Ore of the difficulties of a thorough strengith reduction algorithm which works on an inkerwediace language of quadruples [1] is that it leaves many assignirents of the forms

$$
x=x
$$

inside loops. A good register allocation algorithm might teke caxe of this problem but many of these assignments can be Qliminated during the machine-independent phase. Suprose thet. after the above assignment the only use of X comes before y is assigned. In that case we could eliminate the assignment by using Y instead of X-- the assignment to X would then be a cead computation and could be eliminated by a dead computation climination algorithm [2]. This type of optimization is kncma as "variable subsumption" and has been treated by a numbex of authors [3,4]. A global solution is presented here as part. of a series of reduction in strength algorithms begun in SETL Newsletter No. 102, "reduction in 5 trength Using ganhea Temporaries" [i]. The intermediate language, which consists et simple quadruples, will net be described here; the reader should see [l] for a complete introduction.

Basic Considerations

To eliminate an assignment of the form $x=Y$ we must be zise to replace all uses of x which car be reachea frorn this assigmant hy uses of Y. The algorithm we develop here will ettempt to do this as often as possible aithough its success will be juaced by the success of the dead compsation elimination alrorithat invoked aatox.

In the assigmment $X=Y$ wo call X the pritramy and \mathbb{Y} the alternate. Nt any point in onx procesaing we will nave a numbey of prifuries and corresponcing alcemates fach prinary wint have only one alternate) whon we wili maintain as asbermituou liat of ordered pairs

〈primary ithemater.

The say that this pouf fan onaluad at that point because the two variables will always have the same value there. Suppose we are processing straight-line code, say within 3 basic block. We move forward through the code of the block performing the following steps at each instruction. 1. If the instruction is an assignment $\%=y$ all pairs with x as an element must be removed from the subsumption list and the new pair $\langle x, y\rangle$ must be added.
2. When aver an operand of the instruction is a primary in the subsumption list, that operand is replaced by its alternate.
3. If z is the target the variable assigned) of the instructions all pairs with a as an element must be removed from tire subsumption list because these pairs are no longer covalued. The exception is that of the assimment, covered in case 1. ; fin interesting point about this method is itu resemblance to constant folding. If we wish to perform constant folding in basic blocks, we keep a list of <variable ,constant value> pairs tat perform the following stops at each instruction.
5. fit the instruction is an assignment $\%$ w constant, we renown any pair with of as its first element and insert the pete < x, constant> in the folding list.
\%. Replace all operands of the instruction by constants where applicable.
3. If z is the target of the instruction remove any per with 3 as its first element Exam the folding list.
t. If the instruction dis of the form $z=x$ op y and x ans y

 and apply case 1 (abov el.
 do constant folding by generalizing a soosumption abentimm slightly. The algorithm developed in this newsletter wish do a complete job of global variable rubsumthor and a some wat incomplete job of constant folding.

Basic Block Algorithm

The Euncamental tool in onf aystem will be an algorithm which, given an ingut subeumption-folding list aubirpput, performs gubsamption and folding in the basic block anc computes two ontput sets.

