SETL Newnlettax 125
Bchaefer' 's Mode Splitting Algorithm
K. Kennedy, Rice University

February 6, 1974

In him book [1], Schaefer introduces a node splitting algorithm which in slightly different from that of cooke. This newsletter produces a SETL version of Schaefer's algorithm with a somewhat modified narrative discourse. The algorithm has two parted: first, given an irreducible graph, prime cycles are located and a set of nodes which can break these cycles is chosen; second, the set of nodes are used as interval heads for the reduction and the split graph (which will allow intervalization) is constructed along with its successor relation.

Finding Prime Cycles

The purpose of this section is to select a set of nodes which, when removed from the graph will leave it acyclic. Certainly a set of nodes which break all prime cycles -cycles which contain no nubcycles -- will do.

In the graph below

the prime cycles are $[B, C]$ and $[B, D]$ while $[B, C, D]$ is whet we call an elementary or simple cycle, that is, a simple path from B to an in mediate predecessor of B. The cycle [B,C,D] is not prime however since it contains both $[B, C]$ and $[B, D]$. Our approach to finding prime cycles will be to enumerate all elementary cycles and to eliminates those which are not prime.

One way to enmerate elementary cycles would be to use a recursive backtracking algorithm which looks for simple paths to aelected node by working back from that node through the preduceasor relation. However, for large graphe such an algorithil coula be exorbitant in cost, so we mast. find ways of limiting our aearch.

The mpproach we shall use is the "method of lementary developments" due to B. Roy [2]. This method uses an auxiliary table, which can be constructed rapidly, to cut down search time. Suppose that in a given graph we are searching for elementary cycles which include the node but do not include the entry. node a of the graph and suppose that

$$
\text { nodes }=\left\{c, \mathbb{d}_{e} \theta_{,} f_{\varepsilon} g, h\right\}
$$

are the remaining noden in the graph. The auxiliary table will be a square matrix with dimension equal to the number of remaining nodes -- it will have one entry for each rearaining node and one entry ficr each possible path length (in number of arcs). Thus for a given node x and a given path lengin i,


```
    3a simple path with i arca from b to x
    whose final arc is from n to x}
```

Several facts about this table should be noted.

1) table $(1, z)=\{b\}$ if b is a prececessor of x and nl otherwise. because the only path of length i from b to x is the arc Irom b to x.
2) table (i, x) must be contained in the set of predecessors of $s ;$ otherwise there can be no arc from a node $m \in \operatorname{tab} l_{B}(i, x)$ to 2 ;
3) If $n \in t a b l a(i, x)$ then table $(i-1, n)$ must not ba empty because if theze is simple path frora b to x of leagth i whose last arc is from n to x o there must be simple path of length f-1 from b to n.
4) Any simple path from b to x must not contain x (except as the last nods), otherwise the path ls not sumple.
```
SETL 125-3
```

These facts will be used to conetruct the auxiliary table.
One of our basic tools will be an algorithm which backtracks through the table to produce all simple paths of length i from some node b to another node x which does not contain any of the nodes in the set notcontaining. The method is triviai: there is a simple path of length i from b to x if there exists a node n such that there is a simpla path of length $i-1$ to n (not containing x) and an arc from n to 2 . The following routine embodies this method.

```
definef simplepaths ( \(b, x, i\), notcontaining)
\(/ *\) table is giobal to this routine */
/* first find out if there are any such paths */
    spathe nl:
    if 1 eg 1 and table \((1, x)\) na \(n d\)
        then return \(\{\langle b, x\rangle\}\); end \(i f\);
    if (table (i,x) - notcontaining) eq nl
        then ratura nl: end if;
    /* backtrack recursively "/
    ( \(Y_{y} \in\) (table (i,x) - notcontaining))
            not = notcontaining with \(X\);
            paths \(=\) simplepaths ( \(b, y, i-1\), not \()\);
            (Vz E paths) apaths \(m\) spaths \(+\{z+\langle x\rangle\} ; \%\)
        end Yy;
        returni spaths;
end mimplepaths:
```

Thie routine can used to check condition 4 above when building the auxdliary table.

The auxiliary table can be built by setting the first row according to condition 1 , then using conditions 2, 3 and 4 to construct other rows. The following SETL code fragment expresses this notion.
table $(1, x)=$ (n E noden |
/* condition $2 * f(n \in \operatorname{prad}(x)$ and
$/$ condition $3 / f$ table $(1-1, n)$ ne nl and
$/$ * condition * (iuplepatha ($b, n, i-1$, notcontaining $+\{x, n\}$) ne $n \ell\}$

Elementary cycles can then enumerated by looking at all predecesmors x of b and adding all simple paths from b to x to the list.

