
SETL Newsletter# 117

A Static Debugging System for LITTLE.

E. Schonberg
October 4, 1973

The process of debugging can be roughly divided into two phases:

a) Elimination of lexical and syntactic errors.

b) Elimination of semantic errors.

Phase a) is straightforward in principle, as errors of type a)

are invariably detected by the lexical scanner or by the parser.

Diagnostic messages are generally explicit enough to make error

correction an easy matter.

Phase b) is considerably harder, and constitutes of course the

true field of action of the programmer. At the highest level,

semantic errors are highly non-local flaws in the design of an

algorithm, errors hidden in its globa\ ,;ogic e.g., the existence

of potentially infinite loops, or the d~struction by one part of

a program of data-structures needed by some other portion of it.

At a lower level but still semantic lie data-type errors more local

in nature, i.e. a kind of error independent, or only weakly

dependent, on program flow. In contrast with semantic errors of

the most global kind, algorithms do exist for the compile- time

detection of this latter sort of semantic error. At the simplest

level, such algorithms will verify that the arguments of each

operator in a program are of a data-type to which the operator

legally applies. The data-types and operators to which checks

of this sort are usually applied are those explicitly provided

by the language; these consistency checks can in fact be handled

directly by a parser at the cost of adding a numbers of productions

to the grammar of the language, (making these checks explici ty

syntactic.) In the case of languages wh~rc data-types are allowed

to vary dynamically (as is the case for SETL)this type of checking

becomes more complex, as one has to take program flow into account

explicitly in order to follow the effect of successive assignments

to the same variable.

In the case of LITTLE, where in principle only one data-type

is provided, namely the bit-string, this approach will not yield

anything more than what is obtained already from the parser.

However, LITTLE'S bit strings are used in a stereotyped way to

build the data-structures that the user has in mind when designing

his algorithm. The LITTLE field-extractors allow these data

structures to be quite elaborate. The realization of these

data structures in terms of bit-strings contains implicitly a

description of the semantics of the algorithm. Building on this

observation, the system to be outlined in this note will allow

a LITTLE user to describe, in relatively simple fashion some

of the semantic content of his program: The system-will then

check at compile-time that the instructions in the program are

in accord with the semantic description it has been given. As

a simple example of what we have in mind, consider the use of

the macro eptr in the SETL run-time f~Qrary. It is useful to
' .

specify that this macro represents a field-extractor, and that

when applied to a SETL object it extracts a pointer out of it.

Furthermore, pointers can be used as indices to dynamic storage,

2

and in restricted fashion 1n arithmetic statements, but not as

masks or as operands of bo-olean operations in general. Once this

information is supplied to the system we have in mind, the sequence:

arg2 = eptr argl;

temp= param + arg2;

will be seen as valid, and the variable temp will be recognized

to be a pointer also (provided param 1s known to be an integer)

while the sequence:

arg2 = eptr argl;

temp= param. and. arg2;

will be flagged as being objectionable.

The preceeding example indicates that field extractors

corresponding to specific named fields should be treated as

prefix operators, and that semantic description of both the

data-types to which these extractors apply and of the data-types

extracted by them is required. We emphasize that the scheme

proposed here is totally static, i.e. that no account is taken

of flow of control within the program. Each variable will be

assumed to retain the same type throughout its scope, orat

worst to have one of several types declared for it at the onset

of the program.

The implementation of this scheme requires that we make

some simple additions to the LITTLE grammar,that we build

certain data-structures, and that we design an algorithm which

examines the parse tree of a statement (after its validation by

the parser) and assigns data-types to expressions and variables.

We proceed to discuss each one of these:.,operations in some detail.
·,

A. Type declarations: Additions to the LITTLE Grammar.

We add the following declaration forms to the grammar of

LITTLE:

1 - a declare statement of the form:

3

1.1 declare / vartypel/ varll, varl2 ... varln / vartype2/var21 ...

/ vartypek/ ... ;

where vartypel,vartype2,etc. are names freely chosen by the

user to designate the type of a variable,e. g. charstring,

hashindex, roottuple, etc.; and varll ... are names of sized

variables. For the scheme to be at all us·eful, all sized variables

must be declared to have some variable-type. We allow variable-types

with no variables associated with them,· however, as these

may be useful in connection with expressions, and also in

connection with parameter-passing in procedure calls and returns

(specially if those are done through global variables which are

not explicitly declared in the program).

Array variables, which are both sized and dimensioned, will

appear in a type-declaration statement like the one described

above, as having the type array. They will be further described

by a statement of the form;

1.2 declare array arrayname (indextype), arrayentry;

indextype and arrayentry are both variable-types.

