is set equal to the atomi~ {l} One can then execute

S=S.DIFF.A

to set S= { 3 , 5}

(where .DIFF. is the FGRAAL

operator for set difference)

Thus, the FGRAAL .DIFF. operator can

be used both as the SETL set difference operator and the

less operator which removes an element from a set. Simi

larly the .UN. operator acts both as the set union (+

applied to sets) and as the with operator.

Although this facility is confusing at first, it is

SETL # 115 - 5

useful in writing short code in which on different loop

iterations the second operand is alternately a single

element and a set. It also adheres to the principle of

reusing syntactic space whenever possible, although in a

manner different from SETL. It is, of course, a quite

simple matter to achieve the same effect in SETL. For

example, we could define an operator UN. for union as

follows:

definef A UN.B
return if atom A then

end;

if atom B then {A,B}
else B with A

else if atom B then A with B
else A+B;

The internal representation of graphs in FGRAAL, although

meant to be transparent to the user, forces certain annoy-

ing restrictions. Arc and node constants must be of type

INTEGER and each graph comes supplied with a 'sequence

number' which is needed (it seems) to distinguish it from

other graphs. The user can delete or add nodes, arcs, or

arc-node pairs to a graph by invoking various primitive

functions. However, since one cannot manipulate the in-

ternal structures, one is limited in the~ types of opera

tions that one can perform.

SETL # 115-6

II. Graph representation in SETL:

In developing graph algorithms in SETL, the first issue to

be faced is a SETL representation for a graph. This question

is closely akin to the problem which a FORTRAN programmer would

face in deciding what representation to use for a graph.

possibilities suggest themselves:

Several

1. Graphs by pairs: Since an arc consists of two adjacent

nodes, a graph can be represented as a set of pair~.

Thus for example, the graph

Fig. 1

could be represented by

(1) { { 1 , 2 } , {l , 4 } , { 1 , 5 } , { 1 , 3 } , { 2 , 3 } , { 4 , 5 } }

However this does not allow for a convenient representa

tion of directed graphs in which an arc consists not only

of a pair of nodes but also of an orientation between them.

the graph of Fig. 2

Fig. 2

would be represented by a set of ordered pairs, e.g.:

(2) { <l , ~, > , <l , 3 > , < 3 , 2 > , <4 , 1 > , < 5 , 1 > , < 5 , 4 >}

I

SETL # 115 - 7

If representation (2) is chosen, we would also like to

represent the unordered graph of Fig. 1 as a set of or-

dered pairs for the sake of uniformity. Two possibilities

present themselves. The first is to consider an unoriented

arc between two nodes, as consisting of two oriented arcs.

Thus the graph of Fig. 1 would be represented by:

(3) {< 1,2> ,< 2,1> ,< 1,4> ,< 4,1> ,< 1,5> ,< 5,1>,

< 1,3> ,< 3,1> ,< 2,3> ,< 3,2> ,< 4,5> ,< 5,4>}

The problem with such a representation is that it takes

the approach of forcing the explicit specification of the

two possible orientations and thus wastes space.· Further

in processing an undirected graph, it is often desirable

to process each unoriented arc only once, thus necessita-
'(

ting a test each time an arc is a ci~ndidate for processing,

whether or not its mirror image has already been processed.

The alternative is to represent both the graphs of

Fig. 1 and Fig. 2 by (2) and force the programmer to keep

track of whether he is dealing with an undirected or directed

graph. This does not produce as great a burden as would

be imagined since in a specific algorithm, one is dealing

with a specific type of graph (directed or undirected).

Of course, in the case of a graph with both ~irected and

undirected arcs, the graph would be represented as directed
,

with an undirected arc being duplicat~d by its reversal.

If a programmer wanted to apply a sub~outine which expects

a directed graph to an undirected graph, he could use a

conversion routine to convert representation (2) to (3):

SETL # 115 -8

definef convertpairs (undgr);
dp;r=nl;
(Vt_E:_undgr) dgr=(dgr with t) with < t(2),t(l) >
return dgr;

end convertpairs;

Incidentally, FGRAAL handles the orientation question

quite nicely by associating a "property" with a graph. Thus,

if G is declared to be graph (following FORTRAN, a name must

be declared as naming a specific type of item), then associ

ated with G is the true-false property ORIENT(G) which is 1

if the graph is directed and O otherwise. Since the name G

refers to a specific graph, even if the value of G changes

(i.e. an arc is added or deleted), the ORIENT property re

mains unchanged. This feature is similar to the PL/I struc

ture. To implement such a property\? SETL, one would have

to represent a graph gas an ordered pair~ the first ele

ment being the graph itself, the second being either true

or false depending on whether you wished to consider the

graph as directed or undirected. This would probably add

an unnecessarily high degree of clumsiness to the graph al

gorithms.

