
SETL Newsletter # 118

Revised and extended algorithms for

deducing the Types of Objects

Occuring in SETL Programs.

A. Tenenbaum
October 20, 1973

In a language without declarations such as SETL, any

variable may at any point in a program represent a value having

one of several different data types. During execution, the type

of the variables must be checked to determine the meaning of an

operation. Of course, this is time consuming and accounts in

some measure for SETL's inefficiency. When the type of a variable

can be determined at compile time, a compiler can in principle

produce code to perform the desired operation more efficiently.

Even if we do not insist on progr,arnrner declaration of
·,..;

all variables, the type of a variable can be determined at

compile time in one of two possible ways:

i) If a variable x is the result of operator op applied to

quantities y and z of known type, the type of x can be deduced

by knowing what type of results op produces from objects of

the types of y and z. For example, if x=y+z appears in a

program and y and z are tuples, then x must also be a tuple.

ii) The type of a variable can often be determined merely from

the fact that a given operation is applied to it. For example,

if t£ x appears in a program, then x is known to be a tuple.

There are two chief differences between these two methods

of type determination. The first difference is that the first

method propagates knowledge of types in the direction of execution

flow while the second method propagates that knowledge in the

reverse direction. The second difference is that when dealing

with compound types such as sets and tuples, the first method

will give much more detailed type information about the constituent

elements within the compounq type.

To illustrate these differences, consider the following two

examples:

a) x = 2; ready; b) read x, y;

z = y + x; Z = X + y; W = ti z;

In example a) x is of known type integer since it results from

an assignment operation on an integer constant. Although the

type of y cannot yet be determined, the type of z is known

to be integer since it results from adding an integer (x) to

some quantity. Note that these deductions are an example of

method (i) and that type information has propagated in the

2

direction of program flow. However, once we know that z is an

integer, we see that the use of y is in an addition which results

in an integer, so that y itself must be an integer. Therefore

in the read statement where y is de{ined, an integer must have

been read in. This in an example of ~~thod (ii). Similarly in

example (b) above, since z is involved in a ti operation, it

must be a tuple, once this has been determined, x and y can also

be classified tuples by their use in a plus operation which

produces a tuple.

The deduction of types by method (i) is a relatively

straightforward matter. If the types of all uses making up

an operation are known, the deduction of the resulting type

amounts to merely looking up in a precalculated table the type

that will result when the given operation is applied to the

given types.

However, type deduction by method (ii) is more complex. In

this method, the type of a defined varia~le is <leduced from

the way in which the variable is used in subsequent operations.

Thus we must look into the question of how the type of a

variable use can determine the type of that variable at definition.

Specifically, if two uses of a variable exist along two disjoint

paths of control flow from the definition, we cannot say that

the definition must have the types of both uses since the branch

may have been dependent on the variable's type and may have

been specifically designed to bypass one of the uses when the

variable's type is incompatible with that of the use. However,

if two uses lie on the same path of control flow,then both are

equally valid determinants of the definition type.

There are however two possibilities that further complicate

the situation. If there exists a path from a variable de -

finition to an exit node of the program, no deduction of the

definition type is possible from uses of the variable occuring

past that node. This is because the choice as to whether to

exit the program or enter one of the successor nodes may be

dependent on the type of the variabl~.,

Similarly, if there is a path to~a redefinition of the

variable, any uses occuring on that path past the redefinition

cannot be used for type determination since the path to the

redefinition may be taken to redefine the variable to make it

compatible with the use. An illustration of this situation is

the following graph:

Here the use of x in block 3 cannot be used to determine the

type of the definition in block 1.

3

We shall now give a formal definition of variable type

deduction by method (ii) in terms of a series of equations
which use the following notational conventions. Gives types

t
1

and t
2

, the operation t
1

alt t
2

produces a type t 3
which indicates that the object under consideration is of type

either t
1

or t
2

. Similarly, the operation t 1 both t 2 produces

a type which indicates that the object is of both type t
1

and t
2

,

if such a type is possible. If bis a block, we indicate its

entry by y 0 and its exit by eb. The inverses of these

functions are written b and b respectively. In what
y e

follows, tg indicates the general type about which nothing is

known, backtype is the function which determines the type from

the way a variable is used in a given use and du is a function

which, given a definition and a block, returns all possible uses

of the defined variable in that bloc~.
~- I ·, '

The equations which follow are for a function tfu defined

on block entrances and exits and which give the type deduced

from use for an definition, def:

(1) tfu(e) = tg if e is a program exit or if b contains a
e

definition other than dif 6f the variable defined by def.

otherwise

(3) tfu(y) = both: uEdu(def, by)] backtype(u) both tfu (e(by)),

The final deduced type of def will be tfu(yb),where b is

the block containing def.

