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In a language without declarations such as SETL, any 

variable may at any point in a program represent a value having 

one of several different data types. During execution, the type 

of the variables must be checked to determine the meaning of an 

operation. Of course, this is time consuming and accounts in 

some measure for SETL's inefficiency. When the type of a variable 

can be determined at compile time, a compiler can in principle 

produce code to perform the desired operation more efficiently. 

Even if we do not insist on progr,arnrner declaration of 
·,..; 

all variables, the type of a variable can be determined at 

compile time in one of two possible ways: 

i) If a variable x is the result of operator op applied to 

quantities y and z of known type, the type of x can be deduced 

by knowing what type of results op produces from objects of 

the types of y and z. For example, if x=y+z appears in a 

program and y and z are tuples, then x must also be a tuple. 

ii) The type of a variable can often be determined merely from 

the fact that a given operation is applied to it. For example, 

if t£ x appears in a program, then x is known to be a tuple. 

There are two chief differences between these two methods 

of type determination. The first difference is that the first 

method propagates knowledge of types in the direction of execution 

flow while the second method propagates that knowledge in the 

reverse direction. The second difference is that when dealing 

with compound types such as sets and tuples, the first method 

will give much more detailed type information about the constituent 

elements within the compounq type. 



To illustrate these differences, consider the following two 

examples: 

a) x = 2; ready; b) read x, y; 

z = y + x; Z = X + y; W = ti z; 

In example a) x is of known type integer since it results from 

an assignment operation on an integer constant. Although the 

type of y cannot yet be determined, the type of z is known 

to be integer since it results from adding an integer (x) to 

some quantity. Note that these deductions are an example of 

method (i) and that type information has propagated in the 
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direction of program flow. However, once we know that z is an 

integer, we see that the use of y is in an addition which results 

in an integer, so that y itself must be an integer. Therefore 

in the read statement where y is de{ined, an integer must have 

been read in. This in an example of ~~thod (ii). Similarly in 

example (b) above, since z is involved in a ti operation, it 

must be a tuple, once this has been determined, x and y can also 

be classified tuples by their use in a plus operation which 

produces a tuple. 

The deduction of types by method (i) is a relatively 

straightforward matter. If the types of all uses making up 

an operation are known, the deduction of the resulting type 

amounts to merely looking up in a precalculated table the type 

that will result when the given operation is applied to the 

given types. 

However, type deduction by method (ii) is more complex. In 

this method, the type of a defined varia~le is <leduced from 

the way in which the variable is used in subsequent operations. 

Thus we must look into the question of how the type of a 

variable use can determine the type of that variable at definition. 



Specifically, if two uses of a variable exist along two disjoint 

paths of control flow from the definition, we cannot say that 

the definition must have the types of both uses since the branch 

may have been dependent on the variable's type and may have 

been specifically designed to bypass one of the uses when the 

variable's type is incompatible with that of the use. However, 

if two uses lie on the same path of control flow,then both are 

equally valid determinants of the definition type. 

There are however two possibilities that further complicate 

the situation. If there exists a path from a variable de -

finition to an exit node of the program, no deduction of the 

definition type is possible from uses of the variable occuring 

past that node. This is because the choice as to whether to 

exit the program or enter one of the successor nodes may be 

dependent on the type of the variabl~., 

Similarly, if there is a path to~a redefinition of the 

variable, any uses occuring on that path past the redefinition 

cannot be used for type determination since the path to the 

redefinition may be taken to redefine the variable to make it 

compatible with the use. An illustration of this situation is 

the following graph: 

Here the use of x in block 3 cannot be used to determine the 

type of the definition in block 1. 
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We shall now give a formal definition of variable type 

deduction by method (ii) in terms of a series of equations 
which use the following notational conventions. Gives types 

t
1 

and t
2

, the operation t
1 

alt t
2 

produces a type t 3 
which indicates that the object under consideration is of type 

either t
1 

or t
2

. Similarly, the operation t 1 both t 2 produces 

a type which indicates that the object is of both type t
1 

and t
2

, 

if such a type is possible. If bis a block, we indicate its 

entry by y 0 and its exit by eb. The inverses of these 

functions are written b and b respectively. In what 
y e 

follows, tg indicates the general type about which nothing is 

known, backtype is the function which determines the type from 

the way a variable is used in a given use and du is a function 

which, given a definition and a block, returns all possible uses 

of the defined variable in that bloc~. 
~- I ·, ' 

