A General-Recursive Extension of Functional Application, and its Uses.

The built-in operations of most languages are simply recursive and thus allow only simply recursive operations to be written using built-in functions alone. Extra semantic power can be gained by making available a general- recursive primitive operation. It is especially appropriate to allow a binary operator op which accepts general list structures as its first parameter, in such a way as to make any general recursive function $f(x)$ realisable as t,
represents_f op x.
Such an op will in effect be a general-purpose interpreter; its left-hand arguments representing programs in an internally manipulable form. A simple variant of this scheme is proposed in John Backus'two papers on 'reduction languages'; cf. Backus [1] and [2]. Note that a language with this one feature need in principle have no other features supporting control, recursion, or assignment; an observation which is however of more theoretical than practical interest. Such a primitive will of course make a variant of dynamic procedure formation available. The following SETL extension is freely adepted from Backus' proposal. We generalise the definition of the 'curly bracket' operation $f\left\{x_{1}, \ldots, x_{n}\right\} ;$ this generalised 'application' becomes the op spoken of above. The following definition, which assumes a system mapping defof defined on blank atoms, is used.

$$
\begin{aligned}
& \mathrm{f}\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\rangle \text { if } \mathrm{f} \text { is the nullvector } \\
& =f(1)\left\{x_{1}, \ldots, x_{n}, f\right\} \text { if } f \text { is a vector; } \\
& =f\left(x_{1}, \ldots, x_{k-1},\left\langle x_{k}, \ldots, x_{n}\right\rangle\right) \text { if } f \text { is a function of } \\
& k \text { variables with } k<n \\
& =f\left(x_{1}, \ldots, x_{n}\right) \text { if } f \text { is a function of a variable with } \\
& \mathrm{k}=\mathrm{n} \\
& =f\left(x_{1}, \ldots, x_{n}, \Omega, \ldots, \Omega\right) \text { if } f \text { is a function of } k \text { variables } \\
& \text { with } k>n \text { and } x_{n} \text { not a tuple } \\
& =f\left\{x_{1}, \ldots, x_{n-1}, x_{n}(1), \ldots, x_{n}\left(\# x_{n}\right)\right\} \\
& \text { in all other cases if } f \text { is a function } \\
& =f\left\{x_{1}, \ldots, x_{n}\right\} \text { if } f \text { is a set } \\
& =\operatorname{defof}(f)\left\{x_{1}, \ldots, x_{n}\right\} \text { if } f \text { is blank } \# \Omega \\
& \text { = error in all other cases }
\end{aligned}
$$

It is clear that the generalised 'curly bracket application' described above can readily be programmed if the \# operation can recover the number of parameters of a function and if an apply function is available for attaching argument list to objects. For this reason, we expand the list of SETL primitives very slightly,
letting \#f denote the number of arguments of f when f
is a function, and introducing an opperator apply such that

$$
\begin{equation*}
\text { apply }<x_{1}, \ldots, x_{n}>=x_{1}\left\{x_{2}, \ldots, x_{n}\right\} \tag{1}
\end{equation*}
$$

Some examples: To construct an element f_{1} such that

$$
\begin{aligned}
& \left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle\left\{x_{1}, \ldots, x_{k}\right. \\
& =f\left\{\left\langle f_{2}, \ldots, f_{n}\right\rangle\left\{x_{1}, \ldots, x_{k}\right\}\right\}
\end{aligned}
$$

put $f_{l}=\langle d, f\rangle$, where d is as below. Since

$$
\begin{aligned}
& <f_{1}, \ldots, f_{n}>\left\{x_{1}, \ldots, x_{k}\right\} \\
& =<d, f>\left\{x_{1}, \ldots, x_{k},<f_{1}, \ldots, f_{n}>\right\} \\
& \left.=d\left\{x_{1}, \ldots, x_{k},<f_{1}, \ldots, f_{n}\right\rangle,<d,>\right\}
\end{aligned}
$$

we may define d by
definef $d(u)$;
return $u(\# u)(2)\{\operatorname{apply}(\langle u(\# u-1)(2:)\rangle+u(1: \# u-2))\}$
end d;
and then we have

$$
\left\langle f_{1}, \ldots, f_{n}\right\rangle\left\{x_{1}, \ldots, x_{k}\right\}=f\left\{\left\langle f_{2}, \ldots, f_{n}\right\rangle\left\{x_{1}, \ldots, x_{k}\right\}\right\}
$$

This gives us a very easy 'composition' function
definef comp $\left(f_{1}, f_{2}\right)$; return $\left\langle<d, f_{1}\right\rangle,<d, f_{2} \gg$; end comp;
To attach x as $i-t h$ parameter of an n-parameter function, getting an $n-1$ parameter function, use <at,f,i,x > with definef at(u);
return $u(\# u)(2)\{u(1: u(\# u)(3)-1)+\langle u(\# u)(4)\rangle+u(u(\# u)(3):)\}$.
end at;
To attach $g\left(x_{1}, \ldots, x_{k}\right)$ as $i-t h$ parameter of an n parameter function, getting an $n+k-1$ parameter function $f g$ defined by $f g\left\{x_{1}, \ldots, x_{n+k-1}\right\}=f\left\{x_{1}, \ldots, x_{2-1}, \dot{g}\left\{x_{1}, \ldots, x_{1+k-1}\right\}, x_{1+k}, \ldots,\right\}$ we can proceed similarly using <subst,f,g,i,n>; where n may be Ω if f or g is a function. The program for subst is fairly obvious.

In situations where generalised application is to be used heavily, a syntax allowing applications with two arguments two be written in infix position is of course desirable.