Unfortunately, the scheme of representation by pairs

while sufficient for most graphs is not sufficiently flex-

ible for a total graph algorithms package. This is because
,

a graph need not be restricted to allow~ng only a single arc

Fig. 3

SETL # 115 - 9

would be multigraph in which two arcs connect nodes 1 and 2

and as such would be distinct from the graph of Fig. 1 in which

only one arc connects these two nodes. Clearly, representation

by pairs is insufficient for such a graph since in that repre

sentation an arc is defined by its two end nodes and no provi

sion can be made for the same two nodes to define two or more

different arcs. This problem arises becauses the nodes are

given names (e.g. 1,2 ...) in the repesentation, but ~rcs are

not. Instead, an arc is viewed not as a distinct entity but

as a composite of two nodes. An alternative representation

which would solve the problem is representation by ~riples.

2. Graphs by triples: In this representation, which was

chosen for the SETL implementation, the arcs as well as

the nodes are given names.

would be viewed as

ii 217)

5

'(

Thus ;,{he graph of Fig. 1

Fig. 4

and would be represented as a set of triples, e.g.:

{< 16,1,2> ,< 11,1,3> ,< L2,l,4>,

< 14,1,5> ,< 13,2,3> ,< 15,4,5>}

The first element of each triple is the name of the arc

represented by that triple and second and third ele

ments, the names of the two nodes which that arc connects.

In the case of a directed arc, the arc is thought of as

SETL # 115 - 10

going from the node in the second element to the

node in the third. The graph of Fig. 2 would be

viewed as

and would be represented by

{<16,1,2 >

<12,4,1>

<15,5,4 >

<14,5,1 >

Fig. 5

<11,1,3 >

<13,3,'.? >}

Multigraphs are easily accomodated in this

system of representation. The g0~~h of Fig. 3
, .

would be viewed as in Fig. 6

{< 17,1,2 >

< 12,1,4 >

<J5,4,5 >}

~ 3 .

< 16,1,2 >

< ::\-1,1,3 >

Fig. 6

by,

< 14,1,S >

< 13,2,3 >}

Note that although both arcs 16 and 11 connect nodes

1 and 2, they are represented as th~ two distinct arcs

that they really are in the multigraph.

SETL # 115 - 11

One problem, however, remains to be solved

and that is the problem of isolated nodes. Both

representation by pairs and triples present a graph

as a set of arcs. However, a graph may have a node

which is not adjacent to any arc and which would there-

fore not be included in the representation.

ample, consider the graph of Fig. 7

Fig. 7

For ex-

which contains 6 arcs none of which include node 6.

To remedy this we adopt the fol'io.,wing convention: an
~,,_' I

isolated node X will be represented by the triple

<St, X, St> where St is the undefined atom in SETL

(OM. in SETLB).

Thus, the graph of Fig. 7 is represented by

{ <16 , 1 , 2 >

<L2,l,4>

<rt,6,rt>}

<L3,2,o>

<14,1,5>

Although this involves occasional checking for rt

it does allow representation oi graphs and directed

graphs in full generality and is fairly easy to work

with.

We have also provided for two possible triple

representations of node graphs (i.e. graphs defined

SETL # 115 - 12

solely in terms of their nodes). In the standard

version, each node pair <X,Y> is represented by the

triple <n,X,Y> The graph of Fig. 1 above

would then be defined as follows:

<n,1,4>

<~,1,3>

<n,1,5>

<~,4,$>}

In the numbered version an arbitrary sequential

number~ng is assigned to the arcs.

would then be represented by

{<1,1,2>

<4,1,3>

<2,1,4>

<5,2,3>

<3,1,5>

<6,4,5>}

The same graph

This will be more fully defined in the conversion

routines described below.
'(

Other methods of graph rep~~$entation are

possible. GRAAL provides Input-Output routines for

reading and writing graphs expressed in one of the

various forms described below. The SETL implementa-

tion expands this by allowing one to manipulate the

structure which represents a graph, thus enabling

the encoding of an algorithm using the method of

graph representation which is most convenient and

using conversion routines to put the graph into the

desired form.

