
SETL Newsletter# 117 

A Static Debugging System for LITTLE. 

E. Schonberg 
October 4, 1973 

The process of debugging can be roughly divided into two phases: 

a) Elimination of lexical and syntactic errors. 

b) Elimination of semantic errors. 

Phase a) is straightforward in principle, as errors of type a) 

are invariably detected by the lexical scanner or by the parser. 

Diagnostic messages are generally explicit enough to make error 

correction an easy matter. 

Phase b) is considerably harder, and constitutes of course the 

true field of action of the programmer. At the highest level, 

semantic errors are highly non-local flaws in the design of an 

algorithm, errors hidden in its globa\ ,;ogic e.g., the existence 

of potentially infinite loops, or the d~struction by one part of 

a program of data-structures needed by some other portion of it. 

At a lower level but still semantic lie data-type errors more local 

in nature, i.e. a kind of error independent, or only weakly 

dependent, on program flow. In contrast with semantic errors of 

the most global kind, algorithms do exist for the compile- time 

detection of this latter sort of semantic error. At the simplest 

level, such algorithms will verify that the arguments of each 

operator in a program are of a data-type to which the operator 

legally applies. The data-types and operators to which checks 

of this sort are usually applied are those explicitly provided 

by the language; these consistency checks can in fact be handled 

directly by a parser at the cost of adding a numbers of productions 

to the grammar of the language, (making these checks explici ty 

syntactic.) In the case of languages wh~rc data-types are allowed 

to vary dynamically (as is the case for SETL)this type of checking 

becomes more complex, as one has to take program flow into account 

explicitly in order to follow the effect of successive assignments 

to the same variable. 



In the case of LITTLE, where in principle only one data-type 

is provided, namely the bit-string, this approach will not yield 

anything more than what is obtained already from the parser. 

However, LITTLE'S bit strings are used in a stereotyped way to 

build the data-structures that the user has in mind when designing 

his algorithm. The LITTLE field-extractors allow these data 

structures to be quite elaborate. The realization of these 

data structures in terms of bit-strings contains implicitly a 

description of the semantics of the algorithm. Building on this 

observation, the system to be outlined in this note will allow 

a LITTLE user to describe, in relatively simple fashion some 

of the semantic content of his program: The system-will then 

check at compile-time that the instructions in the program are 

in accord with the semantic description it has been given. As 

a simple example of what we have in mind, consider the use of 

the macro eptr in the SETL run-time f~Qrary. It is useful to 
' . 

specify that this macro represents a field-extractor, and that 

when applied to a SETL object it extracts a pointer out of it. 

Furthermore, pointers can be used as indices to dynamic storage, 
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and in restricted fashion 1n arithmetic statements, but not as 

masks or as operands of bo-olean operations in general. Once this 

information is supplied to the system we have in mind, the sequence: 

arg2 = eptr argl; 

temp= param + arg2; 

will be seen as valid, and the variable temp will be recognized 

to be a pointer also (provided param 1s known to be an integer) 

while the sequence: 

arg2 = eptr argl; 

temp= param. and. arg2; 

will be flagged as being objectionable. 



The preceeding example indicates that field extractors 

corresponding to specific named fields should be treated as 

prefix operators, and that semantic description of both the 

data-types to which these extractors apply and of the data-types 

extracted by them is required. We emphasize that the scheme 

proposed here is totally static, i.e. that no account is taken 

of flow of control within the program. Each variable will be 

assumed to retain the same type throughout its scope, orat 

worst to have one of several types declared for it at the onset 

of the program. 

The implementation of this scheme requires that we make 

some simple additions to the LITTLE grammar,that we build 

certain data-structures, and that we design an algorithm which 

examines the parse tree of a statement (after its validation by 

the parser) and assigns data-types to expressions and variables. 

We proceed to discuss each one of these:.,operations in some detail. 
·, 

A. Type declarations: Additions to the LITTLE Grammar. 

We add the following declaration forms to the grammar of 

LITTLE: 

1 - a declare statement of the form: 
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1.1 declare / vartypel/ varll, varl2 ... varln / vartype2/var21 ... 

/ vartypek/ ... ; 

where vartypel,vartype2,etc. are names freely chosen by the 

user to designate the type of a variable,e. g. charstring, 

hashindex, roottuple, etc.; and varll ... are names of sized 

variables. For the scheme to be at all us·eful, all sized variables 

must be declared to have some variable-type. We allow variable-types 

with no variables associated with them,· however, as these 

may be useful in connection with expressions, and also in 

connection with parameter-passing in procedure calls and returns 

(specially if those are done through global variables which are 

not explicitly declared in the program). 



Array variables, which are both sized and dimensioned, will 

appear in a type-declaration statement like the one described 

above, as having the type array. They will be further described 

by a statement of the form; 

1.2 declare array arrayname (indextype), arrayentry; 

indextype and arrayentry are both variable-types. 

