
SETL N~roletter il25
Schaefer.~..!' ~Jode Selitting Algorithm

JC. Kennedy, Rice Uni vers:i t:t
Febr~ 6, 1974

In his book [ll, Schaefer introduces a node ·splitting
algorithm which is •~ightly different from that of cocke.
Thi• newslet'l:.e.r produces a SETL version of Schaefer' a algorithm
wit.h a somewhat modified narrative discourse. The algorithm
has two partez first, given an irreducible graph, prime cycles
are located -md a Mt of nodes· which can break these cycles is

chosen; second, the aet of nodes are used as interval heads
for the reduction and the split graph (which will allow
intervalization) is constructed along vi th i ta succes.sor
relation.

Pinding Prime Cycles

c~·. 'l'be purpoae of this section ia to select a set of nodes

l

-which, when removed from the graph will leave it acyclic.
Certainly a set of nodes which break . all pn,w. cyo Z.•s -
cycles whtch·contaiii no eµbcyclea -- will do.

In the graph below

\

the prime cycles are [B,C) &ad [B,D) while [B,C,D] ia what

we call an •lemanta,y or simpZ• cycle, that is, a simple path
from B to an immediate predecessor of B. The cycle [B,C,O]
is not prime however since it contains both [B,CJ and [B,O].
Our approach to finding prime cycles will be to enumerate all
elementary cycle• and to eliminate those which are not prime.

;:

BETL 125-2

One way to enumerate. elementary cycles woulct be to use a

recursive backtracking algorithm which looks for simple paths. . .
to a selected node by working hack from that node through· •

.the predecesaor relation. However,. for large graphs such an
algorithm could be exorbitant in cost, so we JmSt. find ways
of limiting our search.

'rhe approach we shall use is the "method of elementary
development.a" due to B. Roy (2) .. This method uses an auxiliary
table, wi.d.ub can be constructed rapi:dly, to cut down search time.

Suppose .that in a given graph we are searching for elementary
cycles which include the node b but do not include the entry_

node a of the graph and suppose that

nodes• {c,d,e,f,g,h}

are the remaining node:a in the graph. The auxi.1iary table will

be a square mstrix wi1:h d:f,mansion equal to the number of remain
•ing nodes -- it will have one entry for each nmaining node
and one entry for each possible path length (in number of arcs) ..
Thus for a given node :,: and a gi vmi path lengtll i ,

tahie (i ,x) • ·'{n e graph - {a} I
. 3a simple path with i arcs frc.n b to x ·

· whose final arc i• fran n to x}

Several facts about this tiwle should be noted~ ~-- -

l) tab1.e(1~:;--) • {b} if b is a predecessor of~ and n1 otherwise~

becawse the only path of length l from b to x is the arc

from b to x.
2) tabt.11({.":,:J m.uat be contained in the set of predeceasors of::;

otherwise there can be no arc fran a node• e ~abte(i,:,:) to z;

.]).If n e tab1.~(i.~:zJ t:hen tab"/.s(i-1,n) must not. ba empty because

if there is & s.imple patJi from b to :,: of leagth i whose last

arc is from n t 1.l :c 6 ther4:! must be a simple path of length

i-1 fran b to n.

4) Any aimple path from b to :z: must not contaiA :c (except as
the las-t node) , otherwise the path is not simJ?le.

SETL 125-3

These facts will be ~•d to construct the auxiliu:y table.
One of our basic tools will be_an algorithm which backtracks

through the table to produce all simple paths of length i. from
sane node b to.another node :a whicl\ does not contain any of
the nodes in tbe set notcontai.ning. · The method is trivial:
there is a simple path of length i. trcm b to :1: if there exists
a node n such that t.here is a simple path of length i-1 ton
(not containing :a) and an arc fraa n'to a:. The following
routine embodies this method ..

defin•f airaplepaths(b,x,i,notcontaining)
/* tabt.• is global to this routine*/
/f' firat. find out if there are any such paths*/

apaths • n!,1

.-

if i !S. l ~ table (1,x)_ !!!. ·!!!
then return {<b,x>}1 end if1

if (table(i,x) - notcontaining) 5 e!_

then return !1!1 end ifJ

/* backtrack recursively tr/
(Yy e (table (i ,x) - noteont&ining))

not• notconta:l.ning with y;
paths• simplepaths(b,y,i-1,not);
(Ya E paths) &paths • spat.ha + {z + <x>}; r·

enc! Yy, ·

returni spatha 1

end 111Dp3:epath.s1

..

~i• routine can be med to check condition 4 above when building
the auxiliary table.

The auxiliary table can be built by setting the first row
according to condition 1, then using conditions 2, 3 and 4

to conatruct other rows. 'l'he following SETL code fragment
expresses thia notion.

