
SETL NEWSLETTER NO. 128 
A LITTLE Written Translator 

from SETL to LITTLE. 

Ed. Schonberg 

Stephanie Brow-n 

April 25, 1974 

We examine here thei feasibility of a direct SETL to LITTLE translation as 

the next phase of developm,ent of the SETL system. The interest of such a direct 

translation is two-fold: 

a) by eliminating the BALMSETL link from the present system, many of 

the annoying semantic restrictions imposed by BALM on SETLB can be removed. 

In particular, the implementation of the proposed SETL namescoping scheme 

becomes possible. Current restrictions on the use of labels and recursive calls 

within iteration loops can also be removed. 

b) Bypassing BALM as an intermediate language streamlines the SETL 

system and simplifies its maintenance. Incrementality of the language can 

actually be assured more easily than with a SETL-to BALM-to LITTLE system, 

where tables of variables, procedures and linkages have to be maintained in two 

places simultaneously (the BALM and SRTL environment). 

The SETL to LITTLE translation scheme we want to propose is relatively 

simple to implement because the now complete SETL run time library offers a 

rich semantic environment in which to perform the required parsing and code 

generation. The scheme is based upon the following three modules: 

a) A preparsing program which receives SETL as input and produces a 

parse tree as output. This program uses the LITTLE lexical scanner and the 

table driven topdown parser. 1t also creates the symbol table need for-resolution 

of name scoping and for incrementality. 

, b) A series of tree walking routines which produce LITTLE code. These 

routines will initially be written in BALM and hand translated into SRTL-SETL. 



SETL 128-2 

c) The LITTLE compiler which will compile the code produced in step b). 

step a) is already implemented as a means of eliminating the SET LB preprocessor. 

In this newsletter we focus on incrementality, the implementation of the 

SETL namescoping scheme, and the mechanisms for procedure linkage, as these 

questions are closely related and their resolution greatly affects future implementations. 

INCREMENTALITY 

Experience with the current SETLB system indicates that savefiles are 

extremely useful, and we feel that some form of incremental compilation ought 

to be provided in the next SETL system. The scheme described in newsletter 

No. 60 precludes this, by compiling a SETL program into a single LITTLE procedure. 

We propose, therefore, that every SETL procedure be compiled as a separate 

LITTLE procedure. Compiled procedures can then be kept in the form of a user 

library, and collected from it on successive runs. As LITTLE does not produce 

movable code, compiled procedures will be loaded together with SRTL, and 

their code will not appear in dynamic storage. No specific provision for saving 

the state of dynamic storage is contemplated here, beyond what is available at 

the operating system level (i.e. the cataloging of the full binary file of a program 

before beginning execution or upon termination) . 

To allow the accessing of global variables belonging to precompiled name­

scopes, a symbol table will be saved together with the user library. The symbol 

table will be used and extended during the preparse phase to resolve variable 

names implicit in namescoping declarations. This is described below in detail. 



SETL 128-3 

Some examples of namescoping are included to clarify 

the proposed subset of SETL namescoping. 

1. If there is no name scope one is automatically 

generated and all procedure names are automatically 

made global. 

define subl{a,b); 

sub2{a+10,n): . 
end subl; 

define sub2; . . 
end sub2; 

subl{~:1,2,3,4~, <10,1>); 

The only global variables are subl and sub2 and they are 

known to the entire program. 

2. If the user wishes variables other than procedure names 

to be global they must be explicitly declared within a 

user defined name scope. 

scope naml; 

end 

global gl,g2,g3; 

define subl{x,y); . . . 
a = gl; 

end subl; 

gl = <10,20>; 

g2 = 5; 

g3 = <: 1,2,3,4 

subl {5, 40); 

naml; 

> ; 

3. If a variable is to be global but must be stacked when 

a procedure is called recursively it must be explicitly 

declared global and owned. 



SETL 128-4 

scope naml; 

global y; owns sub2(y); 

define subl(a,b); . 
if y lt 1 then sub2(y,b); . -

end subl; 

define sub2 (x); . . 
y = y+l; n = y; 

sub2 (n) ; . 
end sub2; 

sub2(40); 

end naml; 

4. Several name scopes may be declared to permit additional 

flexibility. Note that procedures are only known within 

the namescope in which they are defined. Include statements 

are used as follows. 

scope naml; 

global a,b,c; owns subl(c); 

define subl; 

end subl; 

define sub2; . . 
end sub2; 

end naml; 

scope nam2; 

include naml(c,subl); . 
subl(x,y); 

end nam2; 

scope nam3; 

include naml(a); 
I . 

end namB; 



SETL 128-5 

NAMESCOPING 

We propose to implement at first only a subset of the full namescoping 

features described in newsletter 76. The following seems to be a minimal self­

contained set which is sufficiently interesting in itself to serve as a test of the 

usefulness of the full namescoping scheme. The proposed implementation is 

modular enough to allow for gradual inclusion of other features as need arises 

and/or manpower becomes available. Specifically, we propose to incorporate 

the following features into the system: 

a) Namescope declarations will be available at a single level. Namescopes 

will include procedures but a procedure will not contain several namescopes. 

As a result, all namescopes will be !mown to each other, and within a namescope 

all procedures therein will be able to call each other. 

b) Global statements will always have their default levels, i.e. that of the 

namescope in which they appear. Procedure names within a namescope will be 

automatically global and will not have to be declared so explicitly. 

c) Owns statement will be provided. 

d) Jn.elude statements will be provided but without any aliasing facilities. 