2. The semantic description of operators (and field extractors) 

will take a different form. For prefix operators and field 

extractors, it is natural to consider the declaration: 

2.1 from vartypel get v~rtyoe2 using opname; 
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The user has no possibility of creating new infix operators, but 

he must specify how the ones present in the language act on his 

variable-types. The declaration: 1. 

2.2 from vartypel and vartype2 get vartype3 using opname; 

will convey this information. 

It will be convenient to keep in the system information about 

the commonest variable-types and operators (integers and 

arithmetic operators, bit-strings and logical operators) to save 

the user from the burden of oft-repeated declarations. 

3. The declaration statements for functions and subroutines 

are somewhat complicated by the fact that both can have 

side effects, and that they may use global variables for linkage. 

We need to declare the valid data-types of the calling parameters 

and of the global variables used for input; We also need to 

declare the assignments made by the procedure to its calling 

parameters and to global variables that·may be affected by it. 

In the case of functions, we also have to specify the variable 

type of the valu~ returned explicitly by the function. This 

information can be conveyed by the following statement-form: 
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declare procedure procname (typeinl, ... typeink) ,(typeoutl,typeoutn), 

(( globinl, gtypeinl) , .•.• (globinj, gtypeinj)), 

(globoutl,gtypeoutl), ..•. (globoutk,gtypeoutk)); 

The procedure name is followed by four lists: 

a) The list of valid variable-types of the input-parameters 

to the procedure. 

b) The list of variable-types assigned to its output-parameters 

by the procedure. In the case of a function, this list will 

have only one element. 

c) The list of valid variable-types of global variables 

used for input. 

d) The list of assignments to global variables that 

describe the side-effects of the procedure. 

It should be pointed out that by taking' into account side-effects 

of procedures, the system we describe ceases to be strictly 

local: after a procedure call, some global variables will be known to 

have some variable-type, and this information 

validate subsequent code. 

B. Implementation. 

1 . Data Structures 

will be used to 

The declaration statements just described are used to 

build tables that collect information on variable-types and.operators. 

These table are the following: 

a) A property table proptab containing all variable names 

and their assigned types. In the SETL algorithm that follows we 

will assume that proptab is a set of the:form: 



proptab = {< varl, { vartypell, ... vartypeln } >,. ·· 

<vark, { vartypekl, ... vartypekm} > }; 

several types can be assigned to a single variable, which may be 

used for various purposes in a program. 

b) an infix-operator table, infixtab, of the form 

infixtab = { < infopl, { < argli, arglr, resultl > 

< argk£, argkr, resultk > } >, 

< infopk, { < >, < > } > }; 

each entry 1s a pair whose first element 1s an operator name; 

the second element is a set of triples; each triple consists 

of a pair of valid variable-types for the arguments of the 
·1 operator, and the variable-type of the ~esult obtained by 

applying the operator to them. 

c) a prefix-operator and field extractor table, of 

similar form: 

prefixtab = { < prefopl, {< argl, resultl >, <argk, resultk>} >, 

<prefopj, { < > ••• } > } ; 

d) an index and array table 

e) A table proctab describing subroutines and functions. 

The entries in this table will be almost identical to the body 

of the declare statements for these procedures. 

Them there will 

For each of 
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be a list of variable-types for the calling parameters; a list 

of variable types for the output parameters (or in the case of 

a function, for the value returned by it); and 2 lists of pairs, 

one for input and one for output global variables. The SETL 

data-structure assumed is: 
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proctab = {< procnamel, <typeinl, ... typeink>,<typeoutl, ... typeoutk>, 

{ < globinl, gtypeinl> ..•. }, { <globoutl,gtypeoutl> ... }>, 

<proknamek < >,< >,{},{}>}; 

Once these tables are built, the semantic description of the 

program embodied in them can be checked for completeness. This 

raises a number of interesting questions which we shall bypass, 

except for the following simple remark: if we consider the 

variables in a program as the nodes of a graph, the operators as 

edges between nodes, and called procedl[,Fes as links between 
, ' 

subgraphs, then the graph representing the complete semantic 

description given by the user has to be connected. Otherwise, 

either the semantic description given is incomplete or incorrect, 

or else the program is actually made up of disjoint pieces which 

do not interact, and should be divided accordingly. 

It might be worth to investigate further the information 

contained in the connectedness structure of this "semantic graph" 
o f a p r o gr am . 

3. Main algorithm. 

Once the tables described in the preceeding section are 

constructed, a tree-walking procedure can examine the parse-tree 

of the declared variable types to each node. If the statement 

is an assignment statement a check against proptab is made for 

the variable on the left-hand side of the assignment. If at 

some point an invalid operation is detected, the corresponding 

node is assigned the value undet This value propagates upwards 

and generates a diagnostic at the statement level. 



The main procedure is a function staticval which is applied 

recursively to the nodes of the parse tree. It calls upon specific 

validating procedures: 

~alidinf validpref validindex, and validproc, each of which 
scans the approprate table, and returns either a variable type 

or the value undef. A global flag valid is used to propagate 

any detected invalid operation upwards rapidly. The validating 

procedures also output the appropiate diagnostic messages. 

