
()

SETL Newslett~r No. 123
Variable 2:.wsu.--nption

WJ. tl1 C~nstant Fold ins_

re, Kennedy, Rice University

One of the difficultiea of a thorough streng-th 1eeoucticn
algorithm which works on a.1"1 i.nt.et"mediate language of quadruple&:.

[1] is that it leaves many assignments of the fonr,r

X = y

inei.de loops~ A good reglster allocation algo!d.thm ndght t<i:.k.f:

cax:e of this problem but many of these assignments can be
aliminated during the machine-independent phase. SupprJse th,?:t

after the above assignment the only use of X comes before Y

is assigned. In that case we could eliminate the assignmellt

by using Y. instead of X -- the assignment to X would then be a

dead computation and could be eliminated by a. dead computlltion.

Eilimination algorithm [21. · This type of optimiz~t.ion is k11mrr.,

as "v'ariable subswnption" and has been treated by a nu..'ilbe1r

of authors [3,4]. A global solution is presented·,here as part.

of a series of reduction in strength algorithms begu .. "l in

SEIJ:'L Newsletter No. 102, "Reduction in Strength Using Bat=1h,ad

'l'emporaries" [1] • The intennediate la.ngviage, which consif:ts of

J3imple quadruples, will not be de~;c:ribed here; the reader sh.ou Vi

see [l] for a complete introduction.

Basic Cottsidarations

To eliminate an assignment of the fo:tm X :::., Y. we mu~t be -c:b:C.e

to replace all uses of X which can. be reached fran tbis c=-.ssignn',~n t

;:;y uses of Yo The algoi·lthm we develop here will attempt t:;}

do this a..c, often as poesible althcugh its success will be- jud~r•tr,•.~

hy the succeas of the de.ad ccfn1pi,;t.etion elim:triat:ion aJ,;o:r.-:i.tlua

ini..,oked later.

In the assigmntmt X == Y we call X tho p:r•it;,a:!'y a.nd Y t..ht;:

al t1.:X"nat-e, At any point i.:n ot:i:r.· processing w~ ,,nl.11 have a m;!rl1::..}3

of prfma:r.-ies and corresponr:in9 ,-.1.t.ernates ((~;::.,eh p:rfr~.ary wil).

have onl~t one alternate) which w~~ wi.1.1 mai:ntrdn o:S ·1 aube;:.:mtt·:: 1: ·

LJ Z.ist of orden~d pairs

. <primary.- al tern a. t,z > •

(I'

We any that this pair i~ ooi1aiued at tl1at point because the
l-.,,.... v::a ,,.{ .. , ·~ 71 e"" C y{ ",1._ l alW'"'·•1.:: :-1 ,.-,or., ,'l.t,.""' "'·•r-:;~ ,, "I 1 ,,e th"-":r -c., ·-~r,.; ,._,,.,,..,,..r.t .. U --U fw.1.. .. ~ -:.,.,1.~w- - w,,_ of.;.2..!J,........ C, 0.-t-,v ~.

Suppc,sr~ wee are processing straight-line code, say within

a .basic block. We move forward through the code of t.:.',.e block

pinrforming the following steps at each :tnstruct.ion.

1. If the instruct.ion is an assignment x = y f all pairs
I

with x as an element must be p_moved f ran the ~u.hsumption.

list and the new pair <x,y> must be ad::Sed~

2" Wheni:1ver. a11 operand of the instruction is a primacy in the

subsumption list, that operand is replaced by its al ternatEi.

3 .. If z is the target {the varia.ble ast3:ltgned) of the ins.truct:i.on.,

a~l pai.rs with z as an element must be removed from t.l'te
subm1rn;;i,tion list bec&use these pair:s &re no longer covalued.