3. Graphs by stars: In this representation, a graph is

represented by a set of ordered pa~rs, the first ele

ment of each pair being a node and the second, the

SETL # 115 -13

set of arcs incident on the node. For example, the

graph of Fig. 7 would be represented by

{<1, {11,12,14,16}>

<3, {11,13 } >

<5, {14,15 } >

' < 4'

<2, {13,16}>

{12,15} >

This method takes care of the isolated node problem with

minimal disruption. Perhaps the greatest objection

to using this as a standard representation is that it is

counter-intuitive. A graph is usually not thought of as

a collection of nodes from each of which a se~ of arcs

emanates, but rather as a set of arcs interconnecting a

set of nodes. This counter-intuition problem would pro-

·~ ~ .
bably make it more difficult to ~~ogram using such a

representation. A SETL objection is that to get at an

arc one has to go into a high level of nesting (e.g.

an element of a set which is itself an element of a

tuple which is an element of a set). This, of course,

is another obstacle to neat and easy programming which

does not exist in the pair and triple representations.

Again, some modification must be made in the repre-

sentation by stars to allow for directed graphs. Various

possibilities suggest themselves. FGRAAL, which pro-

vides only an I/0 representation by stars, represents

the graph by a node followed by arcs printed as positive

or negative integers. For example, the pair < 1, { 16,

-14,-12,11} > would be an element in the star repre-

SETL # 115 - 14

sentation of Fig. 5. This suffers from the general

objection against forcing nodes and arcs to be repre

sented as positive integers. We have chosen instead

to represent directed graphs by stars as a set of tri

ples the first element being a node, the second element,

the set of arcs leaving the node, the third, the set of

arcs entering the node. The graph of Fig. 5 would be

represented by

{<l,

< 3 '

{16,11}

{13} {11} >

<5, {14,15} > }

< 2, nl {16,13}>

{ 15} >

Still another method with much the same advantages
'(

and disadvantages of representati:O'.n by stars is repre-

sentation by adjacency.

4. Graphs by adjacency: In this method, which is of pri-

mary importance in node-graphs, a graph is also repre

sented as a set of ordered pairs. The first element of

the pair is a node and the second element, the set of

nodes which are connected to the given node by some arc.

Thus the graph of Fig. 7 would be represented by

{<l, {2,3,4,5} >

{1,5 }> < 5'

< 2 ' {1,3 } > < 3 ' {1,2} >

{1,4} >

Directed graphs can be treated by a\ technique similar

to the one classified for STARS above. The graph of

SETL # 115 - 15

Fig. 5 would appear as

{<l, {2,3} { 5,4 }> < 2 , nl , { 1 , 3 } >

<3, {2} ,{l}> < 4 , { 1 } { 5 } >

< 5 , { 1 , 4 } , nl > }

where the first element of each triple is a node,

the second, the set of nodes leaving the given node

(PADJ), the third, the set of nodes entering the

node (NADJ) .

5. Conversion routines: The above sections described

various forms of graph represen~ation. As noted
·. ,
.,/ ~,. ;

earlier, representation by triples was chosen as the

basic form for the SETL implementation of the graph

algorithms. However, a set of routines are provided

for converting from any of the other forms (pairs,

stars, and adjacency) to triples and vice-versa.

These routines, which were quite simple to create,

display the facility of manipulating graphs in SETL.

The GRAAL conversion routines are provided only

for I/O, that is, they allow one to either print or

read the graphs in various formats. , The SETL routines

are written as functions and can be. used to translate

from one form to another. The following tables iden

tify the routines.

SETL # 115 - 16

Table 1. Functions to translate from alternate form
to triples.

