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The present SETL compound operator is at times irritatingly 

clumsy, and for this reason generalisations and modifications 

have been suggested from time to time. I would like to suggest 

such a modification, which seems to me to be advantageous. The 

proposed form is 

(1) f[ expn: iterator], 

where expn is an expression e(x1 , ... ,xn) involving free variables 

x 1 , ... ,xn' and iterator is an iterator, such as 

(2) xEe 1 , min(x1 ) 2x 22 max(x1 ), x 3 E e 3 (x
1

,x2) ,. .. built upon 
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these same variables. Moreover (and tnis involves a semantic step , ' 

beyond the present compound operator form f is either a pair 

( 3) < binaryoperator, initialobject > 

or a triple 

( 4) < binaryoperator, i'ni tialobject, monadicmapping >. 

If f has the form (4), (1) signifies the value val calculated 

by the code 

val = initialobject; 

( 'ef iterator) 

val = binaryoperator(val, monadicmapping(e(x1 , ... ,xn))) 

and V; 

If f has the simple form (3), then monadicmapping is understood 

to be the identity map. We allow any expression with a suitable 

pair or triple as value to appeaY in place of fin (1). 

Some examples: 

If makeunitset always maps x into {x}, then the SETL set-former 

{expn, iterator } is defined by 



(5) < +, nl, makeunitset > [ expn; iterator], 

and can be understood as a syntactic abbreviation for (5). The 

(presently missing, and sometimes missed) 'tuple former' which 

corresponds to the set former can be written 

( 6) < +, nult,makeunittuple > [expn: iterator] 

where makeunittuple maps x into <x>. For (6), 

the abbreviation 

( 7) < expn: iterator> 

might reasonably be allowed. 

or, if 

This 

n 
The mathematical IT a (i) would be 

2=1 

< * ,1 > [ a ( i) : l < i < n ] , -
prod == < * ,1 >,would b •i , e .. r 

prod [ a ( i) : l < J. < n ] . - -

revision might be of substantial benefit in connection 
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with a larger family of user-definable object types, in that it 

defines a syntactic and semantic framework allowing compound-object 

formers of new, user specified types to be introduced. 

Note that from a deeper point of view the virtue of the 

compound operator is that it makes certain iterative constructions 

usable directly as expressions. 


