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The problem of constructing data-flow information 

from the control-flow graph of a program has been studied 

by a number of investigators [1,2,3,4,5,6]. In [3] the 

author presented an algorithm which uses "Cocke-Allen interval" 

analysis to solve the problem of locating "live'' variables 

in a program. Hecht and Ullman [4] proposed a tabular 

method which has been shown to require more bit-vector 

operations than the interval method on some graphs and 

fewer on others [5]. 

This newsletter proposes an entirely new tabular 
'( 

approach which is applicable to m~t global data-flow 

problems. After an initial processing expenditure, this 

method is optimal in terms of bit-vector operations. 

Edge-Listings 

We define an edge-listing to be a sequence 

9., = (el, e2, ••• , em ) 

of edges in the program flow graph, where some edges may 

be repeated, such that every simple path in the flow graph 

is a subsequence of 9.,. That is, if 

(dl' d2' • • • I dn) 

are the edges of a simple path in the flow graph, there 

exist indices 

jl, j 2' .... ' jn 

such that l _::. i < n, and d. = e. 
l J. 

l < i < n. 
1. 



Certainly an edge-listing exists, becauce if f 1 , ..•. , fk 

are all the edges in the graph then 

with k repetitions of (f1 , ..• ,fk) is a valid edge-listing. 

An edge-listing is said to be minimal if there is no shorter 

edge-listing for the same graph. 

Data Flow 
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Most data flow problems can be expressed by "edge-equations" 

on the edges of the control flow graph. For example, 

consider the problem of identifying "live" variables. The 

following sets are important. 

1. live(b) - the set of varl~ples which are live on 
~I' ) 

entry to the block b - where a variable is "live" 

at a point if there exists a path from that point 

to a use of the variable which path contains no 

redefinition of the variable. 

2. inside(b) - the set of variables for which there 

is a use not preceded by a definition in b. 

3. thru(b) - the set of variables which are neither 

used nor defined in b. 

It has been shown [3,5] that the following class of 

equations defines the problem: 

(1) live (b) = inside (b) u U ; (thru (b) n live (k)) 
' 

k£S (b) 



where S(b) is the set of successors of the block bin 

the control flow graph. 

The essence of the edge-listing method is to propagate 

the "live" information backwards along all simple paths 

by applying the following analog of equation (1) 

(2) live (b) = live(b) U (thru(b)nlive(k)) 

(Zive(b) is initially inside(b)) on each edge (b,k) of an 

edge-listing in reverse order. The following SETL algorithm 

does this. Its argument edge list is an edge-listing 

represented as a tuple of pairs <b',k>. 

definef liveanalysis (nodes, edgelist, thru, inside) 

/* initialize live to inside*/ 

( Vb £ nodes) live(b) = in~ide(b); end Vb; 
/* iterate through the edge-1isting */ 

(# edgelist ~Vi~ 1) /* reverse order */ 

<b,k> = edgelist(i); 

live(b) = live(b) + (thru(b) * live(k)); 

end Vi; 
return live; 

end liveanalysis; 

This simple algorithm is optimal whenever the edge listing 

is minimal. 

Our only remaining problem is to find an algorithm 

which generates a minimal edge listing. 

Enumerating Simple Paths 

The first step in the generation of a minimal edge 

listing is the enumeration of all simple paths in the graph. 

For each node n, we will compute path(n), the set of simple 

paths which terminate ~t n. This computation can be 

performed by an iterative method similar to Kildall's [6]. 
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Initially, paths(n) contains only the null tuple. We 

iterate through the nodes n of the graph adding to 

paths(n) all paths leading to a predecessor k of n and 

through k ton (which paths do not contain n). When no 

new paths are added during an iteration, we halt. 

The following is a SETL function which accepts graph, 

a tuple of nodes, edges, and entry node, and produces the 

paths sets. 

definef computepaths (graph); 

/* break graph into component parts*/ 

<nodes, edges, entry>= graph; 

/* compute the predecessor function*/ 

preds = J <tQ.x, hd x> x E edges} ; 

/* initialize the paths to ~µ11 tuples */ 

(Vn E nodes) paths(n) = {nufi} ; end Vn; 

/* iterate through the graph until there 

are no changes*/ 

change= t; 

(while change) _change= f; 
/* recompute paths for each 

node in the graph*/ 

(1.:/n E nodes) 

newpaths = [+: k E preds {n}] paths(k); 

/* check each new path for the 

occurrence of n */ 

(',;/ p E newpa ths) 

if ( 1 :5._ \fj :5._ # P,1 hd p(j) ne n) 

and (p + << k ,n>>) ~ E paths (n) 
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then paths(n) ;= paths(n) with (p + <<k,n>>); 

change= t; end if; 

end 'V:Jp; 

end Vn; 

end while; 

return paths; 

end computepaths; 