The equations which follow are for a function tfu defined 

on block entrances and exits and which give the type deduced 

from use for an definition, def: 

(1) tfu(e) = tg if e is a program exit or if b contains a 
e 

definition other than dif 6f the variable defined by def. 

otherwise 

(3) tfu(y) = both: uEdu(def, by)] backtype(u) both tfu (e(by)), 

The final deduced type of def will be tfu(yb),where b is 

the block containing def. 

Before taking up the details of the typechecking algorithm 

itself, it is well to define the representation of a program on 

which it operates. A program is considered to be five-tuple 

of the form 

< nodes, progrph, entry, cesor, cons, exits> where: 

nodes is the set of basic blocks in the program. 

Progrph is the program graph and is a mapping which takes each 

member of nodes into a tuple which represents the operations 

occuring in that basic block in order of execution. 
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Each operation is represented by a tuple consisting of 

entry 
the output variable, the operation and the input variables. 

is the element of nodes which is the entry point 

cesor 

cons 

exits 

to the program. 

is a mapping from nodes into 2nodes which gives 

for each basic block, the set of its sucessors. 

is the set of constants occuring in the program 

is the set of exit blocks of the program. 

Preliminary processing of the program determines the 

following sets: 

the set of all definitions appearing in the program. 

For the purposes of our algoritihm, a definition is a 
. 'I 

triple consisting of the defined variable, the basic 

block within which the definition appears, and the 

integer which gives the position of the definition 

within the basic block. 

defsreaching, a function which maps each basic block into the 

set of all definitions which are "live" at the 

entry to that block; i.e. such that the use of a 

variable within the block may refer to the value 

of that variable given by one of these definitions. 

This is determined by a use-definition chaining 

algorithm. 

The first step of the typechecker, which may more -properly 

be considered as part of the use-definition chaining algorithm, 

is to create two mappings: ud and du. The first associates 

with each use of a variable the set of all definitions which 

may determine the value of the variable at that use. The second 

is the inverse of the first; it associates with each definition. 

The set of all uses where the value of that definition may be 

utilized. 



For the purpose of this algorithm, a use is a quadruple consisting 

of the variable name, the basic block in which the use appears, 

the position of the operation within which it appears in the 

basic block, and the integer which tells which input variable 

it is within the operation. 

The algorithm for calculating ud and du is as follows: 

define udfct; 

I* defsreaehing, progrph ud and du are assumed global*/ 

ud = n.Q,; du = n.Q,; 

( V block E progrph) optup.Q, = block(2) 

I* optupl is the set of operations in a given block*/ 

defset = defsreaching (block(l) is node); 
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( 1 < = Vi < = #optup.Q,) result =( optup.Q, (i) is opti) (i); 

op=opti(2); -~ ~ 
d = <result, node~ i>; /* set up the definition 

corresponding to the i th operation in the block*/ 

(3 < = Vj < = # opti) u = <opti(j), node, i,j>; 

I* set up the use corresponding to the jth variable 

used in the ith operation in the block*/ 

ud(u) = { x E defset I x(1) ~ u(1)}; 

I* the set tif definitions which could possibly apply 

to use u * I 

end Vj; 

s = {x E defset result eq x (1) } ; 

I* update defset by removing all definitions which define 

the same variable as the current definition, adding the 

current definition*/ 

defset = defset - s with d; 

end Vi; 

end V block; 

(~ d E defs) du(d) = n.Q,;; 

(V x E ud , d E x(2)) du(d) = du(d) with x(i);; 

I* this sets up du as the inverse function of ud * I 
end udfct; 



We now move to a description of the typechecker proper. 