SETL 125-4

table(i,x) u {n e n9dea I
/* condition 2 ~/ n E pred(x) g_g
/*_ cODdition 3 ~/ · table(i-1,n) !1!, !!! ~
/tt_ condition 4 * / ·

·•implepaths (b-,n,i-1,notemAtaining+{x,n}) !!!. !!!,}

Elementary,cyclea can then be enumerated by -looking at all
predecesao1:s ~ of band adding all simple paths from b to~ to
the list.

Ona problem remains, however .. Once we have found the list of
elementary cycles wbich pass through b, we must find element_ary

cycles which do not pass through b. We note a simple fact:

t.here ia a simple path from node o to : if there is a simple path

from b to~m whose first arc is from b too, i.e., if we are to
use the information on simple paths from b to determine simple
paths fran ", r, must be an iDJediate cuccessor of b and c must
have succe■sora wh.i.ch are in the remaining nodes of t.he graph.
Thus we can derive information about simple paths from o by
modifying the table.for b; The ~.odification is performed as

follows.

l. Pick a node o which meets the requirements stated above.
2. ~move ·the column correapond.ing to o from the table.
3. Remove., the first row of the table.

4. Renumber the· remaining rows from 1.. ·
,/

5. Eliminate all ~le,s,,onts but a from the new first row.
6. Eliminate &11 instances of o from at.her rows ..
7. Apply condition 3 to each of the rows except the first,

eliminating fw:-ther ele.nants ..

The following function parforms these modifications. Its result
i.t» the new node c · but it also modifies the arguments table$

nptoontai.ning" and nodes.

(
\

l

SETI, 125-5

definef modify (table, b, notcontaining, nodea);
/* prsd and suoc·are global*/
/* firat find a new pivot element*/
c • a{n E nodes I c e suc:c(b)-~ succ(c) * nodes ~ n.t};

nodes,. node• - c;
not.containing• nodes with c; -
/* n01t redefine table*/
(Vx e nodes) /* firat ro,, * /

newtable(l,x) • if x E •u~c(c)
then {c} else a!_; end Yx,

/* ~ing rows*/
(2 <Yi< fnodea, Wx E ncdea) - -

nai,table(i,x) m {ye table ci+l,x) I.
/* condition .l */

nwtable(i-1,y) ~ !!!b
end Vi,
table• nevtable;

retum c,
end modify,

..

..
Pinally, once Wit have all the elementary cycle• we can enumerate

the. prime cycles by eliminating cycles which contain other cycles.
'?be algoz:.ithm below chooses the shortest elementary cycles as
prime··cyclea first; then it adds cycles of increasing lengtb
(which do not contain .. other cyclo&). -;-

SETL 125-6

definef findprime~(elemcyclea);

/* find minimum and maximum length*/

minlength •_[min: c e elemcyclesJ fc;
aaxlength • [maxa c e elemcycles] ic; - -
/* cycles of minimum length must be prime*/·
prime•• {c e elamcyclesltc • taj.nlength};
m.inlength • minlength + l;

I

/* add more cycles ·"while increasing length . * /
(while minlength Ml maxlength doing

minlength • minlength + l;)

(Ye E elemcyclesltc • Jllinlength)

if ~(]cycle e primes I
(l !, Yi ~ lcycle, l ~ 3 j ! tclcycle(i)•c(j))) ·

then primes., primes with c;;
and Ye;

end while;

ntum prim9s;
end findprimes;

We are now ready to present the complete algorit:}un for
finding prime cycles. The input t.o this algorithm is a graph,
i.e. a set·of _nodes g~aph, an entry node entzty, the successor
relation auoo, and the predecessor relation prsd.

-

::

c·I

SBTL 125-7

definef findprimecycles(graph,entry,succ,pred);
/* first initialize the set of nodes which cannot be in a cycle*/

notcontaining • entry;
nodes • graph !!.!!,.- entry,
/* select the node b __ ., to enumerate cycles through b * I
b • 3{n E nodes In e aucc(entry) !a,g

succ(n') * (nodes less n) ~ !!!_};

nocles • nodes !!I!. b 1
1

notcontaining • notconta.ining ~ b;

/* •et up the awd.liary table*/

table• nf.1 --
/* first row * /
(Yx e nodes)

teble(l,x) • if h··:e prad(x) then {b} else ~;
end Yx;

...