In the SETL algorithm that follows, we assume that the 

parse-tree is represented by a nested tuple whose elements are 

sub-trees or twigs (corresponding to lexical types): Operators 

and operands are grouped in the usual inverse-polish ordering, 

so that for example the statement 

C = A+B; '( 

has the representation: 

< = C < + A B > > 

The following forms are assumed for the specific statements noted 

below 

a) indexed retrieval: V(i): 

< index, VI > 

b) if statement: < ifstat, cond, label > 

c) subroutine call: < call, subname, < argl ... argn>> 

d) A function call with complex parameters will be represented 

by 3 similar tree, so that 

The statement X = f(y) will have the representation 

< = x, < call, f, y > > 
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We also assume that named field extractors are treated as prefix 

operators, so that their names appear in the parse-tree, instead 

of their macro-expanded forms. 

Finally, we require that the user include in his type 

declarations all the constants mentioned in the program, so that 

entries will be made for them into proptab. We emphasize again 

that the entry corresponding to a given variable is not a 

variable-type but a set of them. This will actually reduce the 

number of declarations that the user has to make; by assigning 

a type whose relationship to certain operators is known through 

other declarations to a variable, we make it unnecessary to 

repeatedly specify the relationship of that variable to these 

operators. The SETL algorithm for the static checking procedure 

described above is as follows: 

define£ staticval (node); 

/* check whether a previously evaluated sub-tree was found 

invalid*/ 

if valid~ false then return om ;; 

if atom(node) then 

return proptab(node) ;; 

/* it is a lexical type*/ 

if prefixtab(node(l) 1s opname) ne om then 

/* it is a prefix operator*/ 

return validpref (opname, staticval(node(2))); 
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else if infixtab(opname) ne om then/* it is an infix operator*/ 

return validinf(opname, staticval(node(2)), staticval(node(3))); 

else if opname eq index then 

return validindex (proptab(node(2)), staticval(node(3))); 

else if opname ~ ifstat then 



return staticval(node(2)); 

else if opname ~ call then 

arglist = nult; 

/* procedure call */ 

( 1 < k < # (node (3) is listargs)) arglist = arglist + 

<staticval(listargs(k))>; 

return validproc (node(2), arglist); 

else if opname ~ f = f then /*assignment statement*/ 

/* if the left-hand side is the name of a global variable, for 

which there may be no entry in proptab, then there is no 

consistency check to be made. Rather, an.entry intG proptab has 

to be made for that variable*/ 

if (atom(node(2) is leftvar)) and (proptab(leftvar) ~ om)then 

proptab(leftvar) = staticval6~ode(3)); 
~ / -. ' 

else if n ( 3 valleft E staticval(node(2)) ,valright E 

staticval (node(3)) 

!valleft ~ valright) then 
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print ( f invalid assignment statement. types of I.h.s. and r.h.s. 

are incompatible r); 

else 

else 

return !_;; 

end staticval; 

return om; 

return t , , 

/* it is not an executable statement*/ 

The validating procedures validinf, validpref and validindex 

have very similar forms. Each uses its own table; if an invalid 

operation is detected, each outputs a diagnostic message and sets 

the global flag valid to false. 



define£ validpref (prefixop, arg); 

if n ( 3 val E: arg I (prefi~{tab (prefixop, val) is result) ne om) 

then valid= f; 
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print (t invalid use of a,prefix operator or field extractor f, 

prefixop, arg); 

else return {result};; 

end validpref; 

similar code will appear, with obvious modifications, in validinf 

and validindex Validproc is somewhat more complicated. For 

each variable in the list of calling parameters, and for each of 

the global variables that are input to the subroutine, we try to 

find a match between the declared variable-types and the 

calculated staticval' s. If matching 1 ~~ sucessful, entries are 

made into proptab for all output parai~ters and global variables. 

define£ valid proc(procname, arglist); 

/* arglist contains the calling parameters of the procedure. In 

the case of a subroutine this will include the output parameters. 

We assume that arglist is ordered so that all input parameters 

appear first. */ 

inlist = proctab(procname) (1); 

invars # inlist; 

( 1 <Vk < invars) 

if n (3 types arglist(k) !type~ inlist(k)) then go to error;;; 

/* check global variables used for input. */ 

globsin = proctab(procname) (3); 

( V globin E: globsin) 
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if~(] type£ proptab(globin(l)) Jtype eq globin(Z)) then go to error;;; 

/* assign variable-types to output parameters. */ 

outlist = proctab(procname)(Z); 

(1 <Vk < # outlist) 

proptab (arglist(k + invars)) = {outlist(k)};; 

/* assign variable-types to global variables affected*/ 

globsout = proctab{procname) (4); 

( V globout E globsout) 

proptab (globout(l)) = {globout(Z)};;, 

/* return the value of the function. If the procedure 1s a 

subroutine, the returned value is superfluous, as no further 

.~t , 
checks will be made on it. */ 

,. 

return {outlist(l)}; 

error: print ( f invalid parameters 1n procedure call f, 
procname, arglist); 

Valid= f; 

return om; 

end validproc; 