The result of the typechecker will be a mapping typ which 

assigns to each definition and constant in the program its 

deduced type. We leave a discussion of how we represent these 

types for later, but mention that we initialize the types of 

constants to be their types and the types of all definitions to 

be the "undefined" type signifying that nothing is known about 

their types. 

We then invoke the routine grafproc which is in charge of 

the global management of the typechecker. Grafproc keeps a set 

of definitions, work, which consists of all definitions whose 

type may be determined. Initially, works consists of all the 

definitions in the program to be processed. A single definition 

is removed from work and its type determined by the routine 
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defproc. The determination of the ~ype of a single definition 

enables us to determine the type of tt:ro other groups of definitions. 

(i) Those definitions which result from an operation applied 

to a use of the variable whose type has just been determined. 

(ii) The determination of the type of this definition may enable 

the determination of the· type of one of the variables used in 

this definition, which in turn may enable the determination of 

the type of the definition where that variable was defined. 

Note that the first group corresponds to the first method 

of typechecking discussed above and the second group to the 

second method. 

The definitions in the first group are given by: 

[ +: u E:du(d)] { df E clefs I !_!df eq u(2:2)} 

while those in the second group are given by: 

[ +: u E: usepile] ud(u) 

where usepile is a tuple of all the uses which make up the 

current definition d. Usepile is a global variable which 1s 

built up by defproc 1n processing the definition d. 
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The code for grafproc follows: 

define grafproc; 

I* defs, usepile are global*/ 

I* initialize workset * / work= defs; 

( while work ne ni) d from work;/* remove a definition 

from work*/ 

if defproc(d) then 

work= work+ [ +: u E du(d)] {df E defs I ti df eq u(Z:2)} 

orm nt +[+: u E usepile] ud(u) ;; 

end while, 

return; 

end grafproc; 

The routine defproc processed the definition which is its 

argument, determining its type. If ~~is type differs from its 

original type signifying that more i~formation is known about the 

definition, defproc returns true which is a signal to grafproc 

to add all definitions which may be affected by a type change 

1n this one to the set work. 

We now give the code for the routine defproc. This function 

calls on two other functions n~wtyp and back which determine 

the type of a definition by methods one and two respectively; 

that is, newtyp combines the known types of the variables which 

make up the definition, utilizing the operation in the tuple to 

produce the type of the result, while back searches for all uses 

of the defined variable and combines type information deduced by 

the way the variable is used into a type for the variable. These 

two returned types for the definition are'then combined by the 

function both which produces a "lowest cq:irnrnon denominator", i.e . . 
the type of an object known to have both of two given types. If 

this resultant type is different from the known type of the 

definition on entry to defproc, we return true, else false. 

Defproc is also responsible for building the tuple usepile of 

all uses which make up the input dedinition. 
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define£ defproc(d); 

/ * usepile, progrph, typ are global*/ 

usepile = nult; modif = false; optup1 = progrph (d(2)); 

result= (optup1 (d(3)) is opt3) (i); 

op= opt3(2); oldtype = typ(d); 

(3 < = Vj < = # opt3) usepile (j-2) = <opt3(j) ,d(2) ,d(3) ,j>;; 

typ(d) = both (back(d), newtyp(op, usepile)); 

if typ (d) ne oldtype then modif = true;; 

return modif; 

end defproc; 

We now turn to a discussion of representing types and 

combining them. We distinguish among eiqht elementary types 

and represent them by bit string flags having values of powers 

of 2 (for easy combination) as follows: 

tu - the type of ~, the undefined ;~bro 

ti - integer type 

tb - boolean or bit-string type 

tc - character string type 

tn - null set type 

tt null tuple type 

tg - general type used where the type of an object is too complex 

for compact representation; can be anything. 

tz - neutral or erroY type. Originally before anything is known 

about the type of an object, its type is tz. If its type 

is still tz at the end of processing, we know that an error 

exists. We assume tz = 0. 

These elementary types can be combined by alternation, that is 

an object may have type tin which signifies that the object is 

either an integer or the null set. Similarly, we can have any 

other combination of elementary types. These types are 

represented as the logical "or" of their constituent types. 