Routine Name

RDGPRS
RDGPRSN

RDPADJUD
RDPADJD
RDGADJUD
RDGADJUDN

RDGADJD
RDGADJDN

RDGSTUD
RDGSTD

Input Parameter

pairs
pairs

undirected adjacency
directed adjacency
undirected adjacency
undirected adjacency

directed adjacency
directed adjacency

undirected stars
directed stars

Returns

triples with D arcs
triples with arbitrarily
numbered arcs
pairs
pairs
triples with D arcs
triples with arbitrarily
numbered arcs
triples with D arcs
triples with arbitrarily
numbered arcs
triples
triples

These routines which are inherently set-theoretic,

are easily expressed. As an example, consider the·

translation from undirected adjacency to triples (RDGADJUD).

We first use the routine RDPADJUD to transform the graph

to pair notation.
~t , •

The input is a set:13, in the form

expressed above (Section 2.4). An element p€ Sis of

the form <n, {V 1 , ... ,Vj}> where n is a node and v1 , ... ,Vj

are the nodes adjacent ton. The graph, G, created must

contain all pairs <n,Vi> However, since the graph is un-

directed, we do not want both <n,V->
l

and

The routine is therefore of the following form:

definef rdpadjud(s);
local g,p,v;
g=nl;
C Vp € s)
if p(2) ~ nl then (< n,p(l),n >) in g;

in G.

/*if the node is not adjacent to any other nodes add
< D,n,D> tog*/ d

else g=g + {<p(l),v>., vE p(2) I <v,p(l)>lfg}
/1:add all pairs <n,v> if <v,n>is nbt already there~':/
return g;
end rdpadjud;

SETL # 115 -17

This routine transforms the graph to pairs. To complete

the transformation into triples, we use the routine RDGPRS.

definef rdgprs(S)
return {<St ,p(l) ,p(2) > ,PE S >}
end rdgprs;

The final routine to transform adjacency to triples calls

on both of the above routines:

definef rdgadjud(S);
return rdgprs (rdpadjud(S));
end rdgadjud;

The routines to convert from triples to the various

other forms are listed below.

Table 2.

Routine Name

WRGPRS
WRGSTD
WRGSTUD
WRGADJD
WRGADJUD

From triples to

pairs·
stars, for a directed graph
stars, for an undirected graph
adjacency for a directed graph
adjacency for an undirected graph

These routines are easily expressed since. they use

the primitive functions for graph manipulation (described

below in Section 3). e.g.

definef wrgadjd(G);
/* to change from triples to adjacency representation
for a directed graph*/
return {< n,padj(G,n), nadj(G,n) >

n E nodes(G)}
end wrgadjd;

SETL # 115 - 18

III. Basic graph operations in SETL:

FGRAAL provides for a large set of operations on

graphs which are used as FORTRAN subroutine calls. The

implementation of these operations are invisible to the

user. For example, given a graph G and a subset A of

arcs of the graph, one would want a routine which returned

the set of nodes incident (connected) to one of the arcs

in A. FGRAAL provides this facility with the incidence

operator and one would code

N=INC(G,A).

Using the extended triple representation discussed ~n

(2) above, the SETL routine for INC would be:

definef inc(g,a);
local z,i;
return if atom a then

else
end inc;

'L
,I

{ g (a) (1) , g' (a) (2) }
{g(z)(i),z G:a, l_s i< 2}

Given the graph g of Fig .. 7~

{<16,1,2> , < 14,1,5> , < 12,1,4> , < 11,1,3>

<13,2,3> , < 15,4,5> , < s-2,6,s-2 > }.

and the set of arc s a= { 14 , 12 , 1 S } ,

inc(g,a)= {1,5,4}

Note that in GRAAL, a single element of a set

is indistinguishable from a singleton set so that one

can call INC even if A is a single arc. ·.Thus, INC

acts to some extent as a generic routine. To imitate

this facility in the SETL routine, a test is made as

SETL # 115 - 19

to whether or not the second argument is a set and if

not the routine simply returns the endpoints of the arc.

Thus inc(g,12)= {1,4} , where g is the above graph.