1. subout - the output subsumption list, anc
2. Killedout- the set of all variables to which an assignment
is made within the block.
This second set is important for the global analysis, discuesed
later. The routine is written along lines suggested in the previous section.
definef subfold(block,subinput);
/* a number of quantities are global:
contents is a function which produces the instractions in a block
next is a sequencing function for the block
op, args, anc targ produce parts of an instruction
common is the eet of cormon variables
constante is the get of ztoms which are congtant valuas
val maps e constant onto its value
snstruction memonics are alsc global */
subout $=$ inputsub:
killedout $=$ nla;
/* find the first instruction */
inst $=i E z b \in$ contents (block) |
i) $\underline{n} \in$ next [contents (b]com;]
then b elas Ω;
f* loop through the block \&f
(while inst (contents (blok) doing inst= rext (inst))
/* first check for a call */
if op $\{i n s t$: $\in\{b f n, b e r\}$ them
arg $=\mathrm{args}($ inst) $:$
/* assume all argumenta killed */
```
        newksim: {axg(f), } \leqi\leq Sarg}
            + common /* all common vare $/
            + If op eg bin
                        then {targ(inst)} else nl:
killedout = killedout + newkill;
            remove appropriate pairs */
                (Up E subout | hd p E newkill or tel p E newkill)
                subout = subout less p; end Vp;
    else. /* a normal instruction */
        const = t; arg = args(inst);
        |l\leq\foralli < #arg) x = arg(i)
/* check for possible replacements */
            if subout(x) ne \Omega then arg(i) m subout(x;;;
            if arg(i) \underline{n}\in constants then const m E;:
        end \i;
/* now compute values for constant operatioms */
    if const then /* compute value */
        go to {<ada,plus>.
            <u!b,minus>,
            <mul,mpy>,
            <div,dvd>.
            eexp,power",
                <xld,noth>.
                <sto,noth>.
                <neg,chs>,
                <xst,noth>,
                <br,noth>,
                <bre,moth>.
                <nlt,noth>} (op{noth):
    else go to noth; enc if const;
/* code fox constant computations *f
plus: value m ral(arg(1)} & val(arg(3)):
    go to subet;
minus: value = val(arg(a)) w val(arg(2));
    go to suoset?
```

```
mpy: value \(=\) val(arg(1)) * val(arg(2)):
    go to subst;
dva: \(\quad\) value \(=\) val (arg(1))/vel(axg(2)):
    go to subst:
power: value = val(arg(1)) exp val(arg(2));
    go to subst;
cha: value \(=\cdots \operatorname{val}(a r g(1))\);
/* insert value in constant table and change instruction \(/ /\)
    subst: \(1 f \exists x \in\) constants|val \((x)=\) valua
                                    then \(C=x\);
                else \(c=\) newat;
                    constants \(=\) constants with c:
                end if;
                op(inst) \(=s\) to;
                args (inst) \(=\langle c\rangle\) :
/* remove killed pairs */
    noth: (Vpesubout|targ(inst) \(\in\) (hd \(p\), tl \(p\) ))
                        subout \(=\) subout less p; end Vo;
* add new peir if appropriste \(* /\)
        if op(inst) eq sto then
                        subout (targ(inst)) arg(1):
        update killedout */
        killedout \(=k i 11 e d o u t\) with Enxg(inst);
    end if op(inst):
    seturn <subout,killedout>;
end subfola;
```

Although this routine is long, it is mevertheless straightfoxmaxd.

Global Considerations

Suppose that a bagic bloci b has a number of predecessors, blocks from which transfers to b can be mace. Then the input subsumption list subin (b) is just the intersection of the output subsumption lists from these predecessox blocks. In order to do global variable subsumption, we rust have correct input subsumption lists for every block in the progran. This can be achieved in two passes. The first pass gets ourput subsumption lists for each of the blocks, then output subsumption lists for intervals, then for higher ordex intervals and so on. When all output subsumption lists have been computed, we can apply the "intersection" principle on an outer-to-inner basis until we have correct subsumptior lists at the entry of each block. We then invoke subfold once again to perform the final subsumption (and, folding).

As simple as this seems, there remain some tricky problems to be solved. First, we wish to invoxe eubfold only twice for each block in the program -- once or the first pass and once on the second pass. If we are to be able to do this, we must be able to exactly determine what the subsumption list (on the second pass) is for input to the head of an interval if we know what it is on input to the intervil. Where are swo cases to consider.

1. A subsumption pair is active on extry to the interval head if it is active on entry to the interval and if it is not killed on any path in the interval which leads back to the head.
2. A subsumption pair is active on entry to the heari if it is active on entry to the interval ans it would be a member of the output subsumption list of every block which brariches back to the head, even if no substitutionc were active on entry to the interval.

Whe information requixed to detexmine these two conditione must be computed on the first pass. In parificular, we need to compute killedin(head) -- the set of variables killed on Bone path through the interval leading back to the head, ohich will be used to determine condition 1 -- and subaround (interval) -- the set of subsumption pairs which are in all the output subsumption lists of blocks that branch back to the head, which will be used to determine condition 2. If inputsub is the subsumption list on interval entry, then subin(head), the subsumption list on entry to the head, is given by the SETL code fragment (1) subin (head) $=1 *$ condition 1 */
f $p \in$ inputsub|hd $p \underline{n} \in$ killedin(head)
and $t \ell p \underline{n} \in$ killedin(head) \}

+ /* condition 2 */
inputsub subaround(interval);

The second problem arises when we attempt to compute subout and killedout for intervals. If we are to compute subaround (to solve the first problen above) we must assume that on entry to every interval the set inputsub is ne: however, we must also know what the output subsumption list is for a given input subsumption list -- a seeming contradiction. Fortunately, this second output subsunption list may be computed fron the first by using a method similar to the solution of problem 1. Given the input list aubin(b) for an interval (or block) b, a pair will be in the general output subsumption list if