('!'he exception is t.½.~t of the assigm11ant, covcar-ed .in ca.se l~}

.Jlir~ int.eresting point about this method is i tt, resemblance to

co11s'tant folding. If we wish to perform constant folding in

baaic blocks, "He keep a list of <variable ,constant value> paJ..:n,

mid perform the following staps at each ingtruction.
L If. the instruction is an assignment x = ~;lmstamt, ve r1~r.'.it'VC

any pair wit.11 2t as lta firat. e.lement and :~nsert the pair

<x, con:,tarit> in the folding list:e ...
2, Replace a11 opera..'1.ds of. the im;,tniction ryu· constm-;.ts wher,:?

npplic.able.

38 If z i.s t..11r:! t,irget of the ir1struction remove an:t pe,\r w::1. th 2

as its fLr.st: element frorri the :fo1.d:tng litJto

1. J.f t.h~ ias:+..;rnction is of the form 2 =- x np y ,and x an,: ::~

are bc":.h ;;;cnstantr3, perform cp on x m10. y (2t •tx,;r:i;:i.ili~ ':Lr,:e·:

to p::.:c-d't...cE? conHt.art'r. cf :repiir~~e, the :\~rntr,:;ct:.l.o,·1 i 1y 1, u ·~,,

and ,3..J;q:: .ly ca:if? 1 (abov,sd ,

'Pht.! si:mi1a:e.:'.. ty of i:hes{:l r:.athods hi.i).tS that 'i.Yf,i 1f1itJiTt lHS ab't:? tr:

::io {:ons t,v:t: .fo1C:U .. rH; by ge:n.92'.',JJ_li zi;;.g a s·,::h2m,1ption al·li:::i:ri tbm

:Jilightly. Tl~e al~1orlthm de",teloned in tt-i~ 11(~WtiJet.·::.er. wi 1.i <le

;1 i::ompletl:' j:}':> ,:::,f g:.0hr1l ViU'icl.Jl,.~ ;a;lb:is~,r::ptLtr\ <1:md "· r:Grr-r,,•'~ia+

incompletiE.: job of consta-.nt f.olo:i.m_i.

0

0

l)

SETL 123·-3

The fundamental tool in o:.1r ayst:em will be im i:.i.lgo:r:ithm

which, given an input subsun~tion-folding list eubinput~

performs euhgumr:>tion and folding in the basic block and compute .9

two output sets.

l. aubout - the output subsumption list, and

2. kiZ.Z.edout- the set of all variables to which an assignment:

is made within the block.

This second set is import.ant for the global analysia, d.iacu.iise:f

later. The routine is written along lines suggested in the

previous section.

definef subfold(block,subinput)1

/* a number of quantities are global:

oontents is a function which produces ti'le instructions i.n a blc,ck

ne~t ia a sequencing function for the block

op, ar-gs, and ta~g produce parts of an inst.ruction
,,

common ia the set of common variables

constants is the set of atoms which are constant v·aluR,S
vat maps a. constant onto its value ·

:tnstruction mnemonics are also globa.l * /
subout = inputsv.b;
killedout = ~1:

/* find the first instruction*/

inst = if 3 b E contents (block)

h n f.~ next r conteTitS (blc;,ck) l
then b else n1

/* loop thr:ouqh the block. 111 /

(while inst ~-: contents (blor:k} doing inst= next {i.nsf.::);)

/* first check for a call*/
if op {inst} 1::: {bfn ,be.r.} ther~

arg = a:cgs {inst) ;

/""· assume a1.l argument.a killed tt/

newkil1 - {a.rg(i) f l :_ i ~ #arg}

+ COiml'.O!.'l /* all cc..mimon vars ~ /

+ if op~ bfn

th~n {targ{inst)} else a&;
killedout = killedout + newkill1

/* remove appropriate pairs*/

(~p s subout I hd p e newkill ~ t1 p e newkill)

subout = subout less p; end Yp;

else- /* a normal instruction*/
const = t; arg = nrgs(inst);
(1 ~Vi~ iarg) x = arg(i)

/* check for possible r·eplacement.s */
if subout{x) ne n then arg(i) ~ subout(x);1

if arg (i) !! E constants then const • !_; ;
end Yi;