Two very common operations on a graph are finding the

nodes and arcs of a given graph.

as follows:

definef arcs(g); local z;

In SETL these are coded

return {z(l),z ~ g lz(l) ne n}
end arcs;

definef nodes(g); local z,i;
return {z(i) ,z E:.. g, 2 <i <3 I z(i) ne n}
end nodes;

For gas in Fig. 7, nodes(g)= { 1,2,3,4,5,6 } and arcs(g)=

{11,12,13,14,15,16}

The routine star is given a graph and a set of nodes

(or a single node) and returns the set of all arcs which

are incident to some node in the set.

definef star(g,n); local z,j;
j=if atom n then { n} else n;
return7 z(l) ,z E. g lz(l) ne n and ({ z(2) ,z(3)} 1~j) ne nl};
end star;

The routine adj is given a graph and a set of nodes. It

returns the set of all nodes which are connected to some node

in the input set by a single arc of the :graph.

definef adj(g,n); local p,a;
return if atom n then {p ➔ nodes(g)f (3 a£star(g,n)I

-- inc(g,a) ~ {p,n})}
else [+:pE.n] adj(g,p);

end adj;

SETL # 115 - 20

To illustrate:

star(g, { 5,2})= { 13,16,14,15}

adj(g, {5,2 })= {1,3,4}

where g is the graph of Fig. 7.

Note the use of the compound operator in defining adj.

The compound operator facility of SETL gives these algorithms

a clear and concise expression which would otherwise be

lacking.

Directed graphs can be operated on by the preceding

operators, but these operators take no account of the orienta-

tion of the arcs. It is often desirable to specifJ such sets

as "the set of arcs leading outward from a given node" or

"the set of nodes in which a given set of arcs terminates~•.
'(

To facilitate such concepts, GRAAL pr9~ides a positive and

negative form of the above operators. Thus, given a graph

g and a set of arcs a, pinc(g,a) gives the set of nodes

from which some arc of a emanates, while ninc(g,a) gives the

set of nodes in which some arc of a terminates. Similarly,

pstar(g,n) gives the set of arcs which have a node inn

as a starting point and nstar(g,n) gives the set of arcs

which have a node inn as a terminating point. Corresponding

to the adjacency operator we have padj(g,n) which gives the

set of nodes n' such that there is an arcing going from a

' node inn to a node inn' and nadj(g,n) ~hich gives the set

of nodes n' such that there is an arc irl g going from a node

inn' to a node inn.

SETL # 115 -21

To illustrate with the graph g of Fig. 5:

pinc(g, {14,12,15}) = {5,4}

pstar(g, {5,2}) = {15,14}

padj(g, {5,2}) = {1,4}

ninc(g, {14,12,15})= {1,4}

nstar(g, {5,2}) = {13,16}

nadj(g, {5,2}) = {1,3}

The following is SETL code for the routines PINC, NINC, PSTAR,

NSTAR, PADJ, and NADJ:

definef pinc(g,a); local p;
return if atom a then {g(a)(l)}

else {g(p)(l), pE.a}
end pine;

definef ninc(g,a); local p;
return if atom a then {g(a)(2)}

else {g(p) (2), p €a}
end ,nine;

definef pstar(g,n); local z,j;
j= if atom n the {n} else n;
return {z(l), z E: g I z (1) ne r2 ~ z (2) E.. j}
end pstar; - .;.r

definef nstar(g,n); local z,j;
j= if atom n then {n} else n;
return--rzTl),z Eg I z(l) ne rt and z(3)E j}
end nstar;

definef padj(g,n); local p,a;
return if atom n then{p E'nodes(g) I (3 a€ pstar(g,n)/

ninc(g,a) eq {p})}
[+ : p E. n] pad j (g , p) ; else

end padj;

definef nadj(g,n); local p,a;
return if atom n then{p E..nodes.(g) I (3 aE.nstar(g,n)/

pinc(g,a) eq {p})}
e 1 s e [+ : p E n] n ad j ,(g , p) ; -

end nadj;

Note that each of these three operator categories:

inc, star, and adj are expressed as unions over a set and

that

SETL # 115 - 22

inc(g,a)= pinc(g,a) + ninc(g,a)

star(g,n)=pstar(g,n) + nstar(g,n)

adj(g,n)= padj(g,n) + nadj(g,n)

There is another class of operators whose members

are expressed not as a union over a set but as the

symmetric difference over a set. The first of these is

the coboundary of a set of nodes in a graph. This is the

set of all arcs which connect the set to a node outside

the set. Thus, if g is the graph of Fig. 7 and n={6,l,6}

then cob(g,n)={l4,ll,16,15} Mathematically, cob is

defined recursively on the number of elements in the node

set. If n is a single node then cob(g,n)={a e star(g,n) I
#inc(g,a)=2} . This last condition on a is to exclude

a self-loop from cob. Finally, if ~-is a set of nodes,
,I

then cob(g,n) is the symmetric difference over all nodes

n 0 inn of cob(g,n 0).