1. if is in $s u t o u t(b)$, i.e. it is produced in b assuming the nuil input list to b, or
2. it is in $\varepsilon u b i r(b)$ and neither of its elements is killed in b, i.e. it is in the set $\mathrm{f}_{\mathrm{p}} \in$ subin $(\mathrm{b}) \mid$ ha $\mathrm{p} \mathrm{n} \in \mathrm{ki}$ kledout (b)

$$
\text { and ta } p n \in \text { killedout }(b)\} \text {. }
$$

There observations will be the basis for a general subsumptionIs te jump function to be disclose in the next section,

Pass 1

We are now ready to present an algorithm which passes through an interval, computes about (assuming the null input list) and kitledout for each entry-exit pair of the interval, and computes the sets. subaround and killedin(head) needed in pass 3 . If the interval to which this algorithm is applied is in fact a basic block, the algorithm will callsubfold and then convert. the output to entry-exit pair form.

IWo important intermediate variables are maintained. a. aubin(b), for each block b in the interval, is the input
substitution list for that block assuming the null
\therefore substitution list on interval entry.
b. kiztedin(b), for each block b; is the set of variables which
are killed on some path leading from interval entry to b.
This information will be saved for use by pass 2 since
it never changes:.
From the discussion in the last section, we can define functions which compute subin and kibledinfor a given block b. First to compute rubin (b) we will need to look at each predecessor $p b$ of b, take the union of subout $(p b)$ and
fp $\in \operatorname{subin}(p b) \mid n d p n \in k i l l e d o u t(p h)$

$$
\text { and } t a n \in k i l l e d o u t(p u))
$$

and intersect these for all such predecessors. The argument cont restricts the set of blocks that we will consider.
dezinef junpsub (b, conc):
/* pred, subovt, killedout, and suoin are global. */
return (f*: pbeprec (b) |pl cont
(subout (ps) t

$$
\begin{aligned}
& \text { andeqpackineadot(phol): }
\end{aligned}
$$

enc jumprub;

A similar function can be coded to compute the ses killedin(b). Here the consideration is simpler ... a varianle is kinled alonc
a path from interval entry to b if, for some predecessor $p b$, it is either killed on a path to $p b$ or killed within $p b$.
definef jumpkili (b, cont):
/* killedin, killedout, pred are global */
retum ($[+: p b \in \operatorname{pred}(b) \mid p b \in$ cont]
(killedin (pb) + killedout(pb))):
end jumpkil1:
Using these two functions, we can now code the routine subpasal which computes the desired quantities for an interval. Note that the killedin sets must be modified to take jooping paths into consideration.
definef subpassl (interval,inputaub)
/* contents, order, blocks, killedin, subin, subaround, pred, succ are global */
cont $=$ contents (interval);
/* isinterval really a blook? */
if cont * blocks eq $n \ell$ then
/* call subfold and use the input subsumption list */
$\langle x, y\rangle=$ subfold(interval, inputsub);
/* convert to entry-exit pair form */
($\forall \mathrm{sb} \in \operatorname{succ}($ interval))
subout(interval,sb) $=x$; killedout(interval,sb) $=y$; end Vel;
/* return the pair */

else f^{*} we have an interval */
head $=$ order (interval, 1)
subin (head) $=\underline{n g}$;
xilledin(head) $=$ ne:
<subout \{head\}, kiuedcut \{headi>=subpass\} \{head, subin (kead:;

```
** now pass tr rough the interval in interval order */
```


/* apply jump functions */
sabin (b) =jumpsub (b , cont);
killeán b b) jumpkill(b, cont);
/* call aubpassl recursively to get subout, killedout for b */
\langle Bubout $\{b\}, k i l l e d o u t\{b\}\rangle=a b p a s a l(b, \operatorname{stuin}(b))$;
end $V i$ i
/* recompute killedin for head */
kililedin (head) $=$ jumpkill (head, cont);
f* recompute killedin for every block */
($\mathrm{V} D \in \mathrm{cont}$ - \{head\})
killedin $(\mathrm{b})=$ killedin $(\mathrm{b})+$ killedin (head);
end Vb ;
/* compute subaround */
subaround (interval) $=$ jumpsub (head ,cont);
/* now compute the output sets, killedout and subout for the
interval */
(Mint $\in \operatorname{suca}($ interval))
hsint $=$ order (sint,i);
killedout(interval,sint) $=$ /* apply jump functions*/
jumpleill (hint, cont):
subout (interval, sing) $=$ jumpsub (hint, cont);
end Usint:
rectum <subcut\{intervai\} , ~ k i n i e d o u t \ { i n t e r v a l \ } > : ~
enc if cont " Blocks;
end surpass i:

When this routine is applied to the interval representing the entire program it fl combats the kithecin sets fox event brock and interval in the program and will oompita fine Cubaround sets for every interval in the procyon, preparing the way for he second pass. Move that kituedout ard buyout are not global.

