
SETL Newsletter # 119

A Suggested Generalisation and Revision

of the SETL Compound Operator Form.

October 25, 1973
J. Schwartz

The present SETL compound operator is at times irritatingly

clumsy, and for this reason generalisations and modifications

have been suggested from time to time. I would like to suggest

such a modification, which seems to me to be advantageous. The

proposed form is

(1) f[expn: iterator],

where expn is an expression e(x1 , ... ,xn) involving free variables

x 1 , ... ,xn' and iterator is an iterator, such as

(2) xEe 1 , min(x1) 2x 22 max(x1), x 3 E e 3 (x
1

,x2) ,. .. built upon
i

these same variables. Moreover (and tnis involves a semantic step , '

beyond the present compound operator form f is either a pair

(3) < binaryoperator, initialobject >

or a triple

(4) < binaryoperator, i'ni tialobject, monadicmapping >.

If f has the form (4), (1) signifies the value val calculated

by the code

val = initialobject;

('ef iterator)

val = binaryoperator(val, monadicmapping(e(x1 , ... ,xn)))

and V;

If f has the simple form (3), then monadicmapping is understood

to be the identity map. We allow any expression with a suitable

pair or triple as value to appeaY in place of fin (1).

Some examples:

If makeunitset always maps x into {x}, then the SETL set-former

{expn, iterator } is defined by

(5) < +, nl, makeunitset > [expn; iterator],

and can be understood as a syntactic abbreviation for (5). The

(presently missing, and sometimes missed) 'tuple former' which

corresponds to the set former can be written

(6) < +, nult,makeunittuple > [expn: iterator]

where makeunittuple maps x into <x>. For (6),

the abbreviation

(7) < expn: iterator>

might reasonably be allowed.

or, if

This

n
The mathematical IT a (i) would be

2=1

< * ,1 > [a (i) : l < i < n] , -
prod == < * ,1 >,would b •i , e .. r

prod [a (i) : l < J. < n] . - -

revision might be of substantial benefit in connection

2

with a larger family of user-definable object types, in that it

defines a syntactic and semantic framework allowing compound-object

formers of new, user specified types to be introduced.

Note that from a deeper point of view the virtue of the

compound operator is that it makes certain iterative constructions

usable directly as expressions.

