
SETL Newsletter# 122

More Local and Semi-Local SETL Optimisations.

J. T. Schwartz
January 20,1974

Optimisations may be divided into three classes:

A. Local optimisations, which can be performed when

certain strictly local code features are detected.

B. Semi-local optimisations, which involve only local

code transformation but which can only be performed when

certain local 'code' features are detected and in addition

one has verified that a program to be optimised possesses

certain necessary global properties.

C. Global optimisations, which involve global program

properties and make use of non-local code transformations.

In this newsletter, which contipues D. Shields' Newsletter
~ ,t '

45 on the same subject, we will enumerate various optimisations

of type A and B. Note that optimisations of type A can be

built directly into the new SETLB to BALM translator;

optimisations of type B must wait intil some degree of global

program analysis is available in the SETL system.

To get full benefit even from the strictly local

optimisations, they may have to be carried through all the

levels of translation which the SETL system is now using.

That is, the SETLB to BALM translator may notice a feature,

and translate it using a specially introduced BALM operation,

which the BALM to LITTLE translator is able to detect and

convert into an appropriately efficient LITTLE sequence.

As an example of this observation, note that then appearing

in optimisation (iii) below is known to be an integer, and

even a 'short' integer; to exploit this fact properly, it

must be reflected even at the LITTLE level. A similar

remark applies to optimisation (v) below.

SETL-122- 2

I. Local optimisations: (Some of which are quoted from

Newsletter 45).

i. Compile 3 { e (x) , XE:a I C(x)} as

if 3 XE:a I C (x) then e (x) _else n
ii. Compile ye:: {e (x) , XE:a I C(x)} ,as

temp= f; ('tf XE:a IC (x)) if y ~ e(x) then temp= t; quit;;

iii. Compile # {xc::a C(x)} as

n = O; ('t/xc::a I . C_(x)) n = n + 1;;

(note that the SRTL level next function can be used explicitly)

iv. Calculation of all constant vectors and sets can be

moved to an initialisation section; constants being assigned

to global names. If possible, this should be done also

for constants involving labels; if this is not possible,

a 'once only' switch should be prefixed to the calculation

of a constant which involves labefg, ~,.. ;

v. Special equality and inequality tests such as

x ~ nl, x ne nl, type x eq int etc. should be done

directly by efficient BALM, or even by specially added

LITTLE macros.

vi. The copy operation normally applied to the first

argument of s + t (if s is a set) can be omitted ifs

is an expression. Since '+' is commutative, this remark

applies also if t is an expression. It also applies to

s - t if s is an expression.

vii. The union operation

s + {e(x), xc::a C(x)}

can be compiled as

(lr/xEa IC (x)) x in s;;

viii. The intersection operation

s n {e(x), XE:a I C(x)}

can be compiled as

t = nl; (Yfxc::a C(x))if (e(x) is elt) c::s then elt in t;;

ix. {xc::a I C(x)} ne nl becomes 3xc::ajc(x)

x. set - {e(x), xc::a I C(x)} becomes

cVxEa I C (x)) e (x) out set;;

SETL-122- 3

xi. Multiple assignments of the form

can be compiled as

Note also that the SETLB syntax should be upgraded to

permit constructions of the form <f(i) ,f(j)> = <x,y>, and

should be brought in line with the current definition of

multiple assignments.
i ·. ;.:<

xii. Quantities, such as do-loop indices, which are

known to be 'short' or which can be shown to be short by

a test performed on loop entry ought to be handled as

LITTLE integers for purposes of incrementation. For example,

in compiling

(m ~ Vk ~· n) body;

27
it is acceptable to assume that m and n are< 2

attempt to produce the following LITTLE code:

and to

m1 = intval(m); /* where intvaZ strips m of its

type information*/

loop:

n1 = intval(n);
2 7

if lm11 <E. 2

if (m1 gt n
1

) then exit;

then error;

K = setlint(m
1
); /* where setlint attaches type

information to m
1

*/

SETL-122- 4

body;

m1 = m
1

+ l;

go to loop;

The same optimisation can be applied to descending

iterations.

xiii. In calculating

[+: x£s I C (x)] <e (x) >,

pre-estimate the number of components of the resulting vector

as being equal to # s; pre-allocate a vector of this size,

and build up the required result by component insertion,

finally throwing away excess space. More generally, when

an expression of this form [+: x£s I C(x)] e(x) occurs

in the context [+: x£s I C(x)]<J~~)> + [+:xes 1 !c 1 (x}]<e 1 (x)>
, '

calculation of the whole ought to be arranged to avoid the

creating of unnecessary vector fragments and unnecessary copying.

xiv. Enhance the SETLB syntax so as to allow iterators

over tuples, i.e. iterators (V x(k)Et) Iterations of

this sort can employ the optimisation described as (xii)

above. Moveover, within an iterative loop headed by

(Vx(k) Et) ... , the indexed access x(k) can be direct and

efficient. The same optimisation should of course be

applied to forms such as 3x(k)£t,{e(x), x(k)Et I ••• }, etc.

xv. Iterations of the form (Vx£f{s}) can be handled

in a special way. Specifically, the first element address

of a tuple whose first element is s can be located, and

a routine called to reconstruct the tail of this tuple.

Then the present nexteZt routine can ~e used to advance the

element address, and iteration can proceed until all tuples

starting with s have been exhausted. Note that the set

f{s} never has to be constructed explicitly.

SETL-122 - 5

A similar approach can be applied to iterators VxE f{s 1 ,s 2 },

and to iterator-based constructions such as {e(x), xEf{s}jc(x)}, etc.

II. Semi-Local Optimisations.

Some of the optimisations noted in this section

depend on the availability of live-dead and object-type

information. Of course, these are harder optimisations

than those described in the preceeding section.

i. Quantities known to be integers might be handled

in a special way as follows:

Make available two compile time declarations NOERROR (permitting

the supperssion of certain costly types of run-time error

checking, and also permitting the use of type information

derived by A. Tenenbaum's 'backward' method) and SHORT

(declaring that no integers in exce~? of an implementation-
~ i

defined limit will occur.) In the presence of these de-

clarations, integers can be maintained as LITTLE integers,and be

converted to SETL form only when they are put in sets,

become vector components, or assigned to a variable. For LITTLE

integers, fast arithmetic comparison operations are available.

ii. Sets which never become set elements or vector

components, and which are never assigned to more than one

variable,will be dead when the sole variable x of which

they are the value becomes dead. Value semantics can be

guarantee.a for such sets even without maintaining dynamic

reference counts. When such sets s are used in constructions

such as s + s 1 , copying of s can be.omitted. Similar remarks

applies to tuples t appearing in the context t + t 1 .

SETL-122 - 6

iii. In constructions like

s = {e(x), xe:a lc(x)};

it may be possible to detect that s is used only to form

a union, and hence to suppress the explicit construction of

s. This same remark applies to sets used only to form

intersections.