Pass 2
The second pass is similar to the first except that correct subsumption lists are passed into intervals and distributed to the various contained blocks. The input subsumption list subinput to an interval must be modified along the lines suggestied in the "Global Considerations" section before being passed to the head of the interval. The following function, ensentially a txanscribed version of code fragnent (1) from that section, performs the task.
definef convertsub(interval, inputsub):
/* killedin, nubaround, order are global */
killedinhead = kiliedin(order(interval,l));
return (/* condition 1 */
$\mathcal{f}_{\mathrm{p}} \in$ inputsub|hd $p \underline{n} \in$ killedinhead and $t \ell p n \in k i l l e d i n h e a d\}$
+/* condition 2 */
(inputsub * subaround(interval)));
end convertsub;

The other main differences from pass 1 axe
a. Killedin sets are not recomputed; and
b. thexefore nothing is done about branches back to the head.

Here then is the SETL code.
definef subpass2(interval,inputsub);
/* contents, order, blocks, killedin, subaround, pred, succ are all global */
cont $=$ contents (interval):
/* is anterval raally a block? */
if cont * blocks eq nl then /* call subfold */
$\langle y, y\rangle=$ subfold (interval, inputsub);
/* convert to entry-exit pair form */
(Vsh E succ(intervad))
subout (interval,so) $=x$;
Killedout(lntexval,sb) $=y i$ end Vsb;
/* return the resulting puiz */
retwn muhout\{interval\}, Rilledout\{interval\}?;
eise /* we have an intexval */
head $=\operatorname{order}($ interval. 1$)$;
subin(head) = convertsub(intervai,inputsub);

/* now pass through in interval order */
$(2 \leq \forall i \leq$ 若cont) $b=o r d e r(i n t e r v a l, i) ;$
subin (b) $=$ junpsub (b,cont);
/* call subpass 2 recureively */
<zubout\{b\}, xilledout\{b\}> =subpass2(b,subin(b)); end V i;
/* note that killedin is not recomputed and no
loop considerations are needed */
/* now conipute output quantities */
(\forall sint \in succ (interval))
hsint $=$ order (sint, $)$;
/* use jump functions */
subout (interval, sint) $=$ jumpsub(hsint, cont); killedout (interval,sint) $=$ jumpkill(hsint, cont);
end Vsint;
return<subout\{interval\},kiliedout\{interval\}>;
end if cont ${ }^{*}$ blocks;
end subfold2:

Suppose progint is the high-ordex interval which represente the whole program. The entixe variable subsumption process can be invoked by two calls

```
dunmy = subpassl(progint,ad);
sumay = subpass2(progjint, ne);
```


Discusgion

The storage reguired by this method is not large. Betweer passes, wa must save kithedin for every block and interval in the program and subaround for every interval in the program. The recursive routines can be converted to an iterative fom if intervals are processed in the correct order. (otherwise storage requixements go up because more versions of kizledoth and subout must be kept on hand simultaneously).

This method does some constant folding but by no means did of it. This is because each folding pass may oreate new constant assignments which must then be distributed globelis. However, this may be all the folding we need because it gets two important cases. First, the algorithm should do a reasonable job of local constant folding, since two passes are made through each first-level interval and the results of the first pass are folded in on the second pass. Second, a constant assigned in any block will always be folded into the blocks it predominates. Thus, constant parameter initializations will usually be tacen care of.

Since a good code motion algorithm will remove from loope most expressions which might be eliminated by constant folding a complete algorithm based on data flow analysis might not be needed or even desirable, gtwen the time and wpace requirements of such an algarithon.
Acknowledgment. This rasearch was supported by the Natione? Sclence Foundarion, Gyant Gu-40585.

References.

1. Kennedy, K., "Reduction in Strength Using Kaghed Temporaxjer,* SETL Newsletter 102 , Courant Inst. Hatho Sci., Nek York, 3,7i.
2. Kennedy, R., "Global Dead Computarion Elimination," SEML Neve. letter \#11, Courant Inst, Kath. Sci., New Yoxk, August 19\%.
3. Allen, \bar{F}. E. and Codke. J. "A Cataicgue of Optimizing Trans. formations," Design \& Optimsation of Compilers, Prentice-halt:"p
 Coman Arti? a Cumuary $296533-22$,