Compound types are represented by tuples. The type of a 

set is a triple < st, o, type> where st is an integer flag 

representing a set and type is the type of the elements of the 

set. Thus a set which contains bit strings and integers would 

have type < st, o, tbi >. A set of integer sets would have 

type < st~ o, < st, o, ti >> which illustrates that types can 

be nested. To simplify matters, a maximum nesting of 3 is 

allowed so that the type of a set of sets of sets of sets would 

be given by: 

<st, o, <st, o, <st o, tg>>> 

The type of a tuple of unknown length is a triple 
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<unt, o, type>, where unt is an integer flag representing a tuple 

of unknown length and type is the type of the elements of the 

tuple. Thus a tuple of unknown length consisting of character 

strings and null sets would have typt~\> < un t, o, ten >. 

A tuple which is known at compile time to have length n is 

represented by a (n+2)-tuple of the form: 

<knt 1 0, typel, type2, ... , typen> 

where knt is an integer flag representing a tuple of known length 

and typej is the type of the jth component for 12j 2n. Thus 

a tuple of length three consisting of a set of integers, an 

integer, and either the null set or null tuple would be re

presented as: 

<knt, O,<st,O, ti>, ti, tnt>. 

The second component of compound types is reserved for 

indicating alternation with elementary types. For example if 

an object is known to either be an integer or a set of bit strings, 

its type would be: 

<st, ti, tb>. 



Alternation between two compound types of different 

grosstype (the grosstype of a compound type is its compound 

type flag, either st, unt, or knt) produces tg, the general type. 

There are two basic routines for combining types. Given 

two types a and b, the function alt returns the type of an 

object which is known to be either of type a or of type b: 

This routine assumes that st = 2, unt = 3, knt = 4 and a 

function grostyp which returns the grosstype of a type, defined 

by: definef grostyp(a); return if integer a then e~ else a(i); 

end grostyp; Here e~ is a flag representing an elementary type 

and it is assumed that et= l; under these assumptions the 

code for alt follows: 

definef ait(a,b); /* first rearrange the types such that 

gros 9,type (a)> gross type (b) * / 
~ ,:., -

if (grostype(a) is ga) qt(grostype(b) is qb) then return 

alt (b,a);; 

/* alternation of non-null set and non-null tuple is tg */ 
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if ( { <ef,e~,ete~>, <e~, st,e~cmp>,<et,unt,etcmp>,<et,knt,etcmp>, 

<st,st,stst>,<unt,unt,unun>,<unt,knt,unkn>,<knt,knt,knkn>} 

(ga,gb) is label) ~~then return tg;; 

go to label; 

e~e~: /* both operands elementary*/ 

return if a~ tg orb eq tg then tg else a+ b; 

e~cmp: /* elementary type and compound type*/ 

return if a~ tg then tg else if a~ tz then b 

else <b(l), a+b(2)> + tt ti b; 

stst: unun: /* two sets or two tuples of unknown length*/ 

return <a(1), a(2)+b(2) alt(a(3), b(3))>; 
I 

unkn: /* a tuple of unknown length and one of known length*/ 

return <unt, a(2)+b(2), alt {a(3), [alt:3<=i<=#b] b(i))>; 

knkn: /* two tuples of known length, if both have same length then 

the result is a known tuple, consisting of the alternation 

of corresponding individual elements, otherwise an unknown 

tuple consisting of the alternation of all elements*/ 



return if (# a is na) ~(#bis nb) then 

end alt; 

<knt, alt(a(2), b(2))> + [+:3<=i<=na]<alt(a(i),b(i))> 

else <unt,alt(a(2) ,b(2)) ,alt ([alt:3<=i<=na]a(i), 

[alt:3<=i<=nb]b(i) )>; 

Here, alt is an operator defined by: 

definef a alt b; return alt(a,b); end; 

Similarly, the routine both receives two types as input 

parameters and returns the type of an object which is known to 

be of both types. The code follows: 

definef both (a,b); 
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/* if either a orb is of general type, return the other*/ 

if a ~ tg then return b;; if b eq tg then return a;; 