/* now compute values for constant operati.ons */
if const then/* compute value */

go to {<add,plus>i
<gub,minus>,

<mul,mpy>g

<di.v,dvd>1
~exp,power>,
<xld,noth::.-,

<sto ,noth> r

<n~g,chs>,

<xst,not.'l:>·,

<br ,noth>,

<brc,noth>/l
<hlt,n,:,th>} (op{i.r;,c,it:)) 1

else go to noth; end if const;

j:t c:ode for .:·onstant comp•.rtaticns */
p11ls: value ,.,.. val {arg {l)} + val (a:a.,; (2}) ;,

go to subst;

minus: ,ralm: ::c• val(arg(l)) ·~ val(c;l.:c9·(2)i;

go to Sl).DSt ~

0

C

SE'TL 123-5

mpy: value~ val(arg(l)) * val(arg(2));
go to subst;

dvd: value= val(arg(l))/val(arg(2));

go to subst;

power:_ value= val(arg(l)) ~ val(arg(2));
go to subst;

chs: value = •• val (arg (l));

/f:_, insert value in constant table and change instruction 1 j

subst: if 3x e c_onstants lval(x) = value

I*

I*

then c • x;

else.c • newat;
constants= constants with c;

end if;
op(inst) • sto;

args(inst) • <c>;
remove killed pairs*/

noth: (Vp e suboutltarg(inst) e {hd p, t1 p}) - -
subout • subout less p; end Wp;

add new pair if appropriate*/

if op (inst) !.s. sto then
subout(targ(inst)) u arg(l);;

/~ update killedout */
killedout = killedout with u1rg(inst};

end if op(inst);

return <subout,killedout>;

end subfold;

Although this routine is long, it is nevertheless .straightforwaxd.

SETL 123-o

Global Con£iderations - ..

Suppose that a basic block b has a nwnber of predecess,'jrs,

blocks from which transfers to b c,:m be made. Then the input

eubsumption list subin (b) is just the .!,ntersecti~ of the
output subsumption lists from these predecessor blocks.
In order to do global variable subsumption, we must have
correct inp<.;1t subsumption lists for every block in t'le progran.

This can be achieved in two passes. The first pass gets

output subswnption lists for each of the blocks, then output

su.bsumption lists for .intervals, then for higher order intervals

and .JJO on. When all output subsumption lists have been computed,
-....)

we can apply the "intersection• principle on an outer-to-inner

basis until we have correct subsumptior~ li~ts at the entry of

each block. We then invoke subfold once again to perform the
final subswnption (and,folding).

As simple as this seems, there remain some tricky problems

to be solved.•. First, we wish to invoke eubfotd o:nly twice

for each block in the program once on the first pass and
once on the second pass,, If we ar~ to be able to do this,

we must be able to exact~ determine what the suhsu.mption lir:Jt

(on the second pass) is for input to the head of an interval if
we know what it is on input to the interval. There are two

cases to consider.

1 e A subsumption pair is active: on entry to the interval head

if it is active on entry to the interval a:ad if it. is not

killed on any path in the interval uhlch. leads back t:o tJie

head.

2. A subsumption pair i,s active on entry to t.:1:1.e head if it is

active on entry to the interval and it would be a member c,f

the output subsumption list of ever<.J block which branche11

bac.::k to the head, even if no suhstit.utions were active on

,entry to the interval.

0

SETL 123-7

Th~ information required to detenrdne these t.wo conditione

~ must be computed on the first pass. In particular, we need

to compute ki 7, 1,edin (head) -- the set of variables killed on

. some path through the interval l·eading back to the head·,

which will be used to determine condition 1 -- and
euba~ound(interval) -- the set of subsumption pairs which

are in all the output subsumption lists of blocks that branch

back to the head, which will be used to detennine condition 2.
If inputsub is the subsumption list on interval entry, then

subin (head), the subsumption list on entry to t.&'le head, ls
given by the SETL code fragment

(1) subin(head) =/*condition 1 */
{p e inputsublhd·p £ e killedin(head)

and tt p ~ E killed!n(head)}

+/*condition 2 */
inputsub • subaround(interval);