Onc problem remains, honever. Once we have found the list of elemantary cycles which pass through b, we must find elementary cycles which do not pass through b. We note a simple fact: there is a simple path from nods to x if there is a simple path from b to: whose first arc is from b to of i.e., if we are to use the information on simple paths from b to determine simple paths from os c must be an immediste successor of b and a must have successor which are in the remaining nodes of the graph. Thus we can derive information about simple pathe from o by modifying the table for b. The modification is performed es follows.

1. Pick a node o which mests the requirements stated above.
2. Remove the column corresponding to ofrom the table.
3. Remove, the first row of the tabie.
4. Renumber the ramaining rown from 1.
5. Eliminate all simmats but 0 frow the new first row.
6. Eliminate all instancea of 0 from othex rows.
7. Apply condition 3 to each of the rows except the fixst, climinating further elemente.

The following function pexforms these modifications. Its result. ilu the nev nonie σ but fit also modifies the argumente tosle, notoontaining, and nodes.

8ETL 125-5

```
definef modify (table, b, notcontaining, noden);
    /* pred and suoc are global */
    /* firmt find a new pivot element */
    c m{n E nodes {c\in gucc(b) and succ(c) * nodes ne nl};
    nodes = noder - C;
    notcontaining = nodes with c;
    /* now redafine table */
    (Vx E nodes) /* first row */
        nawtable(1,x)=1f x E succ(c)
        then {c} else nl; and Vx;
    /* remaining rowa */
    (2 \leq Yi \leq noded, Yx E nodes)
    newtable(i,x) = {y f tuble ( }4+1,x)|
        /* condition 3 */
            newtiable(1-1,y) ne n\elll;
    and Vi;
    tabla m newtable;
    return C;
and modify:
```

Finally, once whave all the alementary cycles we can enumerate the prime cycles by eliminating cyclea which contain other cycles. The algorithm below chooses the shortest elementary cycles as primecycles first; then it adds cycles of increasing length (which do not contain other cyclea).
§ETL 125-6

```
definef findprimem (elemcycles);
    /* find minimum and maximum lengtl */
    minlength \(=\) 〔min: \(c \in\) olemcycles (c;
    maxlength \(=\) [raax: \(c \in e l e n c y c i e s]\) \#
    \(/ *\) cycles of minimum length must be prime */
    primes \(=\{c \in\) elemcycles|* \(=m i n l e n g t h\} ;\)
    minlength \(=\) minlength \(+1 ;\)
    /* add more cycles "while increasing length.*/
    (while minlength le maxlength doing
                minlength \(=\) minlength \(+1 ;\) )
        (Vce elemcycles| \(\mathrm{C}=\mathrm{minleng}\) th)
            if \(\underline{n}\) (3cycle \(\in\) primes
                \((1 \leq V \leq\) foycle, \(\mathbb{I} \leq 3 j \leq\) acycle \((i)=c(j)))\)
                then primes a primes with c:
            and Yc:
    end while:
    retuzn primes;
ond tindpximes;
```

We are now ready to present the complete algorithm for finding prime cycles. The input to this algorithm is a graph, 1.e. a set of nodes graph, an entry node entry, the successor relation ucc, and the predecessor relation pred.

```
definef findprimecycles (graph,entry, succ,pred);
    /* first initialize the set of nodes which cannot be in a cycle*/
    notcontaining \(=\) entry :
    nodes \(=\) graph less. entry;
    \(/ *\) select the node \(b\)-.. to enumerate cycles through \(b\) "/
    \(b=\exists\{n \in\) nodes \(\mid n \in \operatorname{succ}(e n t r y)\) and
                                succ \((n)\) * (nodes less \(n\) ) ne nl\};
    nodes \(=\) nodes lezs \(\mathrm{b}_{8}\)
    notcontaining notcontaining with \(b\);
    f/t aet up the auxiliary table */
    table ㅌ ne;
    /* first row */ a
    ( \(Y_{x} \in\) nodes)
    table \((1, x)=\) if \(b: \in \operatorname{pred}(x)\) then \(\{b\}\) else \(n \ell ;\)
    end \(V_{x}\);
    /* now construct the remaining row using conditions 2,3 and \(4 /\)
    (2 \(\leq V_{1} \leq\) snodes, \(V_{x} \in\) nodes)
    table \((\underline{1}, x)=\{n \in\) nodes \(\mid\)
        /* condition \(2 * / n \in p r e d(x)\) and
        /* condition 3 */ table \((i-1, n)\) ne nl and
        \(/ *\) condition **
                simplepaths (b,n,i-1,notcontaining with \(x\) ) ne nl\};
    /* next the loog to enumerate elementary cycles */
    elemcycles = nl:
    (while nodes ge 2 doing /* modily table */
                                    \(b=m o d i f y(t a b l e, b, n o t c o n t a i n i n g, ~ n o d e s) ;\)
                                    /* b,table, notcontaining,nodes are changed*/)
    ( 2 S Vlength \(\leq\) nodes, \(\forall x \in\) (pred (b) * nodes))
        elemcyčles =simplepaths ( \(b, x\), length notcontaining);
    end Viangth:
    end while:
    /* reduce to prime cycles and return */
    return (findprimes (elamcycies)):
and findprimecycles:
```

8*TL 125-8

The Feader whould note that this routine can be improved in efflciency if non-prime elementary cycles are aliminated as they are added, gince these cycles are added in order of increasing length.