2. The semantic description of operators (and field extractors)

will take a different form. For prefix operators and field

extractors, it is natural to consider the declaration:

2.1 from vartypel get v~rtyoe2 using opname;

4

The user has no possibility of creating new infix operators, but

he must specify how the ones present in the language act on his

variable-types. The declaration: 1.

2.2 from vartypel and vartype2 get vartype3 using opname;

will convey this information.

It will be convenient to keep in the system information about

the commonest variable-types and operators (integers and

arithmetic operators, bit-strings and logical operators) to save

the user from the burden of oft-repeated declarations.

3. The declaration statements for functions and subroutines

are somewhat complicated by the fact that both can have

side effects, and that they may use global variables for linkage.

We need to declare the valid data-types of the calling parameters

and of the global variables used for input; We also need to

declare the assignments made by the procedure to its calling

parameters and to global variables that·may be affected by it.

In the case of functions, we also have to specify the variable

type of the valu~ returned explicitly by the function. This

information can be conveyed by the following statement-form:

5

declare procedure procname (typeinl, ... typeink) ,(typeoutl,typeoutn),

((globinl, gtypeinl) , .•.• (globinj, gtypeinj)),

(globoutl,gtypeoutl), ..•. (globoutk,gtypeoutk));

The procedure name is followed by four lists:

a) The list of valid variable-types of the input-parameters

to the procedure.

b) The list of variable-types assigned to its output-parameters

by the procedure. In the case of a function, this list will

have only one element.

c) The list of valid variable-types of global variables

used for input.

d) The list of assignments to global variables that

describe the side-effects of the procedure.

It should be pointed out that by taking' into account side-effects

of procedures, the system we describe ceases to be strictly

local: after a procedure call, some global variables will be known to

have some variable-type, and this information

validate subsequent code.

B. Implementation.

1 . Data Structures

will be used to

The declaration statements just described are used to

build tables that collect information on variable-types and.operators.

These table are the following:

a) A property table proptab containing all variable names

and their assigned types. In the SETL algorithm that follows we

will assume that proptab is a set of the:form:

proptab = {< varl, { vartypell, ... vartypeln } >,. ··

<vark, { vartypekl, ... vartypekm} > };

several types can be assigned to a single variable, which may be

used for various purposes in a program.

b) an infix-operator table, infixtab, of the form

infixtab = { < infopl, { < argli, arglr, resultl >

< argk£, argkr, resultk > } >,

< infopk, { < >, < > } > };

each entry 1s a pair whose first element 1s an operator name;

the second element is a set of triples; each triple consists

of a pair of valid variable-types for the arguments of the
·1 operator, and the variable-type of the ~esult obtained by

applying the operator to them.

c) a prefix-operator and field extractor table, of

similar form:

prefixtab = { < prefopl, {< argl, resultl >, <argk, resultk>} >,

<prefopj, { < > ••• } > } ;

d) an index and array table

e) A table proctab describing subroutines and functions.

The entries in this table will be almost identical to the body

of the declare statements for these procedures.

Them there will

For each of

6

be a list of variable-types for the calling parameters; a list

of variable types for the output parameters (or in the case of

a function, for the value returned by it); and 2 lists of pairs,

one for input and one for output global variables. The SETL

data-structure assumed is:

7

proctab = {< procnamel, <typeinl, ... typeink>,<typeoutl, ... typeoutk>,

{ < globinl, gtypeinl> ..•. }, { <globoutl,gtypeoutl> ... }>,

<proknamek < >,< >,{},{}>};

Once these tables are built, the semantic description of the

program embodied in them can be checked for completeness. This

raises a number of interesting questions which we shall bypass,

except for the following simple remark: if we consider the

variables in a program as the nodes of a graph, the operators as

edges between nodes, and called procedl[,Fes as links between
, '

subgraphs, then the graph representing the complete semantic

description given by the user has to be connected. Otherwise,

either the semantic description given is incomplete or incorrect,

or else the program is actually made up of disjoint pieces which

do not interact, and should be divided accordingly.

It might be worth to investigate further the information

contained in the connectedness structure of this "semantic graph"
o f a p r o gr am .

3. Main algorithm.

Once the tables described in the preceeding section are

constructed, a tree-walking procedure can examine the parse-tree

of the declared variable types to each node. If the statement

is an assignment statement a check against proptab is made for

the variable on the left-hand side of the assignment. If at

some point an invalid operation is detected, the corresponding

node is assigned the value undet This value propagates upwards

and generates a diagnostic at the statement level.

The main procedure is a function staticval which is applied

recursively to the nodes of the parse tree. It calls upon specific

validating procedures:

~alidinf validpref validindex, and validproc, each of which
scans the approprate table, and returns either a variable type

or the value undef. A global flag valid is used to propagate

any detected invalid operation upwards rapidly. The validating

procedures also output the appropiate diagnostic messages.

