
SETL Newsletter# 120

A General-Recursive Extension of

Functional Application, and its Uses.

December 4,1973
J. Schwartz

The built-in operations of most languages are simply -

recursive and thus allow only simply recursive operations to

be written using built-in functions alone. Extra semantic

power can be gained by making available a general-~ecursive

primitive operation. It is especially appropriate to allow

a binary operator op which accepts general list structures as

its first parameter, in such a way as to make any general re­

cursive function f (x) realisable as ·1

represents_£~ x.

Such an op will in effect be a general-purpose interpreter;

its left-hand arguments representing programs in an internally

manipulable form. A simple variant of this scheme is proposed

in John Backus'two papers on 'reduction languages'; cf.

Backus [l] and [2]. Note that a language with this one

feature need in principle have no other features supporting

control, recursion, or assignment; an observation which is

however of more theoretical than practical interest. Such a

primitive will of course make a variant of dynamic procedure formation

available. The following SETL extension is freely adepted

from Backus' proposal. We generalise the definition of the

'curly bracket' operation f{x 1 , ... ,xn}; this generalised

'application' becomes the op spoken of above. The following

definition, which assumes a system mapping defof defined on

blank atoms, is used.

f is the .null vector

= f (1) { x
1

, ... , xn , f} if f is a vec tor;

<xk, ..• ,xn>) if = f (x 1 ' . . . ' xk -1 ' f is a function of

k variables with k<n

= f(x
1

, ... ,xn) if f is a function of a variable with

k = n

2

= f(x
1

, ... ,xn' n, ... ,n) if f is a function of k variables

with k>n anqi x not a tuple
, n

. .f , .
xn)} = f {xl' ... ,xn-1' x (l), ... ,x (#

n n

in all other cases if f is a function

= f{x
1

, ... ,xn} if f is a set

= defof(f) {xi, ... ,xn} if f is blank# n

= error in all other cases

It is clear that the generalised 'curly bracket application'

described above can readily be programmed if the# operation

can recover the number of parameters of a function and if an

apply function is available for attaching argument list to

objects. For this reason, we expand the list of SETL primitives

very slightly,

letting #f denote the number of arguments of f when f

is a function, and introducing an opperator apply such that

(1)

Some examples: To construct an element £1 such that

<f
1
,f2 , ... ,fn> {x1 , ... ,xk

= f {<f
2

, ..• ,fn> {x1 , ... ,xk}}

put f
1

= < d,f >, where d is as below. Since

<f1,··· ,fn> {x1,··· ,xk}

= < d , f > { x 1 , . . . , xk , < f 1 , . . . , f n > }

= d {x
1

, ... ,xk, <f1 , .•. ,fn>' < d, >}

we may define d by

definef d(u);

return u(#u) (2) {apply(<u(#u-1) (2:)> + u(l:#u-2))}

end d;

and then we have

= f {<f
2

, ... ,f > {x 1 , ... ,xk}}. ,, n
(,

This gives us a very easy 'composition' function

definef comp(f
1

,f
2
); return<< d,f 1 >,< d,f2 >>; end comp;

To attach x as i-th parameter of an n-parameter function,

getting an n-1 parameter function, use < at,f,i,x > with

definef at(u);

return u(#u) (2) { u(l:u(#u) (3)-1) + < u(#u) (4)> + u(u(#u) (3) :) }.

end at;

To attach g(x1 , ... ,xk) as i-th parameter of an n parameter

function, getting an n+k-1 parameter function fg defined

by fg {xl, ... ,xn+k-1} = f {xl, ... ,x2-l' g{xl, ... ,xl+k-1},xl+k'"""'}

we can proceed similarly using <subst,f,g,i,n>; where n may be

D if for g is a function. The program for subst is fairly obvious.

In situations where generalised application is to be used

heavily, a syntax allowing applications with two arguments

two be written in infix position is of course desirable.

3