Our next task is to eliminate some duplication. We take 

all the paths into one set and eliminate those which are 

contiguous within another path. 

definef reduce (paths); 

/* pool all paths*/ 

allpaths = [+: x E paths] t£ x; 

/* dheck for contiguous subsequences */ 
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(Vt E allpaths 13( q E allpaths - {t}, 1 < 3:. < 
J 

(#q-#t+l) 

I q ( j : * t) eq t ) ) 

allpaths = allpaths - {t}; 

end 'tft; 

return allpaths; 

end reduce; 

On completion of this function,'~ are left with a set of 
"_. l 

maximal simple paths. 

Edge-Listing Generation 

We must now find an edge sequence which contains 

each of the enumerated paths as a subsequence. To do this 

we will use an exhustive search through a tree of possibilities. 

We build a tree in which we have two quantities 

associated with each node: 

(1) sofar(node) - the pa~tial edge-listing generated 

so far. 

(2) rpaths(node) - the set of paths remaining to be 

accounted for. 



In other words, each node represents a sequence of decisions 

which have led to the partial listing sofar(node). When 

a new node is created by a decision to add a certian edge 

to the listing, that edge is stripped off the beginning 

of each remaining path to create a new rpaths set. When 

the set of remaining paths reduces to a null tuple, the 

edge-listing is complete. Each leaf in the completed 

tree represents a valid edge-listing, the shortest being 

a minimal edge-listing. 

The SETL function multimerge uses an adaptation of 

this method. The tree is built in stages: first all 

possible initial sequences of length 1 are computed, 

then those of length 2, and so on. We stop whenever all 

paths have been exhausted for some leaf because when this 
i 

happens we will have a minimal lljfrting. A small speed-up 

is attained by the following trick: Whenever an edge 

appears only at the beginning of the remaining paths 

we can add this edge to the partial sequence without 

considering other possible decisions - thus we can move 

to the next stage with ·only one son tending from this 

node. 

The following SETL function creates a new tree node, 

given the sets sofar and rpaths for the parent node 

(seq and rempaths, respectively) and the selected next 

edge x. If, after stripping x from the remaining paths, 

all paths have been accounted for, the edge listing is 

returned as the value; otherwise, th~ new node is added 

to the argument set newo 

definef createnode ( x, seq, rempaths, new); 

/* get a new atom*/ 

node= newat; 

sofar(node) = seq + < x >; 

6 



/* strip initial edges from remaining paths to 

create a new rpaths set*/ 

rpaths(node) ~ n1; 

(Vt E remset) 

if X ~ t(l) 

then rpaths(node) = rpaths(node) with (t1 t) ; -- -
else rpaths(node) = rpaths(node) with t; 

end if x; 

end 'r/t; 

/* test to see if remaining paths are null*/ 

if rpaths(node) ~ l<nult} 

then return (sofar(node)); 

else new= new with node; 

return nult; 

end. if; 

end createnode; 

Finally we present the routine multimerge which builds 

the tree. Note that the operator seqelt returns the 

index of an element in a tuple. 

definef multimerge (pathset) 

/* initialize the first node*/ 

node= newat; 

rpaths(node) = pathset; 

sofar(node) = nult; 

nodes= { node } ; 

(while nodes ne n1 doing nodes= new; new= n1;) 

/* iterate through the tree nodes at this stage*/ 

(r/n E nodes) 

<seq, remset> = <sofar(n), rpaths(n)> 

/* check for special condition*/ 
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if 3t E remset I ("</q £ remset I (t (1) seqelt q) 1e 1) 

then /* create only one son*/ 



test= createnode (t(l), seq, remset, new); 

if test ne nult then return test;; ---
else/* multiple branches*/ 

startset = hd [remset]; 

("(x E startset) 

test= createnode(x, seq, remset, new); 

if test ne nult then return test;; 

end t/x; 

end if; 

end \fn; 

end while; 

end multimerge; 

The operator seqelt is progra~~& as follows. 

definef a seqelt t; 

return (if 1 < 3i < # t I t(i)':::9_ a then i else 0); 

end seqelt; 

The method we have presented is clearly "brute force". 

It is probably not worth the effort to compute an 

edge-listing with such a time-consuming method. However, 

it does provide us with a method of evaluating heuristic 

edge-listing generators. 

Summary 

We have introduced the concept of a minimal edge-listing 

and we have used such a listing to rapidly compute global 

data-flow information. A time-consuming algorithm to generate 

a minimal edge-listing has been presented. This algorithm 

will be used in the evaluation of heuristic generators to be 

discussed in future newsletters. 
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