Similarly, given a set a of arcs in a graph, the

boundary of a is defined as the set of nodes which are

incident at only one point (i.e. again excluding a node

for which an arc is a self-loop) to exactly one of the

arcs in the set. Thu if g is, again, the grciph of Fig. 7

and a={ll,12,13,14} , then bd(g,a)= {5,4,2} . Mathematically,

if a is a single arc,

bd(g,a)= Ginc(g,a) if #inc(g,a)=2
nl otherwise

and if a is a set of arcs bd(g,a) is t~e symmetric difference

SETL # 115 - 23

The publication versions of the operators cob and bd

follow: 1

definef cob(g,n);
local p,d;
return if atom n then star(g,n)-{ d €.arcs(g) I < d,n,n > E. g}

else [/:pE:n] cob(g,p);
end cob;

definef bd(g,a);
local p;
return if atom a then if #inc(g,a) ~ 2 then inc(g,a)

else nl
else [/:p€a] bd(g,p);

end bd;

1 Note that whereas in publication SETL the symmetric
difference operator is indicated by a/, in the current
SETLB version it is indicated by//. However, due to a
deficiency in the current SETLB fro~t end, the operator
// when used in a compound operator '1ields a syntax error
(since the parser upon detecting a 'L' expects an operator
followed by a colon. It gets the operator but then gets the
second/ rather than the expected colon).

To remedy the situation, we defined a new user-
defined operator P. by

definef A P. B
return A//B
end;

and then rewrote the SETLB routine using the operator
P. as the compound operator rather than the troublesome
//. This led to the discovery of a SETLB error in trans
lating a user defined operator in a compound form. How
ever, this problem has been remedied and the ~urrently
running SETLB versions of the two algorithms are:

definef cob(g,n);
local p,d;
return if atom n then star(g,n)-{~d Earcs(g)

else [P.: pE. n] cob(g,n);
end cob;

<d , n , n > E. g }

(continued on next page)

SETL # 115 - 24

For directed graphs, we again introduce positive and

negative versions of cob and bd. However, these versions

do not bear the same relation to their antecedents as do

pine, nine, pstar, nstar, etc. to inc, star, etc. For

example, pcob is not defined as the set of arcs leading

from the given set of nodes to some external node; rather

it is defined as the set of arcs emanating from any of the

nodes in the set. Similarly, ncob is defined as the set of

nodes terminating in some one of the nodes in the set.

This is because ncob and pcob are defined so that the rela-

tion cob=pcob//ncob holds.

and star where the relations

Thus cob is unlike inc, adj,

hold.

inc=pinc+ninc

adj=padj+nadj

star=pstar+nstar

Indeed, upon examination it is apparent that pcob

is identical to pstar and ncob to nstar. However, cob

represents an entirely different relation from star since

star=pstar+nstar=pcob+ncob

but cob=pstar//nstar=pcob//ncob.

1 (contd)

definef bd(g,a);
local p;
return if atom n then if#inc(g,a) ~ 2 then inc(g,a)

else nl
else [P.: pc a] bd(g,p);

end bd;

SETL # 115 - 25

Why GRAAL provides two distinct operator names for the

same operator is not entirely clear, although it seems

to stem from the graph theoretic origins of the language.

Pcob is defined recursively, so that pcob(g,n) where n

is an atomic set (a set with only one element) is identical

to pstar(g,n) (i.e. the set of all arcs emanating from the

node n) and pcob(g,n) where n is a general set, is defined

as the symmetric difference over all atomic 1 sets n 0 inn

of pcob(g,n 0) (which is the same as pstar(g,n0)). However,

since an arc can emanate from only a single node this

symmetric difference is identical to the union of ·pstar(g,n)

over all such atomic sets n. Thus pstar(g,n) which is

defined as the union of pstar(g,no) over all such n 0 is
,,(

identical to pcob(g,n). A similar ch,a:in of definitions

leads to the identity of ncob and nstar. However, cob and

star are distinct since cob is defined as the symmetric

difference of pcob and ncob whereas star is defined as the

union of pstar and nstar (this, of course, applies only to

the case of directed graphs; in the undirected case, star

and cob are defined directly).