/* now CODatruct the remaining rows.using conditions 2,3 and 4*/
(2 <Yi< tnode•, Vx E nodes) - - '

table(i,x) • {n E nodes I
/* condition 2 * / n e pred (x) and
/* condition 3 */ table(i-1,n) !!!. ~ and

/* condition 4 * / ·
I

_ aimplepathff (b ,n, i-1,notcontaining with x) !!!. !!.!,} ;
/* next the loop to enumerate elementary cycles*/
elemcy.clea • !!!,1
(while fnode• i.!. 2 doing /* modify table * /

b • modify(table,b,notcontaining, nodes);
/* b,table,notcontaining,nodes are changed*/)

(2 ~ Vlength ~ tnodes, Vx e (pred(b) * nodes)) .
elemcycles • si.mpl~paths (b,x,lengthynotcontaining);

end Ylengthi
end while;
/* reduce to prime.-cycles and return*/
return (findprimaa(elemcycles));

end findprimecyclaa,

SBTL 125-8

The reader should note that this routine can be improved in
efficiency if non-prime elementary cycles a.re el.iminated as

they are added, since t:bese cycles are added in order of
increasing length.

l'aator Seta .
.

We clefine a set of nodes F to be a factor ••t if the removal

of the nodes in P from the graph will make the graph cycle-freeo
A factor set is said to be minimal- if it contains no factor set
as a proper s\lbaet. In the algorithm to follCM, a minimal

factor set is wsed to split the graph, so we nmt present an ..
algorithm which produces such a set.

Suppoae pi-imeo110Z•• i.a the set of prime cycles found by our

previous algorithm. We can construct a minimal factor set by

picking &n arbitra."'j' element frCllll one of the prime cycles and
. .

removing fram pl"i-msayoZ.~a all cycles which contain that element,
·repeating until primso'Jlcfl,11s is exhausted ..

definef minfact(primecycles);
minset • 9!1
p • primecycles;
/* loop until pi• exhausted 0 /

·«while p fil! !!!)
X ~ p; elt - x(l);

,.....minaet • minset with elt;

/* remove cycles with elt 9 /

p • p - {c E primecycles I
(l !_ 3i !_ tclcU.) 5 elt}1

<1md while p 1 " ·

return minset1 · ·
end m.infact,

The aet returned by this rot.,tine is clearly a factor set since
any prime 01•cle contains at least. one element in the set (breaking

SBTL 125-9

,- prime cycles ia sufficient to break the graph because every
cycle contain& a prime cycle). The question is: is this set

minimal? Suppose that _it is not; then there is a proper subset
which i11 also a factor aet. In particular, if

minset • {e1 ,e2 , •.• ,en},

where the elements are nuni:>ered in the order they are added by
the algorithm, then some element, say ej, is not in the subset.

· Then all cycles which 'contain "J must also contain some
•1, , i ,t j. Let c be some prime cycle which contains.two of
the elements of minset. Assume i < j, . then all prime cycles

containing "-£ have been removed before (i. J is selected so· ·this

is impossible. The same argument works for i > j and we have
tile desired ccntradiction. The factor aet retumed by the above
algorithm must be minimal.

~plitting the Graph

The basic idea of Schaeffer's method is to pick a minimal

~actor set for the lrreducible graph and use these nodes as
interval heads for intervals on the next level. In other words,
we will force the graph to reduce by splitting nodes which
might be in an interval tending from one of these nodes.
In the split graph there will be one copy of each of the
interval he,ads but each interval head will have its own coel.
of any node that can be reached from that head by a path which
does not include another interval head. The interval head
along with its copies of nodes in the split graph will form
an interval for the reduction step.

Nodes in the split graph are denoted (in the notation
of Schwartz [3]) by ordered pain .. !f his an interval head,
the pair <h., h> wi_ll ~epreeent h in the split graph; if b

is a node (not a head) which can be- reached from h by a path
which does not include another head then h' s copy of b is
denoted by <b,h>. There may be several copies of b in the
split graph belonging to several different heads.

SBTL 125-10

The successor function for the split graph is constructed in
the natural way., SuppC>8e <b, h 1 > and <b., h 2 > are two copies .~

ot b which -belong to the two heads h 1 and h 2 respectively.

If, in the original irreducible graph s {not a head) is, a
successor of b - then there must necesaarily be two copies

<s.,h1> and <e.,h8> of ,i:in the epli~ graph ~d <s.,h1>

i• a successor of <b.,h1> while <e~h-8> is a successor of <b.,h8>.'
If 11 8 (an interval head) is a successor of bin the original

graph, <h8.,h1> is a •uccessor of both <b,h1> and <b,h8> in
the apli t graph. Thi• method of constructing the successor
funcUon asaures WI that any copy (in 'the split graph) of a ..

. t node in the original graph will be able to branch to at least
- qg_e_coex in the split- graph of each of its successors in the

original graph -- a requirement if the split-graph is to be
equivalent to the original graph.

We now present the general method-for constructing the

split graph.

l. Initially let the sat of interval heads be the minimal
factor aet augmented by the.graph entry node.