Before taking up the details of the typechecking algorithm

itself, it is well to define the representation of a program on

which it operates. A program is considered to be five-tuple

of the form

< nodes, progrph, entry, cesor, cons, exits> where:

nodes is the set of basic blocks in the program.

Progrph is the program graph and is a mapping which takes each

member of nodes into a tuple which represents the operations

occuring in that basic block in order of execution.

4

5

Each operation is represented by a tuple consisting of

entry
the output variable, the operation and the input variables.

is the element of nodes which is the entry point

cesor

cons

exits

to the program.

is a mapping from nodes into 2nodes which gives

for each basic block, the set of its sucessors.

is the set of constants occuring in the program

is the set of exit blocks of the program.

Preliminary processing of the program determines the

following sets:

the set of all definitions appearing in the program.

For the purposes of our algoritihm, a definition is a
. 'I

triple consisting of the defined variable, the basic

block within which the definition appears, and the

integer which gives the position of the definition

within the basic block.

defsreaching, a function which maps each basic block into the

set of all definitions which are "live" at the

entry to that block; i.e. such that the use of a

variable within the block may refer to the value

of that variable given by one of these definitions.

This is determined by a use-definition chaining

algorithm.

The first step of the typechecker, which may more -properly

be considered as part of the use-definition chaining algorithm,

is to create two mappings: ud and du. The first associates

with each use of a variable the set of all definitions which

may determine the value of the variable at that use. The second

is the inverse of the first; it associates with each definition.

The set of all uses where the value of that definition may be

utilized.

For the purpose of this algorithm, a use is a quadruple consisting

of the variable name, the basic block in which the use appears,

the position of the operation within which it appears in the

basic block, and the integer which tells which input variable

it is within the operation.

The algorithm for calculating ud and du is as follows:

define udfct;

I* defsreaehing, progrph ud and du are assumed global*/

ud = n.Q,; du = n.Q,;

(V block E progrph) optup.Q, = block(2)

I* optupl is the set of operations in a given block*/

defset = defsreaching (block(l) is node);

6

(1 < = Vi < = #optup.Q,) result =(optup.Q, (i) is opti) (i);

op=opti(2); -~ ~
d = <result, node~ i>; /* set up the definition

corresponding to the i th operation in the block*/

(3 < = Vj < = # opti) u = <opti(j), node, i,j>;

I* set up the use corresponding to the jth variable

used in the ith operation in the block*/

ud(u) = { x E defset I x(1) ~ u(1)};

I* the set tif definitions which could possibly apply

to use u * I

end Vj;

s = {x E defset result eq x (1) } ;

I* update defset by removing all definitions which define

the same variable as the current definition, adding the

current definition*/

defset = defset - s with d;

end Vi;

end V block;

(~ d E defs) du(d) = n.Q,;;

(V x E ud , d E x(2)) du(d) = du(d) with x(i);;

I* this sets up du as the inverse function of ud * I
end udfct;

We now move to a description of the typechecker proper.

The result of the typechecker will be a mapping typ which

assigns to each definition and constant in the program its

deduced type. We leave a discussion of how we represent these

types for later, but mention that we initialize the types of

constants to be their types and the types of all definitions to

be the "undefined" type signifying that nothing is known about

their types.

We then invoke the routine grafproc which is in charge of

the global management of the typechecker. Grafproc keeps a set

of definitions, work, which consists of all definitions whose

type may be determined. Initially, works consists of all the

definitions in the program to be processed. A single definition

is removed from work and its type determined by the routine

7

defproc. The determination of the ~ype of a single definition

enables us to determine the type of tt:ro other groups of definitions.

(i) Those definitions which result from an operation applied

to a use of the variable whose type has just been determined.

(ii) The determination of the type of this definition may enable

the determination of the· type of one of the variables used in

this definition, which in turn may enable the determination of

the type of the definition where that variable was defined.

Note that the first group corresponds to the first method

of typechecking discussed above and the second group to the

second method.

The definitions in the first group are given by:

[+: u E:du(d)] { df E clefs I !_!df eq u(2:2)}

while those in the second group are given by:

[+: u E: usepile] ud(u)

where usepile is a tuple of all the uses which make up the

current definition d. Usepile is a global variable which 1s

built up by defproc 1n processing the definition d.