The second problem arises when we attempt to compute
subout and kit1--edout for intervals. If we are to compute

subaround (to solve the first problem above} we must

assume that on entcy to every interval the set inputsub is nt;

however, we must also know what the output subswnption list

is for a given input subsumption list -- a seeming contradic
tiono Fortunately, this second output subsumption list may

be computed from the first by using a method similar to the
solution of problem 1. Given the input list subin(b) for

an interval (or block) b, a pair will be in the general output

subsumption list if

l. if is in oucout(b), i.e. it is; produced in b assuming

the null input list to b, or

2~ it is in subin(b) and neither of its elements is killed in b,

i.e. it is in the set
{p E sub in (b) ! !ld p n E ki.lledout (b)

and. t! p n E killedo-;1t (b)} •

Theee observi1tions will be the basis fo>t a. general subsmnpt1.on- ()

list: jump fl.l.nc .::.ion tc~ be. dif:tC\1~;sed u1 the ne:!{t sect3.:::m.

Pass l ~-_.,,,-
: : : We are now ready to present an algori t.h:an which passes thrc.-.. lgh

an interval, computes subout (assuming the null input list)

and. 'k,iZ-ledout for each entry-exit pair. cf the interval, and

computes the sets_s~ba~owid and _1{iZZedin(head) needed in p.;ss :,.

I:f_ the interval to which this algorithm is applied is in tact

a basic block, the algorithm will call subfo Zd and t..h,~n conv,.:::rt

_the. ou~put to entry-exit pair fo.rm •

.. -~o important intennedi~te vari.ables are maintained.
a:o aubin (b) I for. each block b in the interval, is the input

substitution list for that bloc* assuming the null
: ·: substitution list on interval entry.

b. kiZle,-1:i-n(b), for ea.eh block b~ is the set of variables· which

are·· killed on some path leading from interval entry to b.

This info:t"Illation will be sa.ved for use by pass 2 since

it rieve·r changes~ : :

Fro?fl.· the discussion i.n th«? · last section, we ca11 define funct.io.'.'lS

wh.lc:h ,:::ompute subin and k.il-l~d,:nfor a gi'\,,.m block b. - First to

compute: aubin (b) ·we will. need to look at each pn~decessor-

pb of b I .. take the union of subou.t(pb) and

{p E slf1'ln(pb) lhd p ~ E killedout(pb)
- and t! n E killedout (pb)}

.- .. - . . . - .- .. --. : .

and intersect- these for all su.ch pr.r~decessor~. Th1e argu..vn.e;1t

cont restricts the s~t of blocks t,hat we will r:onsider G
,. . ~ . .

define~ ju."nP,sub (b, con·t.) ; ...

l-1t pred, 3;_2bov.t, killed.out." and subin are global

retu:~n ·u*: pbEprecl(b) lpb'Econtl

(s '.'11> OU t (~b) +
{ . . b) I hd c:::•· • -· .. - t , ?.,,) p€suln.n \p _ p !!_-i:c1L1.~ctou . ;.pj.)

an-tl i!. p !!. E }d !J.ed·"}Ut (pb) } }) ;

e11d jumpfP.ib;

SETL 123-9

(~\ A simllar function can be coded to compute the ,set kilZedi.n (b),

Here the consideration is 1:dmple.r .,,_ a variable .is killed aJ:~1v:.:

a path from interval entry to b if, for some predecessor pb,
it is either killed on a path t.o pb or killed within pbc

define£ jwnpkill(b,cont);
/* killedin, killedout, pred are global*/

retun1 ([+: ph E pred (b) I pb E ·cont]

(killedin(pb) + killedout{pb)));

end jumpkill;

Using these two functions, we can now code the routine subpassl

which computes the desired quantities for an interval. Note

that the killedin sets must be modified to take looping paths
into consideration.