/*sis a flag which is zero if1 4nd only if one of a and 

kntup: 

b are elementary*/ 

s=O; if atom a then ja=a; else ja=a(2); s=l;; 

if atom b then jb=b; s=O; else jb=b(2) ;; 

/* ja and jb are the elementary parts of a and b */ 

ifs eq O then return ja*jb;; 

/* here we test for one of the types being a tuple of 

known length*/ 

if grostyp(a) eq knt then tup=<knt,ja*jb>; 

if grostyp(b) ~ unt then 

( 2<\fi<=#a) tup(i)=both (a(i) ,b(3) ) ;; 

return tup; 

end if; 

if grostyp(b) eq knt then 

if (#a) ne (#b) then return ja*jb;; 

2<Vi<=#a) tup(i)= both (a(i), b(i) ) ;; 

return tup; 

end if; 



end if;/* if bis a known length tuple, swtich a and b */ 

if grostyp{b) ~ knt then c=b; b=a; a=c; goto kntup;; 

if a(l) eq b(l) then return 

end both; 

if (both (a(3), b(3) is bo)eq O then ja*jb 

else <a{l), ja*jb, bo>;; 

return ja*jb; 

1 • 
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We now turn to descriptions of the actual processes of 

deducing the type of a definition. The routine newtyp is re

sponsible for combining the types of the uses which make up 

a definition according to the operation to determine the type 

of the result (method (i) above). Its input parameters are 

op which is the operation and u which is a tuple of the uses making 

up the definition (this tuple was prepared by defproc which 

calls newtyp). Newtyp divides all operations into several 

categories. Some operations (like division or equality testing) 

preordain the type of their result without regard to the types 

of their inputs. Others (like plus or assignment) do depend on 

their inputs and can be divided into binary, unary or special 

operators. For binary operations, newtyp divides the input types 

into their compound and elementary parts, determining the result 

types for each combination of parts, and then taking the 

alternation of the whole. 

The opcodes which the algorithm presently handles are 

the following: 

odv - integer division 

oabs- absolute value 

ohd - head of a tuple 

ot£ - tail of a tuple 

oarb -arbitary element of a set 

oass - assignment 

opw - power set of a set 

odec - decimal converter 

ooct - octal converter 

osiz 

onot 

oad

osb -

omi -

orm -

- number of elements,bits or characters 

logical negation 

plus,unron, concatenation 

minus, set difference 

multiplication, intersection, replication 

remainder, symmetric difference 
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omxm - maximum 

omnm - minimum 

oeq,one,oit ole, ogt, oge - comparison 

oand, oar - logical operations 

oelm - element test 

owith - SETL with operation 

olss - SETL less operation 

olsf - less functional values 

oinc inclusion test 

oof - function application, position extraction 

oofa - multivalued function application 

onpw - SETL npor operation 

ondx - indexing of tuple, bit or character string 

ose t, otpl- set or tuple former 

ondxass - indexed assignment 

ord - read operation 

An operation is represented by a tuple; the first element 

is the variable into which the result is stored, the second is 

the opcode, and the others are the operands. Thus the operation 

x+y would be represented by <' ti ', oad, 'x ', 'y '> where ti 

represents a temporary location. An exception is made in the 

case of indexed assignment where the indexed quantity is included 

among the operands (this is because the previous type of the 

quantity enters into the determination of the eventual type)• 

For example a(x)=q would be represented by 

< 'a', ondxass, 'x', 'q', 'a' >. Note that the indexed quantity 

appears as the last member of the tuple, and the vdlue to be 

assigned as the next to last. 