8

The code for grafproc follows:

define grafproc;

I* defs, usepile are global*/

I* initialize workset * / work= defs;

(while work ne ni) d from work;/* remove a definition

from work*/

if defproc(d) then

work= work+ [+: u E du(d)] {df E defs I ti df eq u(Z:2)}

orm nt +[+: u E usepile] ud(u) ;;

end while,

return;

end grafproc;

The routine defproc processed the definition which is its

argument, determining its type. If ~~is type differs from its

original type signifying that more i~formation is known about the

definition, defproc returns true which is a signal to grafproc

to add all definitions which may be affected by a type change

1n this one to the set work.

We now give the code for the routine defproc. This function

calls on two other functions n~wtyp and back which determine

the type of a definition by methods one and two respectively;

that is, newtyp combines the known types of the variables which

make up the definition, utilizing the operation in the tuple to

produce the type of the result, while back searches for all uses

of the defined variable and combines type information deduced by

the way the variable is used into a type for the variable. These

two returned types for the definition are'then combined by the

function both which produces a "lowest cq:irnrnon denominator", i.e . .
the type of an object known to have both of two given types. If

this resultant type is different from the known type of the

definition on entry to defproc, we return true, else false.

Defproc is also responsible for building the tuple usepile of

all uses which make up the input dedinition.

9

define£ defproc(d);

/ * usepile, progrph, typ are global*/

usepile = nult; modif = false; optup1 = progrph (d(2));

result= (optup1 (d(3)) is opt3) (i);

op= opt3(2); oldtype = typ(d);

(3 < = Vj < = # opt3) usepile (j-2) = <opt3(j) ,d(2) ,d(3) ,j>;;

typ(d) = both (back(d), newtyp(op, usepile));

if typ (d) ne oldtype then modif = true;;

return modif;

end defproc;

We now turn to a discussion of representing types and

combining them. We distinguish among eiqht elementary types

and represent them by bit string flags having values of powers

of 2 (for easy combination) as follows:

tu - the type of ~, the undefined ;~bro

ti - integer type

tb - boolean or bit-string type

tc - character string type

tn - null set type

tt null tuple type

tg - general type used where the type of an object is too complex

for compact representation; can be anything.

tz - neutral or erroY type. Originally before anything is known

about the type of an object, its type is tz. If its type

is still tz at the end of processing, we know that an error

exists. We assume tz = 0.

These elementary types can be combined by alternation, that is

an object may have type tin which signifies that the object is

either an integer or the null set. Similarly, we can have any

other combination of elementary types. These types are

represented as the logical "or" of their constituent types.

Compound types are represented by tuples. The type of a

set is a triple < st, o, type> where st is an integer flag

representing a set and type is the type of the elements of the

set. Thus a set which contains bit strings and integers would

have type < st, o, tbi >. A set of integer sets would have

type < st~ o, < st, o, ti >> which illustrates that types can

be nested. To simplify matters, a maximum nesting of 3 is

allowed so that the type of a set of sets of sets of sets would

be given by:

<st, o, <st, o, <st o, tg>>>

The type of a tuple of unknown length is a triple

10

<unt, o, type>, where unt is an integer flag representing a tuple

of unknown length and type is the type of the elements of the

tuple. Thus a tuple of unknown length consisting of character

strings and null sets would have typt~\> < un t, o, ten >.

A tuple which is known at compile time to have length n is

represented by a (n+2)-tuple of the form:

<knt 1 0, typel, type2, ... , typen>

where knt is an integer flag representing a tuple of known length

and typej is the type of the jth component for 12j 2n. Thus

a tuple of length three consisting of a set of integers, an

integer, and either the null set or null tuple would be re

presented as:

<knt, O,<st,O, ti>, ti, tnt>.

The second component of compound types is reserved for

indicating alternation with elementary types. For example if

an object is known to either be an integer or a set of bit strings,

its type would be:

<st, ti, tb>.

Alternation between two compound types of different

grosstype (the grosstype of a compound type is its compound

type flag, either st, unt, or knt) produces tg, the general type.