definef subpassl(interval,inputsub)
/* contents, order, blocks, killedin, subin, subaround,

pred, succ are global*/

cont= contents{ interval};
/* is in:erval really a block? f! /

if cont* blocks eq n1 then
/* call subfold a.r.,d use the input subsumption list*/

<x,y> = subfold(interval,inputsub);

/* convert to entry-exit pair form*/
(~sb e succ(interval))

subout(interval,sb) = x;

killedout(interval,sb) ""y; en.d Yeb;

/* retu1."1l the pair * /
return<suhout{interval}, killedout{intervul}>;

else/* we have an. intorv&l */
head = order (interval, l)

subin(.head} == n!:

killedin {head) = n~;
<subout{head}, Jdlleflc1,1t{head}>=su.bpa~sl {head,aubin(heBd;,;

SETI. 123-Hi

/* n.ow pass through the :!nterv;:,;l in interval order */
(2 ~ Vi :. icontj b = ordcr{int.~:>:val,i) ;!

/* apply j·1.1mp functions * /
suhin(b} :;:,jtunpsub(b,cont);

ki.lledin (b) e.-1 ju.mpkill (b, cont);

/* call aubpassl recursively to get subout,killedout for b*/
<aubout{b} ,killecl.out{b}> = subpas:sl(b, su!:>in(b}) J

end \ii;

/fl recompute k.illedin for head*/

killedin(head) = jumpkill(he~d,cont);

/* recompute killedirt for every block * /
(Vb E cont - {head})

killedin{b} = killedin(b) + killedin(head);

end Vb;

/* compute subaround */
subaround(interval) = jumpsub(head,cont);

/* now compute the output sets, killedout. and subout for the

inter,ral */
(Vsint E sue~ {interval.))

hsint ~ order(sint,1)1

killedout(interval,sint). = /* a.pply ju.mp functions*/
jumpld.11 {hsint,cont);

subout(i.nt:erval,sint) = jurnpstili {hsint., c<>nt);

end 'ifsint;

return <stlbc"'.1.t {interval}, kill~don.t{ int,-n:·val J >;

e.n.d 1f cont ,r blocks;

end subp.ass 1.~

Whc':,n this routine is applieci. to i:ba interval. rir!r.n:·esenttng

the ent5.re pro,;rain .it tdl.l ,.::onput::is the k.·i ll-edin ~h9ts f.c,r eve-:\.::::·

block vnd int~r;,aJ. in b'le p~'.:O<J.i:-.:,zn ,:md w:Lll c-:,mp'.lt~ t!i.,s.

eub~rcund !!E~t.s for every inter.val :in the pro,:,:r-~:m, pr-9pa rin,;

the way fo:c -::.he second p,ISG. Hc:.,tr:, that ki.l-1,r,dout ar:,::t f<u. 1;out

ar.e n.ot glob;i1.

0

0

u

SE'l1L 123-11

Pass 2 ---
The Eer.:ond pass in similar to the first except tl1at

c..::)rrect. ~mbsumption lists are passed into intervals and

distributed to the various contained blocks. The input

subsumpticn list r.ubinput to an interval must be modified
along t.he lines suggast-r)d in the "Global Considerations"

section before being passed to the head of th.e interval.

The following function, · ease11tia.lly a transcribed ,,ersion

of code fragroont (1) from 1-...hat section, performs the task.

define£ convertsub (interval, inputsub);

/* killedin, oubaround, order are global*/
killedinhead = killedin. (order (interval ,l));

return(/* condition 1 */
{p e inputsubfhd p !!. e killedinhead

~ ~! p !!. e killedinhead}
+ /* condition 2 ·It/

(inputsub * subaround{interval»):
end convertsub;

The other mai.n differences from pass 1 are

a. ki ll,edin sets are not recompited; and

b. therefore nothing is done about branches· ha.ck to t..he head.