Yagtor Sets

We define a set of nodes F to be a factor set if the removal OE the nodes in F fxom the graph will make the graph cycle-free. A factor set is said to be minimal if it contains no factor set as a proper subset. In the algorithm to follow, a minimel factor set is used to split the graph, so we nos present an algorithm which produces such a set.

Suppose primeoyoles is the set of prime cycles found by our previous algorithm. We can construct a minimal factor set by pioking an arbitrazy alement from one of the prime cycles and removing from primsoyoles ell cycles which contain that element. repeating until prinsegyzea is exhaustad.
detinef minfact(primecycles):
minset = nl;
p. primecyclez;
/* loog uatil F is exhaustad */
(while p ne ne)
x Erom p; lt $x(1)$;
"minset = minset with elt;
/* reanve cycles with elt "f
$P=p-\{c \in p r i m e c y c l e s \mid$

$$
(1 \leq 31 \leq \operatorname{co} \mid c(k) \text { eq elt }\}
$$

and while p :
return minget?
and minfact:

The set returned by this routine is cleariy a factor set since any prime cycla contains at least one element in the set (breaking
prime cycles is sufficient to break the graph because every cycle containg a prime cycle). The question is: is this set minimal? Suppose that it is not; then there is a proper subset which is also a factor get. In particular, if

$$
\text { minset }=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

where the elements are numbered in the order they are added by the algorithm, then some element, say ${ }^{{ }_{j}} \boldsymbol{j}$, is not in the subset. Then all cycles which contain e_{j} must also contain some $e_{i}, \dot{f} \ddagger$. Let c be some prime cycle which contains two of the elements of minset. Assume $i<j$, then all prime cycles containing e_{i} have been removed before e_{j} is selected so this is impossible. The same argument works for $i>j$ and we have the desired contradiction. The factor met returned by the above algorithm must be mininail.

Splitting the Graph

The baslc idea of Schaeffer's method is to pick a minimal factor set for the irreducible graph and use these nodes as interval heads for intervals on the next level. In other words, we will force the graph to reduce by splitting nodes which might be in an interval tending from one of these nodes. In the split graph there will be one copy of each of the interval heads but each interval head will have its own copy of any node that can be reached from that head by a path which does not include another interval head. The interval head along with its copies of nodes in the split graph will form an interval for the reduction gtep.

Nodes in the split graph are denoted (in the notation of Schwartz [3i) by ordared pairs. If h is an interval head, the paix <h, $h>$ will repxesent h in the split graph; if b is a node (not a head) which can be reached from h by a path which does not include another head then h 's copy of b is denoted by $\langle\dot{b}, h\rangle$. There may be several copies of b in the split graph belonging to several different heads.

The successor function for the split graph is constructed in the natural way. Suppose $\left\langle b, h_{1}\right\rangle$ and $\left\langle b, h_{2}\right\rangle$ are two copies of b which belong to the two heads h_{1} and h_{2} respectively. If, in the original ixreducible graph a (not a had) is a successor of b than there must necessarily be two copies $<\theta, h_{1}>$ and $\left.<\theta, h_{2}\right\rangle$ of in the mplit graph and $<s, h_{1}>$ is a successor of $\left\langle b, h_{1}\right\rangle$ while $\left\langle\varepsilon_{9} h_{2}\right\rangle$ is a successor of $\left\langle b_{3} h_{9}\right\rangle$. If h_{3} (an interval head) is a successor of b in the original graph, $\left\langle h_{3}, h_{3}\right\rangle$ is a mecessor of both $\left\langle b_{,} h_{1}\right\rangle$ and $\left\langle b_{,} h_{2}\right\rangle$ in the split graph. This method of constructing the successor function assures us that any copy (in the split graph) of a. node in the original graph will be able to branch to at least one copy in the split graph of each of its successors in the original graph -- a requirement if the split graph is to be eguivalent to the original graph.

We now present the general method for constructing the spilt graph.
i. Initiaily let the set of interval heads be the minimal
factor set augmented by the graph entry node.
2. For every h in the set of heads. construct the interval for h as follors:
a. The head node $\langle h, h\rangle$ is added to the nodes of the split graph.
b. The set of nodes I in the interval (the nodes in the original graph with copies in the interval) is initially \{a\}.
c. Eor each note which is a successor in the original greqh of sowe b in I, if o is not an interval head construct <B,k> and add it to the nodes of the graph. Mdd the nodia a to I.