There are two basic routines for combining types. Given

two types a and b, the function alt returns the type of an

object which is known to be either of type a or of type b:

This routine assumes that st = 2, unt = 3, knt = 4 and a

function grostyp which returns the grosstype of a type, defined

by: definef grostyp(a); return if integer a then e~ else a(i);

end grostyp; Here e~ is a flag representing an elementary type

and it is assumed that et= l; under these assumptions the

code for alt follows:

definef ait(a,b); /* first rearrange the types such that

gros 9,type (a)> gross type (b) * /
~ ,:., -

if (grostype(a) is ga) qt(grostype(b) is qb) then return

alt (b,a);;

/* alternation of non-null set and non-null tuple is tg */

11

if ({ <ef,e~,ete~>, <e~, st,e~cmp>,<et,unt,etcmp>,<et,knt,etcmp>,

<st,st,stst>,<unt,unt,unun>,<unt,knt,unkn>,<knt,knt,knkn>}

(ga,gb) is label) ~~then return tg;;

go to label;

e~e~: /* both operands elementary*/

return if a~ tg orb eq tg then tg else a+ b;

e~cmp: /* elementary type and compound type*/

return if a~ tg then tg else if a~ tz then b

else <b(l), a+b(2)> + tt ti b;

stst: unun: /* two sets or two tuples of unknown length*/

return <a(1), a(2)+b(2) alt(a(3), b(3))>;
I

unkn: /* a tuple of unknown length and one of known length*/

return <unt, a(2)+b(2), alt {a(3), [alt:3<=i<=#b] b(i))>;

knkn: /* two tuples of known length, if both have same length then

the result is a known tuple, consisting of the alternation

of corresponding individual elements, otherwise an unknown

tuple consisting of the alternation of all elements*/

return if (# a is na) ~(#bis nb) then

end alt;

<knt, alt(a(2), b(2))> + [+:3<=i<=na]<alt(a(i),b(i))>

else <unt,alt(a(2) ,b(2)) ,alt ([alt:3<=i<=na]a(i),

[alt:3<=i<=nb]b(i))>;

Here, alt is an operator defined by:

definef a alt b; return alt(a,b); end;

Similarly, the routine both receives two types as input

parameters and returns the type of an object which is known to

be of both types. The code follows:

definef both (a,b);

12

/* if either a orb is of general type, return the other*/

if a ~ tg then return b;; if b eq tg then return a;;

/*sis a flag which is zero if1 4nd only if one of a and

kntup:

b are elementary*/

s=O; if atom a then ja=a; else ja=a(2); s=l;;

if atom b then jb=b; s=O; else jb=b(2) ;;

/* ja and jb are the elementary parts of a and b */

ifs eq O then return ja*jb;;

/* here we test for one of the types being a tuple of

known length*/

if grostyp(a) eq knt then tup=<knt,ja*jb>;

if grostyp(b) ~ unt then

(2<\fi<=#a) tup(i)=both (a(i) ,b(3)) ;;

return tup;

end if;

if grostyp(b) eq knt then

if (#a) ne (#b) then return ja*jb;;

2<Vi<=#a) tup(i)= both (a(i), b(i)) ;;

return tup;

end if;

end if;/* if bis a known length tuple, swtich a and b */

if grostyp{b) ~ knt then c=b; b=a; a=c; goto kntup;;

if a(l) eq b(l) then return

end both;

if (both (a(3), b(3) is bo)eq O then ja*jb

else <a{l), ja*jb, bo>;;

return ja*jb;

1 •

13

We now turn to descriptions of the actual processes of

deducing the type of a definition. The routine newtyp is re

sponsible for combining the types of the uses which make up

a definition according to the operation to determine the type

of the result (method (i) above). Its input parameters are

op which is the operation and u which is a tuple of the uses making

up the definition (this tuple was prepared by defproc which

calls newtyp). Newtyp divides all operations into several

categories. Some operations (like division or equality testing)

preordain the type of their result without regard to the types

of their inputs. Others (like plus or assignment) do depend on

their inputs and can be divided into binary, unary or special

operators. For binary operations, newtyp divides the input types

into their compound and elementary parts, determining the result

types for each combination of parts, and then taking the

alternation of the whole.