In the SETL algorithm that follows, we assume that the

parse-tree is represented by a nested tuple whose elements are

sub-trees or twigs (corresponding to lexical types): Operators

and operands are grouped in the usual inverse-polish ordering,

so that for example the statement

C = A+B; '(

has the representation:

< = C < + A B > >

The following forms are assumed for the specific statements noted

below

a) indexed retrieval: V(i):

< index, VI >

b) if statement: < ifstat, cond, label >

c) subroutine call: < call, subname, < argl ... argn>>

d) A function call with complex parameters will be represented

by 3 similar tree, so that

The statement X = f(y) will have the representation

< = x, < call, f, y > >

8

We also assume that named field extractors are treated as prefix

operators, so that their names appear in the parse-tree, instead

of their macro-expanded forms.

Finally, we require that the user include in his type

declarations all the constants mentioned in the program, so that

entries will be made for them into proptab. We emphasize again

that the entry corresponding to a given variable is not a

variable-type but a set of them. This will actually reduce the

number of declarations that the user has to make; by assigning

a type whose relationship to certain operators is known through

other declarations to a variable, we make it unnecessary to

repeatedly specify the relationship of that variable to these

operators. The SETL algorithm for the static checking procedure

described above is as follows:

define£ staticval (node);

/* check whether a previously evaluated sub-tree was found

invalid*/

if valid~ false then return om ;;

if atom(node) then

return proptab(node) ;;

/* it is a lexical type*/

if prefixtab(node(l) 1s opname) ne om then

/* it is a prefix operator*/

return validpref (opname, staticval(node(2)));

9

else if infixtab(opname) ne om then/* it is an infix operator*/

return validinf(opname, staticval(node(2)), staticval(node(3)));

else if opname eq index then

return validindex (proptab(node(2)), staticval(node(3)));

else if opname ~ ifstat then

return staticval(node(2));

else if opname ~ call then

arglist = nult;

/* procedure call */

(1 < k < # (node (3) is listargs)) arglist = arglist +

<staticval(listargs(k))>;

return validproc (node(2), arglist);

else if opname ~ f = f then /*assignment statement*/

/* if the left-hand side is the name of a global variable, for

which there may be no entry in proptab, then there is no

consistency check to be made. Rather, an.entry intG proptab has

to be made for that variable*/

if (atom(node(2) is leftvar)) and (proptab(leftvar) ~ om)then

proptab(leftvar) = staticval6~ode(3));
~ / -. '

else if n (3 valleft E staticval(node(2)) ,valright E

staticval (node(3))

!valleft ~ valright) then

10

print (f invalid assignment statement. types of I.h.s. and r.h.s.

are incompatible r);

else

else

return !_;;

end staticval;

return om;

return t , ,

/* it is not an executable statement*/

The validating procedures validinf, validpref and validindex

have very similar forms. Each uses its own table; if an invalid

operation is detected, each outputs a diagnostic message and sets

the global flag valid to false.

define£ validpref (prefixop, arg);

if n (3 val E: arg I (prefi~{tab (prefixop, val) is result) ne om)

then valid= f;

11

print (t invalid use of a,prefix operator or field extractor f,

prefixop, arg);

else return {result};;

end validpref;

similar code will appear, with obvious modifications, in validinf

and validindex Validproc is somewhat more complicated. For

each variable in the list of calling parameters, and for each of

the global variables that are input to the subroutine, we try to

find a match between the declared variable-types and the

calculated staticval' s. If matching 1 ~~ sucessful, entries are

made into proptab for all output parai~ters and global variables.

define£ valid proc(procname, arglist);

/* arglist contains the calling parameters of the procedure. In

the case of a subroutine this will include the output parameters.

We assume that arglist is ordered so that all input parameters

appear first. */

inlist = proctab(procname) (1);

invars # inlist;

(1 <Vk < invars)

if n (3 types arglist(k) !type~ inlist(k)) then go to error;;;

/* check global variables used for input. */

globsin = proctab(procname) (3);

(V globin E: globsin)

12

if~(] type£ proptab(globin(l)) Jtype eq globin(Z)) then go to error;;;

/* assign variable-types to output parameters. */

outlist = proctab(procname)(Z);

(1 <Vk < # outlist)

proptab (arglist(k + invars)) = {outlist(k)};;

/* assign variable-types to global variables affected*/

globsout = proctab{procname) (4);

(V globout E globsout)

proptab (globout(l)) = {globout(Z)};;,

/* return the value of the function. If the procedure 1s a

subroutine, the returned value is superfluous, as no further

.~t ,
checks will be made on it. */

,.

return {outlist(l)};

error: print (f invalid parameters 1n procedure call f,
procname, arglist);

Valid= f;

return om;

end validproc;