The code for newtyp follows: 

define£ newtyp(op,u); 

/* op is the operation, u the tuple of the operands.*/ 

if op~ ord then return !::J_;; 
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if op E {odv, oabs, omxm, omnm,odec,ooct,osiz} then return ti;; 

if op E { oeq,one,alt,ogt,oie,oge,oand,oor,onot,oelm, oinc} 

then return tb;; 
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spoplab = {<oass, asscas>,<oset, setcas>, <otpl, tplcas> 

<ondxass, xacas>}; /* function which returns a label*/ 

nu=#u; 

argl=u(l); targl=argtyp(argl); 

go to 

if op£ { oass, ondxass,o set,otpi} then spoplab(op) 

else if op£ { ohd,oti, oarb,opw} then unop 

else if op£ { oad,osb,omi,orm,owth,oiss,oisf,oofa,onpw, oof} 

then binop else piop; 

targl; asscas: return 

setcas: return 

tplcas: return 

<st,tz,[alt: 

<knt,tz>+[+: 

l< = 

l< = 

i 

i 

< 

< 

= nu] nstchk(2rgtyp(u(i)))>; 

= nu]<nstchk(argtyp(u(i)))>; 

xacas: typset = n£; /* typset is an accumulator set for 

all the alternatives that the 

result type 't_~1uld be */ 

if nu ~ 3 and both(targl, ti) eq ti then 

/* in this case the indexed assignment may be either to 

a set or a tuple (note that indices of more than one 

integer into tuples of tuples are not covered) */ 

if (argtyp(u(#u)} is targu) eg tg then return tg;; 

if both (targu,tb) ~ tb then tb in typset;; 

if both (targu,tc) ~ tc then tc in typset;; 

if both (targu,tt) ~ tt then 

j_f both (argtyp(u(2) is targ2,tu)~ tu then tt in typset;; 

if both (targ2, tg) ne tu then <unt,0,targ2>in typset;; 

end if; 

end if; 

if grostyp(targu) ge unt t~en 

/* here we assume the flag for st is 2, 

that for unt is 3, and; for knt is 4 */ 

<unt, O,alt(argtyp(u(Z)), [alt:Z<i<=#targu] targu(i))> 

in typset;; 



/* we are now at the possibility of indexing into a set*/ 

targ2 = newtyp(otpt, u(l:(#u)-1)); 

cmcmbin(owth, argtyp(u(#u)), targ2) in typset; 

/* treat it as the set with the tuple which may be inserted*/ 

return [alt: i E typset] i; 

unop: return if grostyp(targl) ~ et the etun(op,targl) 

else elun(op> targl(2)) alt cmpun (op, targl); 

!* elun takes care of finding the type for a unary 

operator on an elementary operand and cmpun on the 

compound part of the operand*/ 
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binop: targ2= argtyp (u(2)); bintab= {<e1,e1,binete1>,<e1,st,binetst> 

<st,e1,binstet> <st,st,binstst>}; 

go to bintab(grostyp(targl) min st, groseyp(targ2) min st); 

bine1e1: return e1e1bin(op,targl,targ2); 

bine1st: return e1e1bin(op,targl,targ(2)) alt e1cmbin(op,targl,targ2); 

binste1: return e1e1bin(op,targ1(2),targ2) alt cme1bin(op,targl,targ2); 

binstst: return etetbin(op, targl(Z) ,farg2(2))alt etcmbin(op,targl(Z), 

targ2) alt cme~bin(op,targl,targ2(2))alt cmcmbin 

(op, targl, targ2); 

/* these four routines (elcmbin, elelbin,cmelbin, cmcmbin) 

combine types deperiding on their grosstype */ 

plop: arglst=t1 u; /* the only plunary operator currently is index 

of a tuple or string*/ 

return if grostyp (targl ~ et then e1p1u(op,targl,a.rglst) 

else eipiu(op,targl(2) ,arglst) alt cmppiu(op,targl,arglst); 

end newtyp; 

Aside from the type-finding routines,newtyp uses two auxiliary 

routines which have not yet been discussedo argtyp returns the 

type of its argument. The code follows:, 

define£ argtyp(arg); /* arg 

/* cons, typ, and ud 

if arg(i) E cons then 

is a use of .a constant or variable*/ 

are global */ 

return typ(arg(i)) ;; 

return [ alt: x E ud(arg)] typ(x); 

end argtyp; 
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The other routine nstchk insures that nesting is never 

deeper than three by checking something which is being nested 

for double nesting 

define£ nstchk(x); 

if grostyp(x) ~ et then return x; 

( 2 <Vi<=#x) if grostyp (x(i) is xi) ne et then 

( 2 < V.<=#xi) if grostyp (xi(j)) ne ei then xi(j)=tg; 
J 

end Vi; 

end V. ; end if; 
J 

return x; end nstchk; 

x(i)=xi;; 

We now rurn to a description of typechecking by method (ii). 