The opcodes which the algorithm presently handles are

the following:

odv - integer division

oabs- absolute value

ohd - head of a tuple

ot£ - tail of a tuple

oarb -arbitary element of a set

oass - assignment

opw - power set of a set

odec - decimal converter

ooct - octal converter

osiz

onot

oad

osb -

omi -

orm -

- number of elements,bits or characters

logical negation

plus,unron, concatenation

minus, set difference

multiplication, intersection, replication

remainder, symmetric difference

14

omxm - maximum

omnm - minimum

oeq,one,oit ole, ogt, oge - comparison

oand, oar - logical operations

oelm - element test

owith - SETL with operation

olss - SETL less operation

olsf - less functional values

oinc inclusion test

oof - function application, position extraction

oofa - multivalued function application

onpw - SETL npor operation

ondx - indexing of tuple, bit or character string

ose t, otpl- set or tuple former

ondxass - indexed assignment

ord - read operation

An operation is represented by a tuple; the first element

is the variable into which the result is stored, the second is

the opcode, and the others are the operands. Thus the operation

x+y would be represented by <' ti ', oad, 'x ', 'y '> where ti

represents a temporary location. An exception is made in the

case of indexed assignment where the indexed quantity is included

among the operands (this is because the previous type of the

quantity enters into the determination of the eventual type)•

For example a(x)=q would be represented by

< 'a', ondxass, 'x', 'q', 'a' >. Note that the indexed quantity

appears as the last member of the tuple, and the vdlue to be

assigned as the next to last.

The code for newtyp follows:

define£ newtyp(op,u);

/* op is the operation, u the tuple of the operands.*/

if op~ ord then return !::J_;;

15

if op E {odv, oabs, omxm, omnm,odec,ooct,osiz} then return ti;;

if op E { oeq,one,alt,ogt,oie,oge,oand,oor,onot,oelm, oinc}

then return tb;;

16

spoplab = {<oass, asscas>,<oset, setcas>, <otpl, tplcas>

<ondxass, xacas>}; /* function which returns a label*/

nu=#u;

argl=u(l); targl=argtyp(argl);

go to

if op£ { oass, ondxass,o set,otpi} then spoplab(op)

else if op£ { ohd,oti, oarb,opw} then unop

else if op£ { oad,osb,omi,orm,owth,oiss,oisf,oofa,onpw, oof}

then binop else piop;

targl; asscas: return

setcas: return

tplcas: return

<st,tz,[alt:

<knt,tz>+[+:

l< =

l< =

i

i

<

<

= nu] nstchk(2rgtyp(u(i)))>;

= nu]<nstchk(argtyp(u(i)))>;

xacas: typset = n£; /* typset is an accumulator set for

all the alternatives that the

result type 't_~1uld be */

if nu ~ 3 and both(targl, ti) eq ti then

/* in this case the indexed assignment may be either to

a set or a tuple (note that indices of more than one

integer into tuples of tuples are not covered) */

if (argtyp(u(#u)} is targu) eg tg then return tg;;

if both (targu,tb) ~ tb then tb in typset;;

if both (targu,tc) ~ tc then tc in typset;;

if both (targu,tt) ~ tt then

j_f both (argtyp(u(2) is targ2,tu)~ tu then tt in typset;;

if both (targ2, tg) ne tu then <unt,0,targ2>in typset;;

end if;

end if;

if grostyp(targu) ge unt t~en

/* here we assume the flag for st is 2,

that for unt is 3, and; for knt is 4 */

<unt, O,alt(argtyp(u(Z)), [alt:Z<i<=#targu] targu(i))>

in typset;;

/* we are now at the possibility of indexing into a set*/

targ2 = newtyp(otpt, u(l:(#u)-1));

cmcmbin(owth, argtyp(u(#u)), targ2) in typset;

/* treat it as the set with the tuple which may be inserted*/

return [alt: i E typset] i;

unop: return if grostyp(targl) ~ et the etun(op,targl)

else elun(op> targl(2)) alt cmpun (op, targl);

!* elun takes care of finding the type for a unary

operator on an elementary operand and cmpun on the

compound part of the operand*/

17

binop: targ2= argtyp (u(2)); bintab= {<e1,e1,binete1>,<e1,st,binetst>

<st,e1,binstet> <st,st,binstst>};

go to bintab(grostyp(targl) min st, groseyp(targ2) min st);

bine1e1: return e1e1bin(op,targl,targ2);

bine1st: return e1e1bin(op,targl,targ(2)) alt e1cmbin(op,targl,targ2);

binste1: return e1e1bin(op,targ1(2),targ2) alt cme1bin(op,targl,targ2);

binstst: return etetbin(op, targl(Z) ,farg2(2))alt etcmbin(op,targl(Z),

targ2) alt cme~bin(op,targl,targ2(2))alt cmcmbin

(op, targl, targ2);