Furthermore, include declarations will not propagate their effects: if namescope 

!!:_ accesses some global variables of namescope Q., and the declaration 

include !!:_ (all); 

appears within namescope £, this will only make accessible within £ those variables 

declared global in !!:_. This will simplify considerably the design of the preparsing 

phase. 

e) A variable referenced by an include statement takes on its current value, 

i.e. the value it has within the procedure which owns it. 



SETL 128-6 

Features a)-e) can be incorporated without undue strain within the environ­

ment block scheme described in newsletter 60. We review briefly the organization 

of environment blocks, before describing the symbol table and attacking the question 

of procedure linkage. 

ENVffiONMENT BLOCKS 

To each namescope and procedure we allocate a section of stack: its base­

environment block. This allocation is performed at the beginning of execution by 

an initialization procedure. In the case of a recursive procedure, a new environment 

block is created upon each recursive entry, and released on return. The environment 

block of each procedure stores its arguments, local variables, and some pointers 

needed for procedure linkage (a detailed description is given in newsletter 60). 

In addition the base environment contains some information which needs to appear 

in a fixed location (i.e. known at compile-time); 

a) The number of arguments in the procedure 

1::) The number of local variables 

c) The total size of the block 

d) The invocation count of the procedure 

e) A pointer to the first variable in the current environment block 

f) A pointer to the entry of the binary code of the procedure 

A names cope block stores the variables declared global to the namescope, 

and not owned by any procedure. The only additional information attached to such 



SETL 128-7 

a block is the number of such variables. The address of each global variable 

which is not owned, is known, therefore, at compile time, and can be transmitted 

to all namescopes that access it, via the symbol table. The address of owned 

variables is calculated at run time by adding a constant offset to the address of 

the currently active environment block of its owner. The location of this latter 

address (within the base environment block of the owner) is known at compile 

time and it will appear in the symbol table entry for that variable. 

We describe now the organization of the symbol table. 

SYMBOL TABLE 

The symbol table serves two functions: 

a) At compile time it collects all namescoping information and is used for 

address resolution of each variable in the program. 

b) 1t serves as a library directory when previously compiled procedures 

are loaded and reinitialized. 

Purpose !!_ is served simply by storing in the symbol table the allocating 

information described above for namescopes and proceduresThe names of name­

scopes, variables and procedures, are also stored in the symbol table. As they 

are not used at run time except to provide debugging traces, 

they do not have to be kept as SETL objects, but can be stored 

in packed form (10 characters per word on the 6600) or as LITTLE 

self-defining strings. 

Purpose a) requires that the tree structure implicit in the 

namescoping scheme be appropriately encoded. It also requires 

the address of the actual values of a variable or procedure. 

·The entry for any item in the symbol table will contain, therefore 

a) The index in the symbol table of the item which brackets it 



SETL 128-8 
b) an index indicating the order of appearance within that bracket. 

Fbr a global variable or a procedure, the bracket is the names cope in which it 

appears. For an owned variable, it is the procedure which owns it. The same can 

be applied to embedded namescopes, when implemented. 

The first step of the preparsing phase collects all namescoping declarations 

and gathers all the information needed for a} and b) above. 1t is then easy to 

calculate the address of each environment block to be allocated. From this the 

address of each global variable is obtained and stored into its symbol table entry 

(as a stack index) . For owned variables, it is a location containing the address of 

the current environment block of the owner which has to be stored (the offset was 

obtained in the previous step). 

Jn the case of procedures the symbol table entry is its value itself, in the 

form of a SETL object in the correct SRTL format. Besides containing the index 

of its bracketting namescope, this entry contains a pointer to the base environment 

block. 

Notice in this connection that the assignment statement: 

X = f; 

where f is a procedure, assigns to x the same environment block currently pointed 

at by f. This assignment is not equivalent to the creation of a new instance of f, but 

amounts only to a renaming. This departure from strict value semantics in the case 

of procedures seems unimportant. 1f the need arises to create several instances of 

a given procedure, this can be achieved by an explicit call to the COPY function and 

to the environment block allocation procedure. 

PROCEDURE LINKAGE 



SETL 128-9 

PROCEDURE LINKAGE 

Cnce the SETL program is compiled, it has to be run as any other LITTLE 

program. Procedure START will be executed first, it will call upon the block 

allocation procedure, and then call the main procedure in the SETL program. 

1t is understood that one namescope will contain executable code not bracketted 

within a procedure. The compiler will assign to it a standard name, say MAIN", 

and START will contain the statement CALL MAIN"; . 

During execution of the SETL program every function retrieval has to be 

resolved to determine whether it corresponds to an indexed retrieval on a SETL 

object, or to a procedure call. ff the latter, then the addresses of the arguments 

have to be saved so that delayed value returns can take place. The following scheme 

suggests itself: 

a) At compile time it is possible to evaluate those procedure arguments 

which can be value-receiving (for the first version of the system, this will mean 

variables only). Then code is emitted that will stack the addresses of these variables 

before the procedure is called. ff an argument is not value receiving, Q.!!!_. will be 

stacked instead. 

b) On return, a procedure retvals will scan the list of 

addresses to reassign those arguments that are value receiving. 

It is possible to determine at compile time whether a procedure 

actually modifies its argument. If it doesn't the stacking of 

addresses and the call to retvals can be bypassed. Because of 

this possible optimization, the addresses will not be placed in 

the environment block of the procedure itself. 

c) The simplest, although not the most efficient, way of 

extending the scheme to general value receiving expressions, is 

to expand them at the SETL level to list explicitly the temporaries 

generated and the sequence of retrievals and storages. A more 

efficient scheme might make use of dope vectors. We will postpone 

decision on this point until later. 