As an illustration of the preceding, consider gas in

Fig. 9:

Fig. 9

SETL # 115 - 26

Let n = {1,3}

pstar(g,n)=pstar(g,l) + pstar(g,3)={1' ,2 1 ,4'} + nl =
{l',2',4'} = {l',2',4'} // nl = pcob(g,l)//pcob(~3)=
pcob(g,n)

nstar(g,n)=nstar(g,l) + nstar(g,3) = {5'} + {2'}=
{ 5' , 2 ' } = { 5' } / / { 2' } = ncob (g, 1) / / ncob (g, 3)

star(g,n)=pstar(g,n) + nstar(g,n) = {l' ,2' ,4'} + {5' ,2'} =
{ l',2',4',5'}

but cob(g,n)= pcob(g,n) // ncob(g,n) = {l',2',4'} // {5',2 1
}

= {l' ,4' ,5'} t star(g,n).

Although the SETL routines pstar and nstar above

suffice for pcob and ncob, we present routines which mimic

the theoretical definition directly:

definef pcob(g,n);
local p;
return if atom n then pstar(g,n)

else [/:pE n] pcob(g,n);
end pcob;

definef ncob(g,n);
local p;
return if atom n then nstar(g,n)

·else [/:p€n] ncob(g,n);
end ncob;

The operator pbd and nbd are defined by a similar

process as pcob and ncob. Recall that bd(g,a~, where a is

a set of arcs, is the set of nodes incident to exactly one

arc of a at only one point. For a directed graph, this same

SETL # 115 - 27

set may also be defined as follows: first define the

operators

pbd(g,a)=pinc(g,a)

nbd(g,a)=ninc(g,a)

if a is a single arc and then extend the definitions by

symmetric differences for the case where a is an arc set.

Note that unlike the case of pcob and ncob a node may be

the starting or terminating point of more than one arc

so that the symmetric difference is not identical to

the union. For this reason, pbd and nbd operating on a

set of arcs a, are distinct operators from pine ~nd nine.

Finally, the operator bd can be defined for a directed

graph by

bd(g,a)=pbd(g,a)llnbd(g,a).

To illustrate these points, consider again, the graph of

Fig. 9 and let a= { 4' , 2' , 3'} •

pinc(g,a)=pinc(g,4 1) + pinc(g,2') + pinc(g,3')

={l} + {l} + {2} = {1,2}

pbd(g,a) =pinc(g,4') II pinc(g,2') II pinc(g,3')

={l} II {l} II {2} ={2}

ninc(g,a)=ninc(g,4') + ninc(g,2') + ninc(g,3')

={4} + {3} + {4} = {3,4}

nbd(g,a) =ninc(g,4') II ninc(g,2') II ninc(g,3')

={4} II {3} II {4} ={3}

inc(g,a) =pinc(g,a) + ninc(g,a) :

={1,2} ,+ {3,4} = {1,2,3,4}

bd(g,a)=pbd(g,a) II nbd(g,a) = {2} II {3} = {2,3}

SETL # 115 - 28

The SETL routines for pbd and nbd are:

definef pbd(g,a);
local p;
return if atom a then pinc(g,a)

end pbd;

definef nbd(g,a);
local p;

else [/:pE.a] pbd(g,p);

return if atom a then ninc(g,a)
else [/ :pE. a] nbd(g,a);

end nbd;

Note that all of the above primitive routines are

coded assuming the extended triple representation of graphs.

However, by recoding them to apply to any of the other

representations, one can specify higher-level algorithms

directly to that representation. Alternatively, one could

use the previously described conve¼ion routines to convert
~r ;

back and forth between any other representation and

extended triples.

SETL # 115 - 29

IV. Graph algorithms in SETL:

The preceding conversion routines and fundamental

routines can be used in SETL programs to produce more

complex graph algorithms. Indeed, this is the philosophy

behind GRAAL where these routines are provided as built-in

functions. Thus, the developers of GRAAL also have devel

oped a large set of routines in FGRAAL for such purposes

as generating random graphs, finding induced graphs for

a set of arcs or nodes, finding spanning trees of various

forms and discovering connected components, cycles,

cocycles, and blocks of graphs.