/* these four routines (elcmbin, elelbin,cmelbin, cmcmbin)

combine types deperiding on their grosstype */

plop: arglst=t1 u; /* the only plunary operator currently is index

of a tuple or string*/

return if grostyp (targl ~ et then e1p1u(op,targl,a.rglst)

else eipiu(op,targl(2) ,arglst) alt cmppiu(op,targl,arglst);

end newtyp;

Aside from the type-finding routines,newtyp uses two auxiliary

routines which have not yet been discussedo argtyp returns the

type of its argument. The code follows:,

define£ argtyp(arg); /* arg

/* cons, typ, and ud

if arg(i) E cons then

is a use of .a constant or variable*/

are global */

return typ(arg(i)) ;;

return [alt: x E ud(arg)] typ(x);

end argtyp;

18

The other routine nstchk insures that nesting is never

deeper than three by checking something which is being nested

for double nesting

define£ nstchk(x);

if grostyp(x) ~ et then return x;

(2 <Vi<=#x) if grostyp (x(i) is xi) ne et then

(2 < V.<=#xi) if grostyp (xi(j)) ne ei then xi(j)=tg;
J

end Vi;

end V. ; end if;
J

return x; end nstchk;

x(i)=xi;;

We now rurn to a description of typechecking by method (ii).

In order to solve the equations (1) - (3) presented earlier, we

introduce the concept of the tree of~a program rooted at a
~ l

given node. This tree is constructed~from the program graph by

establishing the given node as root and using the graph successors

as the tree successor so long as they do not cause a cycle.

For example, given the program graph

the tree rooted at node is: G)
I 01

I \ G)
0G)

the tree rooted at node 1 is:

we then assume type tg at the exits of the leaves and travel up

the tree propagating types according to the aforementioned

equations.

Given a definition d, the function back is responsible

for constructing the tree and then calling a function to walk

the tree and determine the type of d by method ii.

The code for the routine back is as follows:

define£ back(d);

t = progtree(d(Z)); /* build the tree*/

return typfind (d,t); /* determine the type from the tree*/

end back;

The code to build the tree is:

define£ progtree (node);
•i ,

/* succ is the global set of treft' successors, cont a global

map assigning to each tree node, the program node which

it represents, tpred a local map giving all nodes in the

path from the tree root to any given node, cesor, the

global graph successor*/

succ = nt· cont= nt· tpred = nt· t = newat· _, _, _, ___ ,
cont(t)=node; work={t}; tpred(t)={t};

(while work ne nt) tnode from work;

succ(tnode) = nt;

19

(VcE cesor (cont(tnode))) if c ~ E cont[tpred(tnodc)]

then b = newat; cont(b)=c;

tpred(b)=tpred(tnode) with b;

succ(tnode)=succ (tnode)with b;
b in work; end if;

end Ve;

end while;

return t;

end progtree;

The routine typfind is responsible for walking down the

tree and determining the types of the uses and how they com

bine in enabling us to deduce the type of the defined variable.

Note that two cases must be specifically checked for as dis

cussed earlier. If a node along the tree is an exit or it

contains a redefinition of the variable, the tree traversal

need not go beyond that node. Note further that if a

redefinition occurs within a node, it will occur after any uses

of the previous definition; since if it occurred before, the

uses would be uses of the redefinition and not of the original.

Thus all uses within the block where redefinition occurs are

valid determinants of the original definition typ~.

The code for typfind follows:

define£ typfind (d,t);

/* cont, succ, du, exits, defs ~T~ global*/

J = [both : us du (d) I u (2) e q., .. cont (t)]

backtype(oper(u), u(4), restyp(u) orm tg);

s = succ(t);

if s ~ nt or cont (t) s exits or 3 df e defs I (df ne d

and d(l) -~ df(l) and df(2) ~ cont(t))

then return j ; ;

return both (j, [alt: trss] typfind(d,tr));

end typfind;

This routine uses the following auxiliary routines:

20

a) backtype which does the actual determination of type of a use

depending on the following parameters: the operator, the position

within the operation tuple of the use, and the type of the operation

result (which may have been determined on the basis of other uses

with known types). The actual code for:backtype is a detailed

accounting of all possibilities and will not be given here.

b) oper which determines the operator which is applied to a

given use. The code is:

21

define£ oper(u); return ((progrph(u(2))) (u(3))) (2); end oper;

c) restyp which gives the type of the result of an operation

1n which a given use occurs. The code is:

define£ restyp(u); return type(<((progrph(u(Z))) (u(3))) (1) ,u(Z) ,u(3)>);

end restyp;