Here then is the SETL code ..

definef subpass2(interval,inputsub};

/* contents, order, blocks, killedin, subaround, pred, succ

are all global*/
cont= contents(interval);

/* is interval really a block?*/

i.f cont * blockB ~ n9, then. /* call subfold * /
<-x,y> = subfold(interval,inputsubl;

/* convert to entry-exit pair form * /
(Vsb E succ (interval)}

subout {inteJCval ,sb) i:.i Xi

killcdout.{inte.rva.1,sb} = y; end Vsb;

/* return the resulting paiz */
.. return , nubout{ir..te:r.vaJ.}, killedout{interval}>;

else /* we have an. interval */
head= order(interval,1);

subinfhead) = convertaub(interval,inputsub);
<subout{head}, killedout{h~ad}>=subpass2(head,subin(headj};

/* nciw pass through in interval order*/

(2 ~ 11i .:. tcont) b = order(i.nterval,i):

subin(b} = jumpsub(b,cont);

/* call subpass 2 recursively*/

<~ubout{b}, killedout{b}> 2 subpass2(b,subin(b}}; end ~i;

/* note that killedin is not recomputed and no

loop considerations are needed ~1
/* now compute out.put quantities*/
(Ysint E succ(interval))

hsint = order(sint,1);

/* use jump functions*/

subout(interval,sint) = jumpsub(.hsint,cont);

killedout(interval,sint) = jumpkill(hsint,cont);
end Vsint;

return<subout{interval},killcdout{interval}>;

end if cont* blocks;

end subfold2 i

Suppose p:. .. ogint is the high-order: interval which represents

the whole progra.m. The entire ,icri.able subswnptio:n process

can be invoked by two calls

dummy == st.ilipassl (progint,n1),

dumJ11y = subpa.1::s2 {p:rogint~ ~-~} ;

0

SETL 12.3-13

Discussion ·-~------
The storage :r.-eguired b~l thi6 mE>thod is not large. HetHeen

passes, we must save k.·i l l.ed-ll1 for every block and interva.1 .in

the program and subar-ound for. every interval in the program.

The recursive routines can be converted to an :.i.terat.ive fonn

if intervals are pr,ocessed in the correct order. (otherwise

storage requirements go up becansf: more vez·sions of k1:Zledoi:.t

and au.bout must be kept on hand simultaneously).

This method does some constant folding but by no means all
of it" This is because :-'a.eh folding pass m.ay create ne,;

constant assignments which Htust then be distrlbuted globally.,

However, this may be all the folding-we need because it gets

two important cases. F.irst: the algorithm should do a

reasonable job of local constant folding, since two passes
are made through each first-level interval and the results of
the first pass are folded in on the second pass. Second, a
constant assigned in any block: will always be folded into
t.l\e blocks it predominates. Thus, constant parB.meter

initializations will usually be taken care of.

Since a good code motion algorithm will remove from loopu

most expressions which might be eliminated by constant

folding a complete algorith..'<11 bas•~d on data flow a.nalysi~

might not be needed or even desirable, gt ven the time .md

spact1 requirem~nts of such an algori th.:m.

Acknowleggment. Thi$ rtasearch was supported by tl1e Nationt.11

Sc.fence F<.1undation r (ii~ant GJ-40585 .,

References.

1. Kennedy, K. , "ReductJ.rm ili.l. Si::r.~ngth Using Hashed Tem:;.'iOrax-ie~;,"

SETL Newsletter i102, Cou:r-ant Inst. Matl'i1. Sci., New York; 3/7 _;,

2 .. Kennedy, K.; ''taobal Dead Cc;mputation Elimination," SE'1'L News:•a

letter f.111, Courant Inst., Math. Sci., New Yo.:cku Aug·ust 1973,

3. Allen, :c·. E. 1 and Co~ke,. ,;.L "A Catalc1gue of Optimizing 'I'::~.::i., ::,··

format.ions,"' DE~2.!.g!,l__l_QE.!:l·m:t2ati:.9~J_CoEP.J.}~.u Pr:entice·-Hal / .- '·,; ::

4. I.awry_, E. s., and Medlock: c. W, 1 ''ObjBct C0,d1i Optimiz.:itf:.::r.t, '.':'