Unfortunately, these algorithms are rather complex

and it is not at all apparent fro~ the FGRAAL code what
:1
~ .

the algorithm purports to do and how it does it. Part

of this problem is the lack of recursive routines in

FORTRAN, and so in its extension FGRML. It is our

belief that the development of set-theoretic recursive

definitions of the algorithms would be trivially trans

latable into SETL and would produce cleaner code.

However, we did not undertake such analysis of the

algorithms, but rather were interested in producing SETLB

programs which produced working graph theoretic algorithms.

The path of least resistance (although by no means most

SETL # 115 - 30

creative and useful) was to, as far as possible, transcribe

the FGRAAL algorithms into SETLB. The first step, of

course, was to code the conversion and primitive routines.

These have been (hopefully) completely debugged and accom-

plish their avowed aims. Once those routines were coded,

they could be used in SETL algorithms which mimicked the

FGRAAL algorithms given by the GRAAL developers. This,

of course, uses only a fraction of the SETL power. For

example, a common strategem in these algorithms is to

trace down several paths and then retrace that path which

is found to work. A more natural SETL approach would be

to save the path that one is tracing along with the node

that one is at in the trace so that when the "right" node
✓(

is finally found, the path to it is;~mmediately available.

Two peculiarities, one of SETL and one of GRAAL

caused minor difficulty in the transcription:

1. Since all SETLB argument transmission is by value

(except for sets and tuples, when what is actually

passed is a pointer), in order to return a graph

which has been created within a routine, the

routine must be coded as a function if it is to

be used as an external procedure (which is of course

desirable in coding a set of general purpose algo

rithms). This also means that two distinct graphs

must be returned as a pair. FGRML, being an exten-

sion of FORTRAN, passes arguments by value-result and

so can return a result in one or more parameters.

SETL # 115 - 31

2. The GRAAL phenomenon, mentioned earlier, of using

union and set difference to include the SETLB

WITH. and LESS. operators. This problem continually

crops up since a single FGRAAL statement such as

A=B.UN.C

can have C be a set on one iteration of the loop

and be a single node or arc on the second. A uniform

way to avoid this would be never to use single arcs

or nodes as values of SETLB variables, but always

sets of a single element, e.g. to write

x= {~ s}

rather than x= arb s. Another peculiarity of

GRAAL is that one can ask for the nth element
'(

of a set by using the primi ti:ve ELT(N, S). Thus,

to insure that A and Bare two distinct arbitrary

elements of S one would write:

A= ELT(l,S)

B= ELT(2,S)

This would have to be encoded in SETL by

A= arb S;

B= arb (S less A);

GRAAL also provides for what Knuth calls "deques"

and which the GRAAL authors call "staques", i.e.

linear lists in which items can be inserted or

deleted at either end. Such st~ques and insertions

and deletions from them can easily be simulated

using SETL tuples.

SETL # 115 -32

REFERENCES

1. W. C. Rheinboldt, V. R. Basili, and C. K. Mesztenyi,
On a Pnognamming Language 6on Gnaph Algonithm~,
Bit 12 (1972), 220-241.

2. W. C. Rheinboldt, V. R. Basili, and C. K. Mesztenyi,
GRAAL- A Gnaph Algonithmic Language , reprinted from:
Sparse Matrices and Their Applications, edited by
D. J. Rose and R. A. Willoughby. NSF Grant GJ-1067
and NASA Grant NGL-21-002-008, Computer Science Center,
University of Maryland.

3. W. C. Rheinboldt, V. R. Basili, and C. K. Mesztenyi,
Gnaph Stnuctune Algonithm~ in FGRAAL , Technical Report
TR-225, N00014-67-A-0239-0021 (NR-044-431), NGL-21-002-
008, January 1973.

4. W. C. Rheinboldt, V. R. Basili, and C. K. Mesztenyi,
FGRAAL- Fontnan Extended Gnaph Algonithmic Language,
Technical Report TR-179, NGL-21-002-008 and N00014-
67-A-0239-0021 (NR-044-431), Mar~~ 1972.

~
• I