In order to solve the equations (1) - (3) presented earlier, we 

introduce the concept of the tree of~a program rooted at a 
~ l 

given node. This tree is constructed~from the program graph by 

establishing the given node as root and using the graph successors 

as the tree successor so long as they do not cause a cycle. 

For example, given the program graph 

the tree rooted at node is: G) 
I 01 

I \ G) 
0G) 

the tree rooted at node 1 is: 



we then assume type tg at the exits of the leaves and travel up 

the tree propagating types according to the aforementioned 

equations. 

Given a definition d, the function back is responsible 

for constructing the tree and then calling a function to walk 

the tree and determine the type of d by method ii. 

The code for the routine back is as follows: 

define£ back(d); 

t = progtree(d(Z)); /* build the tree*/ 

return typfind (d,t); /* determine the type from the tree*/ 

end back; 

The code to build the tree is: 

define£ progtree (node); 
•i , 

/* succ is the global set of treft' successors, cont a global 

map assigning to each tree node, the program node which 

it represents, tpred a local map giving all nodes in the 

path from the tree root to any given node, cesor, the 

global graph successor*/ 

succ = nt· cont= nt· tpred = nt· t = newat· _, _, _, ___ , 
cont(t)=node; work={t}; tpred(t)={t}; 

(while work ne nt) tnode from work; 

succ(tnode) = nt; 
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(VcE cesor (cont(tnode))) if c ~ E cont[tpred(tnodc)] 

then b = newat; cont(b)=c; 

tpred(b)=tpred(tnode) with b; 

succ(tnode)=succ (tnode)with b; 
b in work; end if; 

end Ve; 

end while; 

return t; 

end progtree; 



The routine typfind is responsible for walking down the 

tree and determining the types of the uses and how they com

bine in enabling us to deduce the type of the defined variable. 

Note that two cases must be specifically checked for as dis

cussed earlier. If a node along the tree is an exit or it 

contains a redefinition of the variable, the tree traversal 

need not go beyond that node. Note further that if a 

redefinition occurs within a node, it will occur after any uses 

of the previous definition; since if it occurred before, the 

uses would be uses of the redefinition and not of the original. 

Thus all uses within the block where redefinition occurs are 

valid determinants of the original definition typ~. 

The code for typfind follows: 

define£ typfind (d,t); 

/* cont, succ, du, exits, defs ~T~ global*/ 

J = [both : us du ( d) I u ( 2 ) e q., .. cont ( t) ] 

backtype(oper(u), u(4), restyp(u) orm tg); 

s = succ(t); 

if s ~ nt or cont (t) s exits or 3 df e defs I (df ne d 

and d(l) -~ df(l) and df(2) ~ cont(t) ) 

then return j ; ; 

return both (j, [ alt: trss] typfind(d,tr) ); 

end typfind; 

This routine uses the following auxiliary routines: 
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a) backtype which does the actual determination of type of a use 

depending on the following parameters: the operator, the position 

within the operation tuple of the use, and the type of the operation 

result (which may have been determined on the basis of other uses 

with known types). The actual code for:backtype is a detailed 

accounting of all possibilities and will not be given here. 



b) oper which determines the operator which is applied to a 

given use. The code is: 

21 

define£ oper(u); return (( progrph(u(2)) ) (u(3)) ) (2); end oper; 

c) restyp which gives the type of the result of an operation 

1n which a given use occurs. The code is: 

define£ restyp(u); return type(<((progrph(u(Z))) (u(3))) (1) ,u(Z) ,u(3)>); 

end restyp; 