2. l'or every h in the set of heads, construct the int~rval

for h •• follows~
a. The head node <h,h> is added to the nodes of the split

graph. ,.._ - -
b. The set of node& I in the interval (the nodes in the

'-.

original graph with copies in the interval) is
initially. {b} •

c. For each nodes which ia a successor in the original

grJlli)h of :some bin I, if a is not an interval head
construct <a 1 h> · and &dd it to the nodes of the graph.
Add the node a t.o I.

'

SBTL 125-11·

3. Construct the auccezsor functioo for the split graph u
follov•1 for eaclt pair <:.:,11> in the split graph co~~ider

each auccea~or, •ay· s, of: in the origi~al graph.

a. It• is an interval head, make ia,.a> a successor
oE <z.y> in the split graph.

b. If .11 is not an interval-head, make <a,11> a successor
. of <11:.e'> in. ,t:be split graph;

Schaefer (1) has shown that the resulting split graph will
reduce toe graph witb fewer nodes than in the original
irreduc~l• graph. Thi• process can be applied repeatedly
.
until the graph finally reduces to a single node.

1fe now present the SETL version of Schaefer's algorithm~
It accepts as input a graph of the form <nodes,p~ed.suaa,•ntey>
and it __ returns the split graph in the same form ..

·afinef splitnodes (graph) ,

/* first break up the graph*/

<nodea,auc:c,pred,entry> • graph;
primocycles • finclprimecycles(nodes,aucc~pred,entry);

f_ minaet • minfact(primecyclea);

/* now_oonatruct the set of heads by adding the entry node
to m.inse t • /

heads • minset ~ entry;
;•-apply the method described in this section to copy nodes

an~ construct the succ and pred fwictions */
newnodes a!!.!;
O'h e heads)

int •. { <h ,h>} I

newnodes • in.ewnodea with <b,h>; -
(while int ~ !!!_)

n ~ int1

/* look at successors to construct successor fn */

SBTL 125-12

(Yx e succ <M n) l

if x E heads then
aucc{n} • aucc{n} with <x,x>;.
pred{<x,x>} • pred{<x,x>} ~ n,

else
aucc{n} • succ{n} ~th <x,h>;
pred {<_x ,b>} • pred.{ ~x ,h>} wi !:!! n 1

/* avoi4 treating x twice 0 /

if <x,b> !le nevnodes then'·
newnodes • newnodes witl! <x,h>;

· · · int • int with <x,h>;

end if x;
en4 Yx1

end.while int,
end Yh,

-
return <newnodea, SJu.cc, pred, <entry,ent:ry>>;

end aplitnodes1

!!! :Example

Consider the following irreducible graph

'.fhe prime cycles l!l:tc·e <b,d> and <c,,.es>. We choose {b,c} .u

.:l t.he minimum factor: set. &nd {a;b ,cl becomes the set of headse

Firat we choose a fro».i the· set of heads and get.

n

....

.,

SBTL 125-13
.

-- • - - I

Next·b.

nodes: <a!'a>
succ{<a,a>} a {<brb>,<c,c>} . .

·nodes: . <b ,b>, <d ,b>, <e ,b>
--·· aucc{ <b,b>} • { <c,c> ,<d,b>}

succ{<d,b>} • {<b,b>,<e,b>}
aucc{<e,b>} • {<c,c>}

Next o. ·
.

.... nodesz <c,c>, <d,c>, <o,c>
aucc{<o,c>} • {<d,c>,<e,c>}
.aucc{<d,c>} • {<b,b>,<a,c>}

.
____ ucc(<e ,c>} - { <c,c>J--- ------

-·---- ----·-------·-

The new·graph becomes

whiclJ. reduces to

·'

...

which must, of course, be split again. One disadvantage of this
method is the proliferation of split nodes which may make it

lees practical th&n Cocke's algorithm.
Acknowledgement. This work was supported by the National
Science Poundation, Office of Canputing Activities, Contract
HSP-GJ-40585.

'

SBTL 125-l.4

ltaferenoe•

[lJ Schaefer, M. A Matbem.t!,tical Theory of Global P!-Y5~

(2)

[3)

-

.. QRt~sation, ~rentice-&all, Englewood Cliff•, N.J., 1973, .

.. "91, B., Cbninament. et c,2nnex.i~ dans lea G_!aph4!!.!_,
·, If,

!J?Rlicatian aux Proql!!!!.!.. d' Ordonns.ncemen t,
...)letra Sp&cial s,rie., No. 1, Paris, 1962,

Schvuts, J. , QR. Prqqr~s: An Intemm Report

2,n the SB'IL, Project, Installment 2: The SETL Language,
and EX!5les of i ta Use, Computer Science Dept. ,

Courant. In9t., Ila.the Sci .. , New York Oniv., 1973.

- ..

' .

... '

.>

.,.:

