SETL Newsletter #125 XK. Kennedy, Rice University

Schaefer's Hode Splitting Algorithm February 6, 1974

In his book (1], Schaefer imtroduces a node splitting
algorithm which is slightly different from that of Cocke.
This newsletter prodtces a SETL version of Schaefer's algorithm
with a somewhat modified narrative discourse. The algorithm
has two parte: first, given an irreducible graph, prime cycles
are located and a set of nodes' wvhich can break these cycles is
chosen; sacond, the set of nodeg are used as interval heads
for the reduction and the split graph (which will allow
intervalization) is constructed along with its successor -
relation, ' ‘

Pinding Prime Cycles

The purpose of this section is to select a set of nodes

which, when removed from the graph will leave it acyclic.

Certainly a set of nodes which break.all prime cycles --
cycles which contain no subcycles -~ will do.
In the graph below

the prime cycles ars [B,C] and [B,D] while {B.C,D] is what
we call an elemamtary or simple cycle, that is, a simple path
from B to an immediate predecessor of B. The cycle {B,C,D]
is not prime however since it contains both {B,C] and [B,D].
Our approach to finding prime cycles will be to enumerate all
elementary cycles and to eliminate those which are not prime.

s

BETL 125-2

One way to enumerate elementary cycles wouléd be to use a
recursive backtracking algorithm which looks for simple paths.
to a selected node by working back from. that node through
.the predacessor relation. However, for large graphs such an
algorithn could be exorbitant in cost, so we mmst find ways
of limiting our search. .

The approach we shall use is the "method of elementary
dsvelopmenits” due to B. Roy [2]. This method uses an auxiliary
table, which can be constructed rapidly, to cut down search time.
Suppose that in a given graph we are searching for elementary '
¢ycles which include the node » but do not include the entrg‘
rode a of the graph and suppose that '

<

nodes = {c,d,e,f,o.h}

are the remaining nodes in the graph. The auxiliary table will

be a square mstrix with dimension equal to the number of remain-
'ing nodes -- it will have ome entry for each remaining node

and one entry for each possible path length (im number of arcs).
Thus for a given ncde z and a given path length i,

table(i,x} = {n € graph - {a} |
. 3& simple path with i axcs from b o x°
~ whose final arc is from n to x}

Several facts about this table should be noted.

1) table(1,z) = {b} 1if b is a predecessor of x and ni otherwise,
becauge the only path of length 1 from b to x is the arc
fyom b to x.

2) table(i,z) must be contained im the set of predecessors of i;
"otherwise there can be no arc from a node s € table(i,x) to z;

3) If n € tablal(i,z) then table(i-I,n) must not bs empty because
if there i3 a simple path from b to z of lemgth 1 whose last
arc is from n to z, there must be a simple path of length
i-1 from b to n. -

4) Any simple path from b to z must not contaim x (except as
the last node), ctherwise the path 1s nct simple.

SETL 125-3

These facts will be used to construct the auxiliary table.

One of our basic tools will be an algorithm which backtracks
through the table to produce all simple paths of length 7 from
some node b to. another node x whiéh does not contain any of
the nodes in the set notcontaining. The method is trivial:
there is a simple path of length i from b to z if there exists
a node n such that there is a simple path of length i-1 to =n
(not containing x) and an arc from »n to z. The following
routine embodies this method.

. . Qafinef simplepaths(b,x,i,notcontaining) -
/* table is global to this routine */ . :
/* first find out if there are any such paths */

spaths = ni;

if { eg 1 and table(l,x) ne nf

 then return {<b,x>}; end if;

if (tsble(i,x) - notcontaining) eq n& -
then return n&; end if;

/* backtrack recursively */

(Yy € (table{i,x) - notecontaining))
not = notcontaining with y;
paths = simplepaths(b,y,i-1l,not);
(Vg € paths) gpaths = spaths + {z + <x>};;

end V¥y;

" return: spatha;
end simplepaths:

Thie routine can be used to check condition 4 above when building
the auxiliary tsblas. -

The auxiliary table can be built by setting the first row
according to condition 1, then using conditions 2, 3 and 4
to construct other rows. The following SETL code fragment
éxpresses this notion.

EETL 125-4

table(i,x) = {n € nodes |
/* condition 2 %/ =n € pred(x) and
/* copdition 3 P/ tabla(i~ ,n) ne nt and
/* condition 4 */ -
, simplepaths(b n,i~1 ,notcantaining+{x,n}) ne ni}

Elementary cycles can then be enumefated by looking at éll
predacessors x of » and adding all simple paths from b to z to
the list.

One problem remains, however. Once we have found the list of
elemantary cycles which pass thrcugh b, we must find elementary
cycles which do not pass through ». We note a simple fact:
there is a simple path from node ¢ to = if there is a simple path
from b to.x whose first arc is from b to o, i.a., if we are to
uge the information on simple paths from b to determine simple
paths from ¢, ¢ must be an immediate-successo; of b and ¢ must
have successors which arein the remaining nodes of the graph.
Thus we can derive information about simple paths from ¢ by
modifying the table for b. The modification is performed as
£ollows. '

1. Pick & node ¢ which meets the requirements stated above.

2. Remove the column corresponding toc o from the table.

3. Remove, the first row of the tabia. :

4. Renumber the remaining rows from 1.

5. Eliminate all slemants but ¢ from the new first row.

§. Eliminate all instances of ¢ from other rows.

7. Apply conditiocn 3 to each of the rows except the first,
eliminating further elements.

The following function pexforms these modificationz. 1Its result
iz the new node ¢ " but it also mcdifies the arqumants table,

roteontaining, and nodes.

P

S8ETL 125-5

definef modify (tnble, b, notcontaining, nodes);
/® pred and suce’ are global */
/% first £ind a new pivet element %/
c = 3{n € nodes | ¢ € succ(b)” and succ(c) * nodes ne ni}l;
nodes = nodeg ~ ¢c; ' |
notcontaining = nodes with c:
/* now redafine table */
(¥x € nodes) /* first row */
nevtable(l,x) = if x € succ(c)
| then {c} else nt; end ¥Yx;
/* remaining rows */ o
(2 < Vi < #nodes, Yx € nodes)
- newtable(i,x) = {y € table ({+1l,x) |
/% condition 3 */ :
: newtable(i-1,y) ne nt};
end ¥i; '
table = newtable;
‘return c;
end modify;

Pinally, once we have all the slementary cycles we can eniumerate
the,prime'cycles by eliminating cycles which contain other cycles.
The algorithm below chooses the shortest elementary cycles as
prime-cycles first; then it adds cycles of increasing length
(which do not contain ether cycles).

SETL 125-6

dafinef findprimes (elemcycles);
/" £ind minimum and maximum length ®*/
minlength = [min: c € elemcycles] #c;
naxlength = (maxs c € elemcycies] #c;
/* cycles of minimum length must be prime */
primes = {c € elemcycles|#c = minlength};
minlength = minlength + 1;
/* 2dd more cyclesjwhile increasing length */
(wvhile minlength le maxlength doiné
_ minlength = minlength + 1;)
(Yc € elemcycles|#c = minlength)
if n(3cycle € primes |
(1 < ¥i < #eycle, 1 <33 < #cleycle(i)=c(3)))
then primes = primes with c;;
and Yc; ' '
end while;
- return primes; : C-
end findprimes;

-

We are now ready to present the camplete algorithm for _
finding prime cycles. The input to this algorithm is a graph,
i.e. a set of nodes graph, an entxy ncde entry, the successer
relation suce, and the predecessor relation pred.

-

~ . e

ot

SETL 125-7

definef findprimecycles (graph,entry,succ,pred) ;
/* first initialize the set of nodes which cannot be in a cycle*/
notcontaining = entry :
nodes = graph less. entxy;
/* select the node }» -~ to enumerate cycles through b */
b= 3(n € nodes | n € succ(entry) and
i - succ(n) * (nodes less n) ne ntl;
nodes = nodes less b;
notcozita:lning = notcontaining with b:
/% set up the auxiliary table */
table = n%;
/* first row */
(Yx € nodes) : :
teble(l,x) = if b€ pred(x} then {b} else n&;
end Vx; :
/* now construct the remaining rows using conditions 2,3 and 4%/
(2 < ¥4 < #nodes, Vx € nodes)
table(i,x) = {n € nodes |
/* condition 2 */ n € pred(x) and
/* condition 3 */ table(i-l,n) ne n¢ and
/t condition 4 »/ A
:impl.epaths (b,n,i—l,notcontaining with x) ne n&};
/* next the loop to enumerate elementary cycles */
elencycles = ni;
(vhile #nodes ge 2 doing /* modify table */
~ b = modify(table,b,notcontaining, nodes);
~ /* b,table,notcontaining,nodes are changed*/)
(2 < ¥length < ¢nodes, Vx € (pred(b) * nodes)) .
elemcycles = simplepaths (b,x,length, notcontaininq) :
end Vlength;
end while;
/* reduce to prime cycles and return */
return (findprimes (elemcycies));
end findprimecycles:

-~

SETL 125~8

The reader should note that this routine can be improved in
efficiency if non-prime elementary cycles are eliminated as
they are added, since these cvcles are added in corder of
increasing length.)

 Pagtor Sets . | -

We define a set of nodes P to be a Factor set if the removal
of the nodes in F from the graph will make the graph cycle-free.
A factor set is said to be minimal if it contains no factor set
as a proper subsat. In the algorithm to follow, a minimsl
factor set is used to split the graph, so we now present an
algorithm which produces such a set. :

Suppose primecycles is the set of prime cycles found by our
previous algorithm. ¥e can construct a minimal factor set by
picking an arbitrary element from one of the prime cycles and
rambving from primcayalcs all Eycleé which contain that element,
repeating until primeoycles is exhausted.

o

definef minfact (primecycles);
mingset = n&;
P * primecycles;
/* loop until p is exhausted %/
{while p ne ntj -
x from p; elt = x(1);
“minset = minset with elt;
/* remove cycles with elt ¢/
p=p ~ {c € primecycles |
o (1 < 34 < #clc(i) eg elt);
end while p;
return minset; -
end minfact:
The set retuxned'hy this youtine is clearly a factor set since
any prime cycle contains at lesst cne element in the set (breaking

Splitting the Graph

SETL 125-9

prime cycles iz sufficient to break the graph because every
cycle contains a prime cycle). The question is: is this set

- minimal? Suppose that it is not; then there is a proper subset

which is also a factor set. In particular, if
mnset = {e 132,.-.,3 } ’

where the elements are numbered in the order they are added by
the aigorithm, then some element, say € is not in the subset.
Then all cycles which ‘contain ey rmust also contain some

ey + i1 j. Let o be some prime cycle which contains two of

the elements of minset. Assume i < j, - then all prime cycles
containing e; have been removed before o is selected so this
is impossible. The same argument works for i > j and we have
the desired contradiction. The factor set returned by the above

algorithm must be minimal.

The basic idea of Schaeffer's method is to pick a minimal
factor set for the irreducible graph and use these nodes as
interval heads for intervals on the next level. In other words,
we will force the graph to reduce by splitting nodes which
might be in an intexrval tending from one of these nodes.

In the split graph there will be one copy of each of the
interval heads but each interval head will have its own copy
of any node that can be reached from that head by a path which
does not include another interval head. The interval head
along with its copies of nodes in the split graph will form

an interval for the reduction step.

Nodes in the split gtaph are denoted (in the notation
of Schwartz [3]) by ordered pairs. If h is an interval head,
the pair <h,h> will represent %k in the split graph; if b
is a node (not a head) which can be reached from % by a path
which does not include another head then h's copy of b is
denoted by <b,h>. There may be several copies of b in the
split graph belonging to several different heads.

BETL 125-10

The successor function for the split graph is constructed in
the natural way. Suppose <d, h > and <b,h,> are two copies
of b which’ ‘belong to the two heads h, and h, respectively.
If, in the original irreducibie graph 8 (not a2 head) is a
successor of) thenm there must necessarily be two copies
<a,h1> and <e,h,> of # in the split graph and <8,h,>
is a successor of <b, h > while <e,k 2> is a successor of <b, h >,
If hy; (an interval haad) is a successor of b in the original
graph, <h3,h3> is a successor of both <b, h > and <b,h,> in
the split graph. Thia method of constructing the successor
function aszures us that any copy {in the split graph) of a_.
node in the original graph will be able to branch to at least
one copy in the split graph of each of its successors in the
original graph -- a requirement if the split graph is to be
equivalent to the original graph.

We now present the general method for comstructing the

%

spiit graph.

1. Initially let the set of interval heads be the minimal
factor set augmented by the graph entry node.
2. For every h in the set of heads, construct the interval
for h as follows. _
a. The head noda <h,h> is added to the nodes of the split
__greph. o | |
b. The set of nodes I in the interval (the nodes in the
original graph with copies in the interval) is
initially {h}.

- ¢. Por each node 8 which is & successor in the original
grpph of some b in I, if s is not an interval head
construct <e,k> and sdd it to the nodes of the graph.
Add the node 2 to I.

SETL 125-11

3. Construct the successor function for the split graph as
followa: for oach pair <z,y> in the split graph congider
each successor, say s, of ¢ in the original graph.'

a. If x is an interval head, make <z,3> a succesgor
of <z,y> in the split graph.

b. If x is not an interval head, make <a,y> a BuCCessor
 of <z,y* in the split graph.

Schaefar {l1] has shown that the resulting split graph will
reduce to & graph with fewer nodes than in the original
irreducible graph. Thie process can be applied repeatedly
until thedgraph £inally reducss to a single node.

 We now present the SETL version of Scheefer's algorithm.
It accepts as input a graph of the form <nodes,pred,succ,entry>
and it returns the split graph in the same form.

-h,

‘definef splitnodes (graph); .

/* first break up the grapa */
<nodes ,succ,pred,sntry> = graph;
primecycles = finﬁprimecycles(nodes,aucc,pred,entry);
minset = minfact(primecycles);
/* now conatruct the set of heads by adding the entry node
. : to minset %/
heads = minset with entry;
/% apply the method described in thii section to copy nodes
and construct the succ and pred functions */
newnodes = ni;
(Yh € heads)
int = {<h,h>};
newnodes = newnodes with <h,h>;
(while int ne nf)
a ggggkiﬁty _
/* look at successors to construct successcr fn %/

k8

-

SETL 125-12

(¥x € succ(hd n)}
"1f x € heads then
suce{n} = succin} with <x,x>;
- pred{<x,x>} = pred{<x,x>} with n;
else | ;o
‘succin} = succ{n} with <x,h>;
pred{<x,h>} = pred{<x,h>} with n;
/®* avoid treating x twice 2/
if <x,h> n € newnodes then':-
newnodes = newnodes with <x,h>;.
" int = int with <x,h>;
end if x;
end ¥x;
‘ end while int; ' B
end ¥Yh; , o - e
return <newnodes, gucc, pre&, <entry}entry>>;

 #nd splitnodes;

An Example
Consider the following irreducibie graph

The prime cycles sve <b,d> and <c,e>. We choose {b,c} as
the minimum factor set and {a.b,c} becomes the set of heads.
First we choose ¢ from the set of heads and get

SETL 125-13
nodes: <a a>
L succ{<z,a>} = {<b.b>,<c,c>}
Next b. ' S
T ‘nodes: <b,b>, <d,b>, <e,b> e
T2 suce{<b,b>} = {<¢,c>,<d,b>} '
~ succ{<d,b>} = {<b,b>,<e,b>}
suce{<e,b>} = {<e,c>}
Next o.- S ‘
~ nodes: <c,c>, <d,c>, <@,c>
succ{<c,c>} = {<d,c>,<e,c>} |
- _suca{<d,c>} = {<b,b>,<8,c>} . a
== gucef<e,c>} = {<c,0>k - —nv _—

-
—

© . o s o s—— e = -

The new graph becomes

which must, of course;’be split again. One disadvantage of this
method is the proliferation of split nodes which may make it
less practical than Cocke's algorithm. -

Acknowledgement. This work was supported by the National
Science Foundation, Office of Computing Activities, Contract
NSF-GJ-40585.

SETL 125-14

References

[1] Schaefer, M. A Mathematical Theory of Global Program
- Optimization, Prentice-Hall, Englewood Cliffs, N.J., 1875.

[2) p‘qy, B., Cheminement et Connexité dans les Graphes, ,
‘Application aux Problames d'Ordomnancement, -
.Metra Spécial Série, No. 1, Paris, 1962.

£3} Schwartz, J., On Programming: An Interdm Report
on the SETL Project, installment 2: The SETL Language,
and Examples of its Use, Computer Science Dept., |
Courant Inst. Math. Sci., New York Univ., 1973.

- - : . - /-

-

L1