6BTL 125-11
3. Construct the successor function for the split graph as follows: for ach pair <x,y> in the split graph consider each successor, way s_{0} of x in the original graph. a. If is an interval head, make $\leqslant \$, s>$ a successor Of $\langle x, y\rangle$ in the split graph.
b. If x is not in interval head, make $\left\langle s_{s} y\right\rangle$ a successor of $\langle x, y\rangle$ in the mplit graph.

Schaefer [1] has shown that the resulting aplit graph will reduce to a graph with fewer nodes than in the original irreducible graph. This process can be applied repeatediy until the graph Finally reducss to a single node.

We now present the sErL version of Schsefer's algorithm. It accepts as input a graph of the form <nodes, pred, suco,entry> and it returns the split graph in the same form.

dafinef aplitnodem (graph) ;

/* first break up the graph */
<nodes,succ,pmad,entry> m graph;
primacycles = findprimecycles (nodes, suce, pred,entry);
minset = minfact(primecycles);
/* now conatruct the set of heads by adding the entry node to pinset */
heads minset with entry;
/* apply the method described in this section to copy nodes and construct the succ and pred functions */
newnodes $=$ nl;
(Vh E heads)
int $=\{\langle h, h\rangle\}$
newnodes = aewnodes with $\langle h, h\rangle$;
(while int ne ne)
n from int:
/* looit at successors to construct successor fn */
($\forall x \in \operatorname{succ}(h d$ n) $)$
if $x \in$ heads then suce\{n\} =succin\} with $\langle x, x\rangle$; prod\{ $\left.\left\langle x_{r} x\right\rangle\right\}=\operatorname{pred}\{\langle x, x\rangle\}$ with n;
olse
succ\{n\} succ\{n\} with <x, $h>$;
pred\{ $\langle x, h>\}=\operatorname{pred}\{\leq x, h>\}$ with $a ;$
/* avoid treating x twics */
if $\langle x, h\rangle \underline{n} \in$ newnodes then
newnodes $=$ newnodes with $\langle x, h\rangle$;
int = int ith $\langle x, h\rangle$;
and if $x ;$
and V_{x};
end while int;
and Y_{h};
return <nemodea, eucc, pred, sentry, entry>>; end aplitnodes:

An Example

Consider the foilowing irreducible graph

The prime cycies we $\langle b, \mathbb{Z}\rangle$ and $\left\langle c, c^{\prime}\right\rangle$. We chocose $\{b, c\}$ as the minimum factor set and $\left\{a_{i}, b, c\right\}$ becomes the set of heads. Firat we choose a from the set of heads and get

SETL 125-13
nodes: $\left\langle a_{e} a^{3}\right.$

$$
\operatorname{succ}\{\langle a, a\rangle\}=\{\langle b, b\rangle,\langle c, c\rangle\}
$$

Hext b.
nodes: $\langle b, b\rangle,\langle d, b\rangle,\langle a, b\rangle$

$$
\operatorname{succ}\{\langle b, b\rangle\}=\{\langle c, c\rangle,\langle d, b\rangle\}
$$

$$
\operatorname{succ}\{\langle a, b\rangle\}=\{\langle b, b\rangle,\langle e, b\rangle\}
$$

$$
\text { succ }\{\langle\theta, b\rangle\}=\{\langle c, c\rangle\}
$$

Next 0. .

- nodes: $\langle c, c\rangle,\langle d, c\rangle,\langle\theta, c\rangle$ $\operatorname{succ}\{\langle c, c\rangle\}=\{\langle d, c\rangle,\langle e, c\rangle\}$ succ $\{\langle\mathrm{d}, \mathrm{c}\rangle\}=\{\langle b, b\rangle,\langle\theta, c\rangle\}$
$\equiv \because \quad . \quad$ muce $\{\langle\theta, c\rangle\}=\{\langle c, c\rangle\}$
三
The new graph becomes

which reduces to

which must, of course, be split again. One disadvantage of this method is the proliferation of split nodes which may make it less practical than Cocke's algorithm.
Acknowledgement. This work was supported by the National Science Foundation, Office of Computing Activities, Contract NSP-GT-40585.

SETM 125-1.4

Retorencas
[1] Sohatiex, M. A Mathowatical Theoxy of Global Program Optimatation, Prantice-Kali, Englewood Cliffe, N.J., 1973.
 Application aux Problasseg d'Ordonnancement, , Matra SpAcial serie. No. I. Paria. 1962.
[3] Bchuarta; J., On Procramining: An Interam Report on the serif Profect, instalimant 2: The SETL Lanquaga, and Examplas of its Oise, Computer Science Dept.,
. Courant Inst. Math. Sci., New York Univ., 1973.

